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KEYWQRDS Abstract Problem statement: Lung cancer screening using X-rays has been contro-

Lead time; ) versial for many years. A major concern is whether lung cancer screening really

)L(l_frzsnswcer:;l:i:lg)'utlon, brings any survival benefits, which depends on effective treatment after early

liung cancer ’ detection. The problem was analyzed from a different point of view and estimates
were presented of the projected lead time for participants in a lung cancer screen-
ing program using the Johns Hopkins Lung Project (JHLP) data.

Method: The newly developed method of lead time estimation was applied where the
lifetime T was treated as a random variable rather than a fixed value, resulting in the num-
ber of future screenings for a given individual is a random variable. Using the actuarial life
table available from the United States Social Security Administration, the lifetime distribu-
tion was first obtained, then the lead time distribution was projected using the JHLP data.

Results: The data analysis with the JHLP data shows that, for a male heavy smoker with
initial screening ages at 50, 60, and 70, the probability of no-early-detection with semian-
nual screens will be 32.16%, 32.45%, and 33.17%, respectively; while the mean lead time is
1.36, 1.33 and 1.23 years. The probability of no-early-detection increases monotonically
when the screening interval increases, and it increases slightly as the initial age increases
for the same screening interval. The mean lead time and its standard error decrease when
the screening interval increases for all age groups, and both decrease when initial age
increases with the same screening interval.

Conclusion: The overall mean lead time estimated with a random lifetime T is slightly
less than that with a fixed value of T. This result is hoped to be of benefit to improve current
screening programs.
© 2013 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights
reserved.
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major types of lung cancer have been identified:
small cell lung cancer, which accounts for about
20% of all cases, and non-small cell lung cancer,
the most common type. Different types of lung
cancers require different kinds of treatments.
The age-specific lung cancer incidence rate rises
with advancing age and reaches its peak between
65 and 74 [1].

Cancer screening is carried out to detect malig-
nant tumors early, in order to translate into early
treatment and a better prognosis. However, there
are controversies concerning lung cancer screening
since the early 1970s. The benefit of screening is
often measured by collecting information on how
long patients are alive after the diagnosis, called
survival time. The survival time is the time differ-
ence between the date the disease is diagnosed
and the date a patient dies due to the disease.
However, a patient’s survival time is often per-
ceived longer due to the earlier date of diagnosis,
even though early detection may not be translated
into effective treatment in those days. For exam-
ple, suppose a screening exam leads to a cancer
diagnosis at time t before any symptoms appear,
as shown in Fig. 1, then the survival time will be
calculated as (ty — t), although in fact the survival
time is (tg — t;). This bias occurs due to the contri-
bution of (t, — t), which is called the lead time.
The lead time is the difference between the time
of diagnosis via a screening exam and the time of
clinical disease onset without screening [2]. Since
the survival benefit of screening heavily relies on
the lead time, it is critical to accurately evaluate
the distribution of the lead time.

For this study, the commonly followed disease
progressive model is assumed where the disease
develops by progressing through three states, de-
noted by So — Sp — Sc [3]. Its graphical representa-
tion is illustrated in Fig. 1. The state Sy refers to
the disease-free state, where either a person does
not have the disease, or the disease is in such an
early stage that it cannot be detected by a screen-
ing exam. The preclinical disease state, S, is a
state in which an asymptomatic individual unknow-
ingly has the disease that a screening exam can de-
tect. The disease state, S, is a state at which the

Disease-free Preclinical

Date of

disease manifests itself with clinical symptoms. If a
person enters the preclinical state (Sp) at age t;
and becomes clinically incident (S.) later at age
t,(>t4), then (t, — t4) is the sojourn time in the pre-
clinical state. However, if this person undergoes a
screening exam at time t within the time interval
(t4, t;) and cancer is diagnosed, then the length
of time (t; — t) is the person’s lead time.

Many researchers have proposed methods for
inference on the lead time among participants in
a screening program [4—12], usually by providing
formulas to estimate the mean and the variance
of the lead time. Wu et al. [2] derived the probabil-
ity distribution of the lead time for the whole dis-
eased cohort, including both screen-detected
cases and interval-incident cases, where the hu-
man lifetime was treated as a fixed value. The
model allows estimation of the proportion of pa-
tients whose lead time is zero and the proportion
whose lead time is positive from the program. La-
ter, Wu et al. applied this approach to the Mayo
Lung Project (MLP) data to estimate the lead time
distribution [13]. However, it is not realistic to fix a
person’s lifetime T in the estimation of the lead
time distribution. For this reason, [18] developed
a model to treat the lifetime T as a random vari-
able and made the estimation of lead time distribu-
tion more practical [1]. The main objective of the
present study is to evaluate the lead time distribu-
tion in lung cancer screening using the Johns Hop-
kins Lung Project (JHLP) data and the newly
developed method with a changing lifetime T.

2. Materials and methods

The design of the JHLP can be found in the litera-
ture [14]. The JHLP trials enrolled 10,386 men in
the Baltimore metropolitan area between 1973
and 1978, aged 45 years and older at enrollment,
who smoked at least one pack of cigarettes per
day (or who had smoked this much within 1 year
of enrollment) and who had no prior history of
respiratory cancer. Then all participants were ran-
domized into two groups: chest X-ray only, or a
dual screen (chest X-ray and sputum cytology)
group, resulting in 5160 men in the chest X-ray only

state disease state diagnosis Disease state Death
t1 t t2 td
& s) : s .

Sojourn time

Figure 1

Lead time Survival time

Observed survival time

A graphical representation of the disease progressive model.
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group and 5226 in the dual-screen group. Partici-
pants in the chest X-ray group received a chest X-
ray screening test annually for eight consecutive
years. If any of the tests was positive, then the
screen was considered positive and a definitive
work-up exam, such as biopsy, was done. The data
that were used in this study were the chest X-ray
group, and the data included the number of partic-
ipants in each screening exam, the number of de-
tected and confirmed cancer cases in each
screening exam, and the number of interval cases.
These data were stratified by age at study entry
from 45 to 88 years old. However, after carefully
examining the data, only the data from age 45 to
age 70 were used, excluding age groups 47, 58,
62, 68, 69 and ages above 70, because these age
groups had very few participants and might cause
a large bias in the estimation.

Consider a cohort of initially asymptomatic indi-
viduals in a screening program. Let f(t) be the sen-
sitivity of the screening modality, where t is the
individual’s age at the exam. Define w(t)dt as the
probability of a transition from S, to S, during (¢,
t + dt). Let g(x) be the probability density function
(pdf) of the sojourn time in S, and let
Q(2) = [ q(x)dx be the survivor function of the
sojourn time in the preclinical state S,. Throughout
this paper, the time variable t represents the par-
ticipating individual’s age; the random variable T
represents a person’s lifetime with a probability
density function fr(t).

For an initially asymptomatic male heavy smoker
of age ty, who has no history of lung cancer, and sup-
pose that he plans to undergo K screening exams at
ages to <ty <...< tk_q1. The distribution of the lead
time will be a point mass at 0, and a positive contin-
uous probability density. The reason is that for the
screen-detected cases, the lead time is greater than
zero, while for the interval incident cases, the lead
time is zero. A brief summary of the derived proba-
bility formulae for the lead time with a changing hu-
man lifetime T is given in the Appendix A.

The lead time distribution is a function of the
screening sensitivity p(t), the transition probability
density w(t), the sojourn time distribution g(x), a
person’s initial age at screening, and a future
screening frequency or screening schedule. The
first three parameters were estimated from the
JHLP data using the following parametric models:

B(t) = B, (1)

w(t|u, o?) = 0.3 - exp {—W}/(\/ﬂd)
c>0, (2)

and

KXN—1 prc

q(x) = k>0, p>0, (3)

(1 xp)?
where t represents age and x is the sojourn time in
the preclinical state S,. The screening sensitivity
was treated as a stable value for all age groups,
that is, p(t) = . The lognormal distribution was
chosen for w(t) with an upper limit of 30%. Accord-
ing to the NIH SEER database, the lifetime risk of
lung cancer for the general population is about
7% for both genders [15]. Since participants in the
JHLP were male heavy smokers, the risk would be
higher than that, besides the fact that not all peo-
ple in the preclinical state will progress into clini-
cal cancer. This research proposes 30% as a
reasonable upper limit for w(t). A more detailed
description of the parametric models can be found
in Wu et al. [13,16].

In this study, the unknown parameters are
0= (B,u,0% x,p). Markov Chain Monte Carlo
(MCMC) was used to draw posterior samples with
noninformative priors; each simulation was run
for 11,000 iterations, with 1000 burn-in steps,
and after the burn-in steps, then the posteriors
were sampled every 10 steps. The MCMC trace plots
and the posterior density plots of 0 are plotted
using the final 1000 posterior samples for 0, as
can be seen in Figs. 2 and 3. All parameters were
converged nicely based on Bayesian output analy-
sis. The posterior means of the parameters are
0= (B, 1,62,k p)=(0.568, 3.922, 1.020, 1.027,
1.049). Table 1 summarizes the estimates of the
parameters.

3. Results

The Bayesian posterior samples 6; in the inference
for the lead time were used, where 0; is one of the
posterior samples generated from the MCMC. The
posterior predictive distribution of the lead-time
is:

1 n
el OR E;fEHLP(I\O?) (4)

where 0; is the posterior sample (i=1,...,1000)
and fH'P(1|6;) is the mixture distribution defined
by Egs. (A.5) and (A.6).

For simplicity, three cohorts of initially asymp-
tomatic males were chosen, with initial screening
age to =50, 60, and 70, respectively. For each co-
hort, various screening frequencies were exam-
ined, with screening interval 4=6, 12, 18, and
24 montbhs. The number  of  screenings
K=[(T — tg)/4] is a function of the lifetime T,
therefore it is a random variable in the simulation.
From Eq. (4), the final distribution of the lead time
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Figure 2 The MCMC trace plots of the parameters 0 = (8, u, a2, x, p) using the JHLP data.
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Figure 3 The posterior density plots of the parameters 0 = (B, u, 6%, , p) using the JHLP data.
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Table 1 The estimates of the parameters.
Mean sD? 2.5%° 50%° 97.5%
p 0.568 0.076 0.427 0.565 0.716
u 3.922 0.065 3.762 3.938 3.997
a* 1.020 0.022 1.001 1.014 1.079
K 1.027 0.028 1.001 1.021 1.104
o 1.049 0.052 1.001 1.034 1.200
2 SD stands for the empirical standard deviation.
b, ¢ d The 25th, 50th, and 97.5th percentiles, respectively.
is simply a weighted average of the different
lengths of lifetimes. o |
Table 2 summarizes the Bayesian predictive ° — deftabmo
inference for the lead time. The probability that —
the lead time is zero and the probability that the - ——= defta=24mo

lead time is positive are reported as percentages in
Table 2. The mean lead time and its empirical stan-
dard error were reported in years. The density
curves for the lead time are shown in Fig. 4 for dif-
ferent screening intervals when t, = 60, as the den-
sity curves when the initial screening age is 50 or
70 are very similar.

These results suggest that a man who begins
semiannual screening (i.e., 4 = 6 months) when he
is 60 years old and develops lung cancer sometime
during his life has a 32.45% chance that he will not
be detected early by the scheduled screening ex-
ams. This probability of no-early-detection from
the screening program increases to 46.54% if the
exams are annual. For a man with initial screening

density
0.2

0.1

years

Figure 4 The pdf curve of the lead time when ¢ty = 60.

Table 2 A projection of the lead time distribution using the JHLP control group.

A2 Po® (%) 1— Py (%) Mean (yr) SEC (yr)
Age at initial screen to =50

6 mo 32.16 67.84 1.360 2.278
12 mo 46.30 53.70 1.168 2.224
18 mo 54.43 45.57 1.038 2.163
24 mo 59.86 40.14 0.944 2.106
Age at initial screen to = 60

6 mo 32.45 67.55 1.332 2.229
12 mo 46.54 53.46 1.144 2.175
18 mo 54.58 45.42 1.018 2.116
24 mo 59.97 40.03 0.926 2.060
Age at initial screen to =70

6 mo 33.17 66.83 1.230 2.077
12 mo 47.16 52.84 1.051 2.020
18 mo 55.03 44.97 0.933 1.960
24 mo 60.22 39.78 0.848 1.905

2 A = t; — ti_q is the time interval between screens.

P Py = P(L = 0|D = 1) is the probability of ‘‘no-early-detection’’.

¢ SE stands for the empirical standard error. This is a simulated projection. The number of screens K is a random variable,

changing with the lifetime T.
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age at 50 [respectively, 70], the probability of no-
early-detection with semiannual screens will be
32.16% [or 33.17% for age 70]. The probability of
no-early-detection is monotonically increasing
when the screening interval increases within the
same age group. This probability is slightly increas-
ing as the initial age increases for the same screen-
ing interval. The difference between the initial ages
60 and 70 is smaller than that corresponding differ-
ence between the initial age groups 50 and 60.

The mean lead time in each age group decreases
as the screening time interval increases in Table 2
(i.e., more frequent screening exams will result in
longer lead times). The increase in the mean lead
time is due partly to the smaller point mass at zero
of the lead time when screening intervals are closer
together. The standard deviation of the lead time
decreases as the time between screening exams in-
creases. The mean lead time and the standard error
of the lead time both slightly decrease as age in-
creases within the same screening interval. Table 2
also reveals that the standard deviation for the lead
time is greater than the mean lead time.

4, Discussion

The screening sensitivity, the sojourn time distri-
bution, and the transition density were first esti-
mated in a Bayesian framework. The probability
distribution of the lead time from the JHLP data
was then estimated by employing a newly devel-
oped method [1]. This method considers the human
lifetime as a random variable using information
from the published actuarial life table of the U.S.
Social Security Administration to make the screen-
ing model more realistic [17].

The sensitivity was considered as a constant
parameter across all age groups in this work. Con-
sequently, the estimated sensitivity B was 56.8%.
Kim et al. (2012) estimated the sensitivity using
particle swarm optimization (PSO) using the JHLP
study group data, in which both X-ray and sputum
cytology were used, when estimating the model
parameters. Compared with this previous result,
the sensitivity in this study is much smaller than
that of the previous result (i.e., 56.8% vs. 79.9%).
The reason for the large deviation in sensitivity is
that the sensitivity of the previous study was esti-
mated using both X-ray and sputum cytology, while
the current study uses the control group data,
where only X-ray annual screenings were adminis-
tered, resulting in a much smaller sensitivity. This
confirms that sputum cytology screening improves
the overall sensitivity of X-rays.

The density curves of the lead time of the JHLP
study group data (i.e., X-ray and cytology screen-
ing) were estimated when the lifetime has a fixed
upper bound of 75 years old in the previous study
[1]. The density curves with the JHLP control group
data (i.e., only X-ray) are more skewed to the right
than those of the previous study. This in general
suggests that the lead time of the JHLP study group
data has a greater effect on early detection owing
to additional cytology screening, although the life-
time was treated as a random variable for the JHLP
control group data.

Some simulation was done for the new lead time
model when lifetime T is a random variable; the
purpose is to find which factor will affect the distri-
bution of the lead time more significantly. Screen-
ing sensitivity was found to affect the lead time
distribution slightly; it plays a bigger role in the pro-
portion of no-early-detection versus the proportion
of early-detection. The sojourn time plays the most
significant role in the lead time distribution: in gen-
eral, a longer (shorter) sojourn time will lead to a
longer (shorter) lead time. For lung cancer, the dis-
tribution of the sojourn time is heavily skewed to
the right, with a large variance; that is why the var-
iance of the lead time in lung cancer is also large.

The lead time model used in this study can an-
swer the following two main questions: the proba-
bility that a person’s lung cancer will be detected
early if a person would develop lung cancer later
in life; and the mean/standard error of the lead
time for different screening schedules. It is hoped
that the results of this study will be beneficial to
improving current screening programs.

Conflict of interest

The authors declare that they have no conflict of
interest.

Appendix A.

This appendix provides a summary of the key for-
mulae in the lead time distribution [1]. For an ini-
tially asymptomatic male with no history of lung
cancer who plans to take K screening exams at ages
to<ti<...<tk_q. Let D represents the true dis-
ease status and L represents the lead time. The
lead time distribution given that his lifetime
T= tK(>tK,1) is:
P(L=0D=1,T=t)=P(L=0,D=1|T=t,)/P(D=1|T=tx)

and

fizD=1,T=tx) =fu(z,D=1|T =tx)/P(D=1|T = t), (A1)
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where
P(D =1|T = ty)
-/ "Wx)[Q(to — %) — Q(tx — x)]dx
n /tk w(x)[1 — Q(tx — x)]dx, (A2)

P(L=0,D=1|T=tx) =lx1+ k2 +--+ Ik,

Jj—1

by =S (1= ) (1 —ﬁ,;»/t WIQ( 1 —X)—Q(t; — x)]dx

i=0
+/ti wx)[1 - Q(t; —x)dx, forallj=1,....K, (A3)
and
fuz,D=1|T =

j—1

j i—1
Z {21_ﬁr 1_ﬂ1 1)
r=0

i

X /r, w(x)q(ti +z — x)dx + /ti w(x)q(t;

trq ti_q
oty
+z —x)dx}H(j > 1) + B / w(x)q(to + z — x)dx,

tK—t<Z tK—t11,]—23 K (A4)

For an individual currently at age t, his lifetime is
arandom variable, hence the number of screenings
is random as well. However, if he plans to follow a
pre-planned screening schedule, then the distribu-
tion of lead time when the lifetime T is greater
than t, can be obtained by:

P(L=0D=1,T > to) :/ P(L=0D=1,T

to

= Ofr(t|T > to)dt, (A5)

N fuizD=1,T = t)fr(t|T

to+z

€ (0,00),

@D =1,T > to) =

= to)dt,
where the conditional pdf of the lifetime is
fr(t|T = to) = fr(t)/P(T > to)

=fr(t)/[1 — Fr(to)], if t = to. (A.6)

This is a valid mixed probability distribution, be-
cause it was proved that

PL=0D=1,T > t0)+/ fizD=1,T > to)dz=1.

0
To obtain reliable information on the lifetime dis-
tribution, the actuarial life table from the United
States Social Security Administration (SSA) was
used [17]. For more detailed overviews of the

methods for lead time calculation and for the life-
time prediction, refer to Wu et al. (2012).
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