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Abstract In this paper, a non-linear model is proposed and analyzed to study the
effects of habitat characteristics favoring logistically growing carrier population
leading to increased spread of typhoid fever. It is assumed that the cumulative den-
sity of habitat characteristics and the density of carrier population are governed by
logistic models; the growth rate of the former increases as the density of human
population increases. The model is analyzed by stability theory of differential equa-
tions and computer simulation. The analysis shows that as the density of the infec-
tive carrier population increases due to habitat characteristics, the spread of
typhoid fever increases in comparison with the case without such factors.
ª 2013 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
1. Introduction

Typhoid fever is a bacterial disease caused by Sal-
monella typhi. It is considered as a burden with the
highest incidence rates of the disease in Africa and
Asia [1]. It is transmitted through the ingestion of
food or drink contaminated with bacteria which
may be transported by carriers such as flies from
the feces or urine of infected people. Typhoid fe-
ver spreads in the population because of two fac-
tors: (i) carriers such as flies, which transport
bacteria of disease from excreta of those infected
to susceptible individuals; and (ii) direct contact
between those infected and susceptible individuals
[2]. The changes in the cumulative density of hab-
itat characteristics, such as plant and vegetation in
residential areas, open drainage, garbage dumps,
water storage tanks, ponds, etc., provide a very
conducive environment for breeding, growth and
survival of carriers such as flies leading to the in-
creased spread of typhoid fever [3]. It is noted that
the cumulative density of these habitat character-
istics may increase due to human population den-
sity-related factors such as lack of proper
sanitation, water contamination, etc.
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It is pointed out here that the study of habitat
characteristics representing ecological and envi-
ronmental factors such as the above-mentioned
and their effects on the growth of the carrier pop-
ulation is very complex [4–13]. In this paper, a sim-
ple non-linear model is proposed to study this
aspect on the spread of typhoid fever.

The modeling and analysis of various infectious
diseases have been conducted by many researchers
in the past [14–23]. Although some research has
been conducted on the carrier-dependent infectious
diseases [21], the effect of the cumulative density of
habitat characteristics on the carrier population has
not been considered. It is noted that very little
attention has been paid to the study of typhoid fever
by considering effects of the carrier population, the
density of which increases due to natural as well as
human population density-related habitat charac-
teristics. Therefore, in this paper, a SIR (suscepti-
ble-infected-recovered) model with constant
immigration for carrier-dependent infectious dis-
ease is proposed and analyzed by considering explic-
itly the effects of habitat characteristics. To be
specific in the modeling process, the cumulative
density of habitat characteristics (such as biomass
of leaves in bushes and plants, etc.) is considered
to be governed by a logistic model, the growth rate
of which increases as the density of the human pop-
ulation increases. It is assumed further that the den-
sity of carriers is also governed by a logistic model,
the growth rate ofwhich increases as the cumulative
density of habitat characteristics increases.
Although there are multiple other factors besides
habitat characteristics that are associated with the
spread of typhoid fever, such as seasonality, water
contamination, sanitary practices, etc., the model
focuses solely on the role of habitat characteristics
on the spread of typhoid fever.
2. SIRS model with ecological effects

Let time total human population density N(t) be di-
vided into three sub-classes: the susceptible den-
sity X(t), the infected density Y(t) and the
recovered density R(t), thus N = X + Y + R. Let B(t)
be the cumulative density of habitat characteris-
tics favorable to the growth of the carrier popula-
tion. It is assumed that this density B(t) is governed
by a logistic model and growth rate of which in-
creases as the human population density increases.
Further, let C(t) be the carrier population density
also governed by a logistic model whose growth
rate is favored by habitat characteristics. Also,
Ci(t) is the fraction of the carrier population
density C which carries infective agents to the sus-
ceptible individuals.

Keeping in mind the above factors, and by
assuming simple mass action interaction, a SIR
model is proposed as follows:

dX=dt ¼ A� bXY � kXCi þ v1R� dX;

dY=dt ¼ bXY þ kXCi � ðv þ aþ dÞY
dR=dt ¼ vY � ðv1 þ dÞR;
dCi=dt ¼ s1C� s10Ci;

dC=dt ¼ s0ðC� C2=LÞ � s1Cþ s2BC;

dB=dt ¼ r0B� r0B
2=K � r1Bþ r2BN:

ð2:1Þ

In model (2.1), A is the constant immigration rate
of the human population; d is the natural death
rate constant; b and k are the transmission coeffi-
cients due to the infected human population [2]
and the infected carrier populations respectively;
v1 is the fraction of R becoming susceptible again;
a is the disease-related death rate constant; v is
the recovery rate constant; s1 is the rate at which
carriers become infected carriers; and s10 is the
death rate coefficient of infected carriers due to
natural factors as well as by control measures.
Also, s2 is the growth rate of carriers because of
the conductive habitat characteristics. Further, r0
is the natural growth rate coefficient of B(t); r1 is
the natural depletion/control rate of B(t); r2 is
the growth rate coefficient of B(t) due to human
population density-related factors; and K is the
carrying capacity of B(t), which is assumed to be
a constant. Similarly, s0 is the growth rate, and L
is the carrying capacity of the carrier population.

3. Equilibrium analysis

For analysis of the model (2.1), the following re-
duced system is considered (using X + Y + R = N):

dY=dt ¼ bðN � Y � RÞY þ kðN � Y � RÞCið � ðv þ aþ dÞY ;
dR=dt ¼ vY � ðv1 þ dÞR;
dN=dt ¼ A� dN � aY ;

dCi=dt ¼ s1C� s10Ci;

dC=dt ¼ s0ðC� C2=LÞ � s1Cþ s2BC;

dB=dt ¼ r0B� r0B
2=K � r1Bþ r2BN:

ð3:1Þ

To analyze the model (3.1), the following lemma is
needed which is stated without proof. This lemma
establishes a region of attraction for the system.

Lemma 3.1. The set

X ¼ fðY ;N;C;BÞ : A=ðaþ dÞ 6 Y þ R 6 N 6 A=d; 0 6 Ci

6 s1Cm=s10; 0 6 C 6 Cm; 0 6 B 6 Bmg
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attracts all solutions initiating in the positive oc-
tant, where,

Bm ¼ ðk=r0Þfr þ ðr1A=dÞg; r ¼ r0 � r1 > 0;

Cm ¼ ðLðsþ s2BmÞ=s0Þ; s ¼ s0 � s1 > 0:

Theorem 3.1. The system (3.1) has the following six
equilibria:

(i) E0(0, 0, A/d, 0, 0, 0);

the disease-free, carrier-free and habitat charac-
teristics-free equilibrium

(ii) E1(0, 0, A/d, 0, 0, Bm) where Bm = (k/r0){r + (r2A/
d)}:

the disease-free and carrier-free equilibrium

(iii) E2(Y, R, N, 0, 0, 0);

the carrier-free and habitat characteristics-free
equilibrium which exists if,
R0 ¼ bA=ðdðd þ aþ mÞÞ > 1

where R0 is the basic reproductive number,

Y ¼ ðv1 þ dÞðbA� dðd þ aþ vÞÞ=bððv1 þ dÞðaþ dÞ þ vdÞ;

R ¼ vY=ðv1 þ dÞ and N ¼ ðA� aYÞ=d;

(iv) E3(Y, R, N, 0, 0, B);

the carrier-free equilibrium which exists if R0 > 1,
and where,
B = (K/r0)(r + r2N), Y, N and R0 are defined above;

(v) E4(Y, R, N, C, 0);

the habitat characteristics-free equilibrium,
where
C ¼ Ls=s0;Ci ¼ ðs1CÞ=ðs10Þ:

Y ¼
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4b 1þ a

d
þ v

v1þd

� �
kACi
d

� �r

2b 1þ a
d
þ v

v1þd

� �

b ¼ bA
d
� ðv þ aþ dÞ � kCi 1þ a

d
þ v

v1 þ d

� �
;

R ¼ vY=ðv1 þ dÞ and N ¼ ðA� aYÞ=d;

(vi) E� ¼ ðY�;R�;N�;C�i ;C
�;B�Þ;
the endemic equilibrium.

Proof. The proof of the existence of E0, E1, E2, E3 or E4 is
trivial. The endemic equilibrium point E* is given by the
solution of the following set of equations obtained from
(3.1) by putting left hand sides to zero: h

bY2 þ Yfðaþ v þ dÞ � bðN � RÞ
þ kCiÞ � kðN � RÞCi ¼ 0; ð3:2Þ
R ¼ vY=ðv1 þ dÞ; ð3:3Þ

Y ¼ ðA� dNÞ=a; ð3:4Þ

Ci ¼ s1C=s10 ð3:5Þ

C ¼ ðsþ s2BÞL=s0; ð3:6Þ

B ¼ ðK=r0Þðr þ r2NÞ ð3:7Þ

Eliminating Y from (3.2)–(3.4), the following rela-
tion is derived:

FðNÞ ¼ ðb=a2ÞðA� dNÞ2 þ fðA� dNÞ=agfaþ v þ d

� bðNa1 � A1Þ þ kCig � kðNa1 � A1ÞCi ¼ 0; ð3:8Þ

where

a1 ¼ ðaðv1 þ dÞ þ vdÞ=ðaðv1 þ dÞÞ;

A1 ¼ vA=aðv1 þ dÞ ¼ A=ðaðv1 þ dÞ=vÞ

Also dCi=dN and Ci are derived using Eqs (3.5)–
(3.7) as follows:

dCi=dN ¼ Ls1s2Kr2=s0s10r0 > 0; ð3:9Þ

C ¼ ðs1L=s10s0Þfsþ s2rK=r0g þ NðdCi=dNÞ > 0: ð3:10Þ

It is noted from (3.8) that F(vA/[a(v1 + d) + vd]) is
positive and F(A/d) is negative. Also, N = vA/
[a(v1 + d) + vd] should lie in the region of attraction
X, which gives, v1 + d < v. Thus, it is clear that
there exists a root N* of F(N) = 0 in
vA=½aðv1 þ dÞ þ vd� 6 N 6 A=d: Further, this root
N* will be unique if

dFðNÞ
dN

< 0 for vA=ðaðv1 þ dÞ þ vdÞ 6 N 6 A=d: ð3:11Þ

To show this, (3.8) is differentiated and
(3.8)–(3.10) are used to get

dFðNÞ
dN

¼ � d

A� dN
b
A� dN

a
� ba1

A� dN

a
þ kðNa1 � A1ÞCi

	 


� dC1

dN
ðNa1 � A1Þ þ Na1 �

A

a

� �
þ dN

a

	 


� s1L

s10s
sþ rs2K

r0

� �

ð3:12Þ

which is negative as N < A/d and Na1 > A1 > A/a.
Now, knowing the value of N*, the values of Y*,
R*, C�i , C

* and B* can be uniquely determined from
(3.3)–(3.7) respectively.

Remark. Keeping in mind the properties of E*, it was
found that as the cumulative density of habitat charac-
teristics increases, not only the infected carrier popula-
tion density increases, but also the number of infected in
the population increases leading to the rapid spread of
typhoid fever. These results can be found after calcu-
lating dY/ds2, dCi/ds2, dY/r2 and dCi/dr2; all of them
were found to be positive.
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3.1. Stability analysis

In the following, the local stability of equilibria E0,
E1, E2, E3, E4 and E* are stated, the details of which
are given in Appendix C.

Theorem 3.2. The equilibria E0, E1, E2, E3, E4 and E* are
locally unstable and the equilibrium E* is locally asymp-
totically stable, given R0 < 1 and provided the following
condition is satisfied,

2 � � � 2
k ðN � R � Y Þ
2s10ðv þ aþ dÞ � bðN� � R� � Y�Þ þ bY� þ kC�i Þ

<
2ðbY� þ kC�i Þdr

2
0s

2
0s10

aL2K2r22s
2
2s

2
1

: ð3:13Þ

Remark. It is pointed out here that the inequality (3.13)
is automatically satisfied when the density of the carrier
population is not affected by the cumulative density of
habitat characteristics, i.e., s2 = 0. This shows that the
cumulative density of the habitat characteristics has
destabilizing effects on the system. This is expected
because the spread of the disease increases owing to
habitat characteristics.

The global stability result of E*, given R0 < 1, is
globally asymptotically stable in X provided the
following inequality is satisfied,

k2ðA=dÞ2

2s10ðv þ aþ d � bðA=dÞ þ bY� þ kC�i Þ

<
2ðbY� þ kC�i Þdr

2
0s

2
0s10

aL2K2r22s
2
2s

2
1

: ð3:14Þ
Table 1 Parameter values along with th
unit of habitat characteristics.

Parameter V

A 5
b 3
k 2
a 1
v1 0
d 0
v 0
s0 1
s10 0
s2 1
s1 1
L 1
r0 0
r1 0
r2 0
K 2
a Parameter value is sensed sensibly.
Remark. It is noted here that if s2 = 0, the inequality
(3.14) is automatically satisfied which shows that the
cumulative density of habitat characteristics has desta-
bilizing effects on the system as noted above.

Proof. See Appendix B. h

The above theorems imply that under certain
conditions if the density of the carrier population
caused by habitat characteristics increases, then
the number of infected individuals in the human
population increases leading to the rapid spread
of typhoid fever.

4. Numerical simulation and discussion

In this section, the model (3.1) is analyzed for
appropriate values of parameters given in Table 1.
The incidence rate and mortality rate of the dis-
ease vary greatly across the different regions of
the world [24,25]. The intermediate values of
these coefficients were taken to show the effects
of the several parameters on the disease dynamics.
Also, the initial value of the total population den-
sity was provided for the model simulations as
N(0)=10000. Further, it was initially assumed that
20% of the population was infected with the dis-
ease. Also, no recovered individuals were assumed
for the initial condition, and C(0)=2000, Ci(0)=200,
B(0)=500. Using the numerical values of various
parameters as shown in Table 1, the model (3.1)
is simulated under different scenarios as shown in
Figs. 1–5:
eir description with hb representing

alue of parameter and references

00/year [21,26,27]
.9e�06/person Æ year [24,25]
e�06/year Æ carrier [21,26,27]
e�03/year [25,28]
.01/year [21,26,27]
.015/year [21,26,27]
.15/yeara

2/year [21,26,27]
.3/year [21,26,27]
e�04/hb Æ year [21,26,27]
0/yeara

0000 [21,26,27]
.9/year [21,26,27]
.3/year [21,26,27]
.0002/person Æ year [21,26,27]
600a
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Fig. 2 Variation in the prevalence of disease as well as
carrier population for different values of s2.
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It was found that for the value of parameters
chosen in Table 1, the value of the variables Y, R,
N, C, Ci, B for the equilibrium E* is as follows:

Y� ¼ 4298; R� ¼ 2:6eþ 04; N� ¼ 3:3eþ 04;

C� ¼ 3401; C�i ¼ 1:1eþ 05; B� ¼ 2:08eþ 04:

Further, it should be noted that for the parameters
as defined in Table 1, R0 < 1, and the local and the
global stability conditions are satisfied.

From Fig. 1, it can be seen that as the habitat
characteristics conducive for the carrier popula-
tion growth increase due to population increases,
carrier population as well as prevalence of the dis-
ease in the total population increases. Further,
similar results are noted for s2, s1 and k from
Figs. 2–4 respectively. Thus, it is clear that the in-
fected human population density increases as the
growth rate coefficient of cumulative density of
habitat characteristics and the growth rate coeffi-
cient of the same due to human population den-
sity-related factors increase. The equilibrium
value of prevalence of disease was further calcu-
lated for different immigration rates in Fig. 5 and
it was found that as the immigration rate in-
creases, the spread of disease also increases.
Therefore, it can be concluded that immigration
also plays a major role in keeping the disease ende-
mic. Based on these results, it can be suggested
that in highly endemic regions, it is very important
to suppress the conducive environment for the car-
rier population generated by the human population
by creating awareness within the population and
applying external measures to control it. It is also
important to note that this study is different from
the previous studies [21,26,27]. The key issue ad-
dressed here is the effects of habitat characteris-
0 10 20 30
15

20

25

30

35

40

Time (t) in years

Pr
ev

al
en

ce
 o

f d
is

ea
se

 in
 p

op
ul

at
io

n 
(%

)

r2=0.0002

r2=0.0004

r2=0.0006

0 10 20 30
0

5

10

15
x 104

Time (t) in years

In
fe

ct
iv

e 
C

ar
rie

r P
op

ul
at

io
n

r2=0.0002

r2=0.0004

r2=0.0006

Fig. 1 Variation in the prevalence of disease as well as
carrier population for different values of r2.

Fig. 3 Variation in the prevalence of disease as well as
carrier population for different values of s1.
tics (which are highly dependent on the human
population) on disease prevalence which is differ-
ent from the issues addressed (ecological and envi-
ronmental effects on disease prevalence) in
previous articles [21,26,27]. It is also noteworthy
here that the modeling approach in this article is
an improved version of the model in articles
[21,26] by separating the carrier population into in-
fected and susceptible classes and by inclusion of a
separate class representing habitat characteristics
dependent on total population, while Singh et al.
[27] did a case study on Malaria with a different
model than the one proposed here. The current
study will fit in with the case of Bangladesh where,
due to high population pressure, the quality of life
is pretty low, which has helped Bangladesh to be
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highly endemic [25]. Provided with the appropriate
data, the model can be employed to draw some
predictions on control measures in these highly en-
demic regions that also constitute future work in
this area.

5. Conclusions

In this paper, a SIRS epidemic non-linear model was
proposed and analyzed to study the effects of hab-
itat characteristics on the carrier population (such
as flies) on the spread of typhoid fever by consider-
ing immigration of the population. It is assumed
that the cumulative density of such habitat charac-
teristics is governed by a generalized logistic mod-
el, which is population density-dependent. The
equation governing the carrier population has also
been assumed to be a generalized logistic model
with a specific growth rate and carrying capacity.
The model has been analyzed analytically as well
as by computer simulation. The effects of parame-
ters governing the habitat characteristics, condu-
cive to the growth of carrier population, have
been found to increase the density of the carrier
population, leading to the rapid spread of typhoid
fever. It has been found that typhoid fever be-
comes more endemic due to immigration.
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Appendix A. Proof of the Theorem 3.1

In the following, the local stability behavior of
each of the five equilibria E0 to E4 is studied by
computing the variational matrix, and the endemic
equilibrium point E* is studied by using Lyapunov�s
theory. The variational matrix Mi corresponding
to the equilibrium points Ei, i = 0, 1, 2, 3, 4 is given
by:

Mi ¼

P1 �P2 P2 kðN � Y � RÞ 0 0

v �ðd þ v1Þ 0 0 0 0

�a 0 �d 0 0 0

0 0 0 �s10 s1 0

0 0 0 0 P4 s2C

0 0 r2B 0 0 P3

2
666666664

3
777777775

where,

P1 ¼ �2bY � ðaþ v þ d � bðN � RÞ þ kCiÞ;

P2 ¼ bY þ kCi;

P3 ¼ r0 � r1 �
2r0b
K
þ r2N;

P4 ¼ sþ s2B� 2s0C=L:

For equilibrium point E0 � E4, it is noted that one
of the eigenvalues of Mi; 0 6 i 6 4 is positive. Thus,
each equilibrium Ei; 0 6 i 6 4 is unstable.

Since the nature of E* cannot be seen easily from
the variational matrix, its local stability is studied
by using Lyapunov�s method. For this, the following
positive definite function is used:
V ¼ k0
2
ðY � Y�Þ2 þ k1

2
ðR� R�Þ2 þ k2

2
ðN � N�Þ2

þ k3
2
ðCi � C�i Þ

2 þ k4
2
ðC� C�Þ2 þ k5

2
ðB� B�Þ2: ðA:1Þ
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Thus dV/dt along the linearized system (3.1) can be
written after rearrangement of terms as:

dV

dt
¼ k0f�ðvþaþdÞþbðN� �ðY� þY�Þ�R�Þ

�kC�i gðyÞ
2�k1ðv1þdÞðrÞ2�k2dðnÞ2

�k3fs10gðciÞ2�k4ðs0=LgðcÞ2�k5fr0=Kg�ðyÞ
ðrÞfk1v�k0bY

� �k0kC
�
i gðbÞ

2þf�k2aþk0bY
�

þk0kC
�
i gðyÞðnÞþf�k0kðY

� þR� �N�ÞgðyÞðciÞ
þfk5r2gðnÞðbÞþk3ðs1ÞðcÞðciÞþk4s2ðbÞðcÞ: ðA:2Þ

Choosing k0 ¼ 1; k1 ¼ ðbY� þ kC�i Þ=v and k2 ¼ ðb
Y� þ kC�i Þ=a, the following inequalities are derived
for dV/dt to be negative definite,

k5 < 2k2r0d=Kr
2
2;

k4 < k5r0s0=LKs
2
2;

k2ðN� � R� � Y�Þ2

2s10ðv þ aþ d þ bð2Y� þ R�Þ � BN� þ kC�i Þ
< k3

< k4s0s10=Ls
2
1:

which is satisfied, provided

k2ðN� � R� � Y�Þ2

2s10ðv þ aþ d þ bð2Y� þ R�Þ � BN� þ kC�i Þ

<
2ðbY� þ kC�i Þdr

2
0s

2
0s10

aL2K2r22s
2
2s

2
1

: ðA:3Þ

It can be seen that dV/dt is negative definite under
the condition (A.3). Hence the result.

Appendix B. Proof of Theorem 3.2

To prove this theorem, the following is considered
positive definite function:

V ¼ m0

2
ðY � Y�Þ þm1

2
ðR� R�Þ2 þm2

2
ðN � N�Þ2

þm3

2
ðCi � C�i Þ

2 þm4ðC� C� lnðC=C�ÞÞ

þm5ðB� B� lnðB=B�ÞÞ2: ðB:1Þ

Differentiating (B.1) and using (3.1), the following
is derived:

dV

dt
¼ m0ðY � Y�ÞfbðN � Y � RÞY � bðN� � Y� � R�ÞY�

þ kðN � Y � RÞCi � kðN� � Y� � R�ÞC�i � ðv þ aþ dÞ
� ðY � Y�Þg þm1ðR� R�ÞfVðY � Y�Þ � ðv1 þ dÞ
ðR� R�Þg þm2ðN � N�Þf�dðN � N�Þ � aðY � Y�Þg
þm3ðCi � C�i Þfs1ðC� C�Þ � s10ðCi � C�i Þg þm4

ðC� C�Þf�s0ðC� C�Þ=Lþ s2ðB� B�Þg þm5ðB� B�Þ
� fr0ðB� B�Þ=K þ r2ðN � N�Þg:

After rearrangement of terms, the following is
derived:
dV

dt
¼ m0f�ðv þ aþ dÞ þ bðN � ðY þ Y�Þ � RÞ

� kC�i gðY � Y�Þ2 �m1ðv1 þ dÞðR� R�Þ2

�m2dðN � N�Þ2 �m3fs10gðCi � C�i Þ
2

�m4fs0=LgðC� C�Þ2 �m5fr0=KgðB� B�Þ2

�m1v �m0bY
� �m0kC

�
i gðY � Y�ÞðR� R�Þ

þ f�m2aþm0bY
� þm0kC

�
i gðY � Y�ÞðN � N�Þ

þ f�m0kðY þ R� NÞgðY � Y�ÞðCi � C�i Þ
þ fm5r2gðN � N�ÞðB� B�Þ þm3ðs1Þ
� ðC� C�ÞðCi � C�i Þ þm4s2ðB� B�ÞðC� C�Þ: ðB:2Þ

Choosing m0 ¼ 1; m1 ¼ ðbY� þ kC�i Þ=v and
m2 ¼ ðbY� þ kC�i Þ=a, the following inequalities are
derived for dV/dt to be negative definite,

m5 < 2m2r0d=Kr
2
2;

m4 < m5r0s0=LKs
2
2;

k2ðN � R� YÞ2

2s10ðv þ aþ d � bN þ bY� þ kC�i Þ
< m3 < m4s0s10=Ls

2
1:

which are satisfied, provided,

k2ðA=dÞ2

2s10ðv þ aþ d � bðA=dÞ þ bY� þ kC�i Þ

<
2ðbY� þ kC�i Þdr

2
0s

2
0s10

aL2K2r22s
2
2s

2
1

: ðB:3Þ

Hence, E* is globally asymptotically stable if (B.3) is
satisfied. Hence the result.
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