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Abstract—Hydrogen fuel is a kind of clean energy that can be 
generated by photo catalyzing water splitting. It is interesting to 
investigate the case contrasting to Gibbs free energy 
determination formula (GFEDF). Through calculation and 
theoretical analysis, results are: (1) there is not electric energy and 
other form of work consumed in photo catalyzing water splitting, 
hence, the work from outside environment is less than the change 
of Gibbs free energy; contracting to GFEDF. (2) GFEDF works 
with a reaction when absorbed heat is less than the heat for 
entropy change; GFEDF does not work with a reaction when 
absorbed heat is more than the heat for entropy change. Thereby, 
work is not always more than the change of Gibbs free energy to 
make a nonspontaneous reaction occur. 

Keywords—hydrogen; electric energy; enthalpy; Gibbs free 
energy 

I. INTRODUCTION 

Gibbs free energy (GFE) is an endorsement of the second 
law of thermodynamic. It is technically used to identify the 
direction of a change and to calculate the reaction equilibriums 
[1, 2]; additional to analyze the absorption ability between the 
absorbent and solutes and to analyze the solvation tendency of 
solutes in a solvent [3, 4]. Gibbs free energy determination 

formula (GFEDF, OG W 
) is technically applied to 

quantify the minimum work for a change [5]. According to 
GFEDF, the absolute value of work released to environment 
should be less than (or equivalent to) the absolute value of the 
change of Gibbs free energy for a spontaneous or reversible 
reaction; and the work achieved from outside environment 
should be more than the change of Gibbs free energy for a 
nonspontaneous reaction. 

Hydrogen fuel is a kind of clean energy that can be generated 
from water by utilization of solar energy [6-8]. Hydrogen fuel 
can be generated by photo catalyzing water splitting and 
thermochemical water splitting cycle [9, 10, 11]. For instance, 
Yin et al. [12] carried experiment on water splitting for 
hydrogen and oxygen evolution used Bi3TiNbO9 nanosheets. 
Liu et al. [13] designed cocatalyst loading position for 
photocatalytic water splitting in electrolyte solutions for 
hydrogen fuel. Zhao et al. [14] prepared Al-Ca master alloy and 
used it as catalyst for water splitting to generate hydrogen fuel. 
Chalcogens doped BaTiO3 was prepared for visible light 
photocatalytic hydrogen production from water splitting. The 

Chalcogens doped BaTiO3 can significantly decrease the Eg of 
BaTiO3, and especially true for the larger concentration of the 
dopant [15]. 

Instead of electric energy, those methods utilize heat and 
solar energy to generate hydrogen fuel [16-18]. Where, there is 
not work consumed for hydrogen fuel generation; and thereby, 
the word from outside environment is less than the change of 
Gibbs free energy in a nonspontaneous reaction [19, 20], 
contracting to GFEDF [21, 22, 23]. Therefore, further 
reinvestigate GFEDF in nonspontaneous reactions by theoretical 
analysis.  

II. METHODS AND MATERIALS 

A. Investigating the Values of “ S Q/T  ” under Different 
Conditions 

The values of S Q/T  under different conditions are 
investigated by theoretical deduction, based on a hypothesis that 

it needs a sum of heat for entropy change ( SQ
); which is 

equivalent to the multiplying of absolute temperature and 
entropy change, expressed as:  

SQ T S  

B. Investigating the Relationships between Work and the 
Change of Gibbs Free Energy under Different Conditions 

The relationships between work and the change of Gibbs 
free energy under different conditions are investigated by 
theoretical analysis and mathematical reasoning under different 

situations, based on the values of “ S Q/T  ” under different 
conditions. 

C. Verifying the Result Contracting to GFEDF 

The result contracting to GFEDF is verified through 

examining that the final result of “ 0G W 
” in 

nonspontaneous reactions meets the facts.  
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III. RESULTS 

A. The Values of “ S Q/T  ”under Different Conditions 

When the absorbed heat (or released heat) is less than the 

heat for entropy change ( SQ Q
), Equation (2) and (3) are 

obtained by comparison; indicating that the value of S Q/T   
is more than zero, consistent with the expression of the second 
law of thermodynamic (ESLT). 

SS Q/ T S Q / T 0      

S Q/ T 0   

When the absorbed heat (or released heat) is more than the 

heat for entropy change ( SQ Q
), Equation (4) and (5) are 

obtained by comparison; indicating that the value of S Q/T   
is less than zero, contracting to ESLT. 

SS Q/T S Q /T 0      

S Q/T 0   

B. The Relationships between Work and the Change of Gibbs 
Free Energy under Different Conditions 

Based on the case contracting to GFEDF, the relationships 
between work and the change of Gibbs free energy under 
different conditions are investigated by theoretical analysis and 
mathematical reasoning under different situations. 

Shown as in Fig. 1, when the absorbed heat (Q) from outside 
environment is less than the heat for entropy change (QS) in a 

reaction; the value of ( S Q/T)   is more than zero, meeting 

ESLT. The value of ( S Q/T)   is more than zero results that 
the change of Gibbs free energy is less than the work 

( OG W 
), consistent with GFEDF. Therefore, GFEDF 

works with some reactions that the absorbed heat is less than the 
heat for entropy change.  

 
FIGURE I. DEDUCING SCHEME FOR THE RELATIONSHIP BETWEEN 

WORK AND GFE IN A REACTION WHEN Q<QS 

Shown as in Fig. 2, when the absorbed heat (Q) from outside 

environment is more than the heat of entropy change ( SQ
) in a 

reaction; the value of ( S Q/T)   is less than zero, contracting 

to ESLT. The value of ( S Q/T)   is less than zero results the 

change of Gibbs free energy is more than work ( OG W 
), 

contracting to GFEDF. Therefore, GFEDF does not work with a 
reaction when the absorbed heat is more than the heat for 
entropy change.  

 
FIGURE II. DEDUCING SCHEME FOR THE RELATIONSHIP BETWEEN 

WORK AND GFE IN A REACTION WHEN (Q>QS) 

C. Verification of the Result Contracting to GFEDF 

The correctness of the result contracting to GFEDF is 
supported by the facts that: in the fields including artificial 
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photosynthesis [24, 25], photo catalyst reaction [19, 20, 26, 27], 
enzyme catalyzed reaction [28] and electrocatalytic reaction [29, 
30], many nonspontaneous reactions can be achieved without 
work from outside environment. Instead of work, light and heat 
are the energy to make the reactions occur under catalyst. 
Taking water splitting as an example [27], it can occur under 
catalysts by photonic energy, consuming not any work from 
outside environment. Where, the work is zero, and the change of 
Gibbs free energy is greater than zero; getting the result of 

“ 0G W 
” by comparison. Thereby, the correctness of the 

deducing result contracting to GFEDF is verified. 

IV. DISCUSSIONS 

A. Energy Conversions in Nonspontaneous Reactions 

Based on the first law of thermodynamic, enough energy 
should be supplied to meet the change of enthalpy. The enough 
energy includes heat and work, expressed as Equation (6); and 
thereby both heat and work are the energy to make a reaction 
occur. Additionally, the change of Gibbs free energy is 

expressed as Equation (7). As assuming SQ T S 
, the 

change of enthalpy also can be expressed as Equation (8); which 
indicates that the change of enthalpy is the sum of the change of 
Gibbs free energy and the heat for entropy change.  

0H Q W   

G H T S     

SH G Q    
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FIGURE III. ENERGY CONVERSION IN NONSPONTANEOUS 
REACTIONS 

As shown in Fig.3 (a), when the absorbed heat is equivalent 
to the heat for entropy change; the absorbed heat is completely 

consumed for entropy change, not any heat remaining. Thus, a 
sum of work is needed from outside environment for the change 
of Gibbs free energy; the sum of work is equivalent to the 
change of Gibbs free energy under the situation. As shown in 
Fig.3 (b), when the absorbed heat is more than the heat for 
entropy change, beside a part of heat is consumed for entropy 
change; there is another sum of heat remaining. The remaining 
heat acts as a part of energy to supply the change of Gibbs free 
energy. Thus, additional to the remaining heat, it needs a sum of 
work from outside environment to meet the change of Gibbs free 
energy. The sum of work is less than the change of Gibbs free 
energy under the situations, contracting to GFEDF; but 
consistent with the facts of the special case of photo catalyzing 
water splitting. As shown in Fig.3 (c), when the absorbed heat is 
less than the heat for entropy change, the absorbed heat is not 
enough for entropy change. Thus, beside the work for the 
change of Gibbs free energy, another sum of work is needed to 
act as a supplement of heat for entropy change. Thereby, the 
total work is more than the change of Gibbs free energy, 
consistent with GFEDF. 

B. Acting as a Supplement of GFEDF 

GFEDF is derived from the principle of Carnot cycle that 
only physical process involved. Therefore, it remains a huge 
space to researchers to study the relationship between the real 
work needed and the change of Gibbs free energy in special 

reactions.This paper discovers that the values of “ S Q/T  ” 
is not always more than zero in chemical reactions, and work is 
not necessary more than the change of Gibbs free energy to 
make a nonspontaneous reaction occur. These new discoveries 
are some what different to the traditional explanation of GFEDF. 
Thereby, it might be an important supplement of GFEDF and 
even the second law of thermodynamic. These new discoveries 
can well explain the facts that some nonspontaneous reactions 
can be achieved without work or with a work less than the 
change of Gibbs free energy. 

V. CONCLUSIONS  

Based on the calculation and theoretical analysis, the 
conclusions are: (1) there is not electric energy and other form of 
work consumed in the reaction of photo catalyzing water 
splitting for hydrogen fuel. Hence, work from outside 
environment is less than the change of Gibbs free energy in the 
case, contracting to GFEDF. (2) GFEDF works with a reaction 
when absorbed heat is less than the heat of entropy change; 
GFEDF does not work with a reaction when absorbed heat is 
more than the heat for entropy change. Thereby, work is not 
always more than the change of Gibbs free energy to make a 
nonspontaneous reaction occur.  
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