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Abstract—A mutual information-based unsupervised feature 
extraction method of transformer surface vibration is proposed 
in the paper. Wavelet packet analysis is used to extract surface 
vibration signal frequency band-energy features of the transform 
in operation and complete its signal representation. Relevance 
and redundancy of mutual information measurement are 
considered to judge importance degrees of features, and feature 
importance ranking and selection are completed based on 
unsupervised minimum redundancy and maximum relevance 
criteria. The analysis of measured signals at different measuring 
points of the transformer indicates that this method can 
accurately select important features of transformer vibration 
signals while effectively reducing data dimensionalities.  

Keywords—transformer; vibration signal; feature selection; 
wavelet packet; mutual information  

I. INTRODUCTION  

Transformer is an important equipment in the electric 
power system. Theoretical analysis and practical experience 
indicate that its operating state and fault diagnosis can be 
analyzed through its vibration signals [1].  

Transformer surface vibration mainly derives from iron 
core vibration influenced by internal magnetostriction and 
winding vibration caused by electromagnetic force, and cooling 
systems (fans, oil pumps, etc.) and voltage regulating devices 
will also have a certain influence. Literature [2] used the 
transformer vibration testing system to study iron core 
vibration under idle condition and winding vibration under load 
conditions Literature [3] analyzed measured vibration signals 
of the transformer under a sudden short circuit based on 
complex wavelet transform and captured spectral features of 
transformer vibration signals under a sudden short circuit. 
Literature [4] put forward an improved empirical mode 
decomposition (EMD) algorithm to identify transformer 
winding mode parameters for the sake of vibration analysis of 
winding deformation. 

Transformer surface vibration is influenced by multiple 
factors. Transformer surface vibration signals in actual 
operation are obviously different from those ac-quired through 
theoretical analysis and under laboratory test conditions. 
Literature [5] designed and constructed a portable vibration 
acquisition system to acquire trans-former surface vibration 
signals in operation, gave a GRNN-based calculation method 
of fundamental frequency amplitude and calculated 
fundamental frequency amplitude of surface vibration based on 

historical da-ta and combining operating conditions. Literature 
[6] studied and analyzed transformer surface vibration signal 
features under different working conditions and proposed a 
sensitivity index to quantitatively describe abilities of different 
frequency points of vibration signals to reflect winding 
vibration change. On the whole, there are many complicated 
influence factors of transformer surface vibration in operation, 
theoretical modeling for accurate analysis is difficult and even 
cannot be realized, and there are no reliable abnormality 
detection and fault diagnosis algorithms of transformer 
vibration. 

Online monitored transformer vibration data presents linear 
growth with time, and effective feature ex-traction, highly 
efficient storage and accurate analysis constitute a technical 
difficulty. Meanwhile, transformer surface vibration data 
samples of different models under different working conditions 
are not complete, especially vibration data samples under 
transformer operation ab-normality and under various fault 
states are scarce, which brings about difficulty and challenge to 
feature extraction of transformer surface vibration.  

II. THEORETICAL BASIS 

A. Wavelet Packet Analysis-based Frequency Band-energy 
Representation  

Different wavelet basis functions selected, waveform 
differences after decomposition are greatly different, so are 
signal analysis results; the greater the decomposition layers, the 
higher the frequency band division accuracy, and it’s 
conductive to accurate extraction of signal energies at 
frequency bands, but the computational complexity increases, 
which goes against follow-up analysis and processing. 

B. Mutual Information-based Unsupervised Feature 
Selection 

Monitored transformer data size is enormous and contains a 
large quantity of abundant and even irrelevant data with few 
abnormalities or fault data, which makes it difficult for feature 
extraction of transformer vibration signals. With a reference to 
the method in Literature [7], relevance and redundancy 
between features are firstly analyzed using mutual information 
and then feature importance ranking is implemented based on 
maximum relevance and minimum redundancy criteria to 
complete feature selection.  
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1) Mutual Information Principle: In the information 
entropy theory of Shannon, entropy is used to measure 
uncertainty between variable information. H(X) is usually 
used to describe entropy of discrete variables X= {x1, x2, …xn}, 
where xi is possible value of variable X; p(xi) is probability 
density function. X and Y are set as two discrete random 
variables and p(X) is probability for variable X to take 
different values, and then uncertainty of variable X value can 
be expressed by information entropy: 
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On the precondition of different known possible values of a 
variable Y, uncertainty of variable X value is expressed by 
conditional entropy:  
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Where xi and yj are different possible values of X and Y 
respectively. When two variables are mutually independent, 
then conditional entropy is equal to information entropy, and 
as a general rule, information entropy is greater than 
conditional entropy.  

Mutual information between two random variables X and Y 
is defined as:  

( ; ) ( ) ( | ) ( ; )I X Y H X H X Y I Y X            (3) 

Mutual information can express information quantity 
contained in both variables X and Y, it can be regarded as 
reduction of uncertainty of a variable X when concrete 
information of another variable Y is known, its value is 
symmetrically nonnegative, and the greater the value, the 
higher the relevance degree, and complete irrelevance exists 
when its value is 0.  

2) Feature Sorting and Selection: In the feature selection 
process, it’s necessary to exclude redundant features whole 
selecting related features. Definition and calculation method of 
“relevance” and “redundancy” of features to be selected and 
the whole feature set are given as follows.  

Definition 1 Relevance: relevance of feature fi refers to 
average mutual information of it with the whole feature set.  
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Where H(fi) is information quantity contained in feature fi. 
The greater the H(fi) value, the larger the information quantity 

contained in feature fi. 
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quantity jointly contained in feature fi and other features, and 
the greater the value, the fewer the “new” knowledge which 
can be provided by other features to the set.  

Assuming a to-be-selected feature fi in the to-be-selected 
feature set U, conditional information entropy of any selected 
feature gt in the selected feature set Sm-1 relative to to-be-
selected feature fi is H(gt|fi). If to-be-selected feature fi is added 
to selected feature set Sm-1, then information quantity provided 
by selected feature gt is reduced due to addition of to-be-
selected feature fi, and relevance of selected feature gt  itself is 
reduced, so “conditional relevance” is defined as follow.  

Definition 2 Conditional relevance: conditional relevance 
of selected feature gt relative to to-be-selected feature fi is 
defined as:  
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According to the above equation, conditional relevance is 
not greater than relevance. Their difference can be defined as 
redundancy naturally only when two features are mutually 
independent and equal.  

Definition 3 Redundancy: redundancy of to-be-selected 
feature fi to selected feature gt is defined as difference value 
between relevance Rel(gt) of selected feature gt and its 
conditional relevance Rel(gt|fi).  
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Based on the above definition, unsupervised maximal 
relevance and minimal redundancy (UmRMR) is obtained [8], 
where the core idea is to seek for the feature having the 
maximum “relevance” with the whole set and minimum 
“redundancy” to the selected feature set, and its expression is 
as follow:  
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The following is set 
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The m(th) feature can be selected as gm=flm, as this feature 
reduces uncertainty of other features to the greatest extent and 
brings the minimum redundant information.  

III. FEATURE EXTRACTION OF TRANSFORMER SURFACE 

VIBRATION SIGNALS 

Surface vibration data of a normally operating transformer 
in a transformer substation are acquired, and transformer 
model is SFZ9-50000/110. 6 acceleration sensors are adsorbed on 
positions 1/3 away from the transformer bottom at high-
voltage-side phase A, B and C and low-voltage-side phase a, b 
and c respectively, and measuring points are numbered as 1-6 
successively. Sampling frequency is 10kHz, recording 
duration in each sampling process is 1s and sampling interval 
is 5min.  

Transformer surface vibration signals acquired on the field 
are organized, and frequency spectral records at 6 measuring 
points at the same moment are shown in FIGURE I.  

 
FIGURE I.  SPECTRA CHART OF TRANSFORMER SURFACE 

VIBRATION SIGNAL AT DIFFERENT MEASUREMENT 
POSITIONS 

A. Frequency Band-energy Representation 

Daubechies1 wavelet is used to complete frequency band-
energy representation of transformer vibration signals. In 
consideration of transformer vibration signal features and 
follow-up processing demand, the wavelet packet is 
decomposed into 6 layers, bandwidth of each section is 
78.125Hz and frequency band division at the 6th layer is shown 
in TABLE I.  

TABLE I.  WAVELET PACKET DECOMPOSITION FREQUENCY 
RANGE OF EACH FREQUENCY BAND (UNIT: HZ) 

Frequency 

band 
1 2 ··· 63 64 

Frequency 

Range 

0~ 

78.125 

78.125~ 

156.25 
··· 

4843.75~ 

4921.875 

4921.87

5~5000

In view that transformer surface vibration energy is mainly 
distributed below 1,500Hz (FIGURE I), and processing steps of 
vibration signal frequency band-energy representation are as 
follows: wavelet packet decomposes the transformer surface 

vibration signal, wavelet basis function is Daubechies1, and 
number of decomposition layers is 6; signal energies of 
frequency bands 1-20 (TABLE I) are calculated and recorded as 
E1,E2,…,E20 in succession.  

B. Data Preprocessing 

Normalization processing of energy value at each 
frequency band is carried out. Transformer vibration signal 
frequency band-energy eigenvector after normalization 
processing is recorded as X=[x1,x2,…,x20 ], where:  
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Frequency band-energy data obtained through 
normalization are continuous variables, and it’s difficult to 
calculate their probability distribution and mutual information. 
Therefore, it’s also necessary to conduct discretization. 
Unsupervised equal-width discrete method is used, number of 
distribution boxes is set as 10, and transformer vibration signal 
eigenvector consisting of 20 features is obtained after 
processing and recorded as V=[f1,f2,…,f20]. 

C. Mutual Information-based Unsupervised Feature Sorting 

The method specified in section 1.2 is used to analyze 
importance degrees of dimensional features of vibration signal 
eigenvector V and conduct sorting. I(fi;fj) is defined as mutual 
information value between two features in V; H(fi;fj) is 
conditional entropy of feature fi; H(fi ) is fi feature entropy; S is 
the selected feature set after sorting; U is to-be-selected feature 
set, and the sorting algorithm is described as below:  

(1) Initialization: S ， 1 2
( , , , )nU D f f f  ; 

(2) Mutual information calculation: for any ,i tf f U , 

( ), ( | ), ( ; )i i j i j
H f H f f I f f are calculated;  

(3) The first feature is selected:  

The selected first feature should be the one which can 
provide the maximum information quantity and reduce 
uncertainty of other features to the greatest extent. Selection of 
the first feature is decided by the following equation:  
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(4) Selection of other features: feature ml
f which satisfy 
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(5) Step (4) is repeated until U   , and S is output.  

Finally output S of the algorithm are orderly feature 
sequences sorted according to feature importance.  

The transformer vibration signal is processed according to 
the abovementioned method so as to obtain orderly feature 
sequences sorted according to feature importance. TABLE II 
lists data feature sorting results at high-voltage side phase A, B 
and C and low-voltage side phase a (recorded as HA, HB, HC 
and LA successively).  

TABLE II.  TRANSFORMER SURFACE VIBRATION SIGNAL 
UNSUPERVISED FEATURE SELECTION RESULT 

NO. Data Set Features ranking by UFS 

1 HA 
{08,18,02,07,05,11,19,04,09,20,13,10,06,17,16,01,

03,14,15,12} 

2 HB 
{08,18,07,09,01,14,19,04,02,17,15,13,05,03,20,16,

12,06,10,11} 

3 HC 
{03,02,04,05,08,20,13,14,17,10,06,16,09,19,18,07,

01,11,15,12} 

4 LA 
{06,02,05,20,07,10,11,19,16,04,17,08,13,18,01,14,

12,15,09,03} 

IV. CLASSIFICATION TEST 

In order to analyze whether the method proposed in this 
paper can identify important transformer surface vibration 
features, relevance or dependence between generated orderly 
feature sequences and transformer measuring points (namely 
potential categories) and whether it can reduce data 
dimensionalities and improve the follow-up algorithm 
performance, K-nearest neighbor classification algorithm is 
used to conduct the classification test, and classification 
accuracy is taken as the index evaluating performance of the 
feature selection method.  

D. Experimental Data 

Measuring points are taken as the category division basis 
to process transformer surface vibration data for continuous 
20h, 6 categories of sequential feature datasets (238 records in 
each category) of the transformer vibration signal (totally 
1,428 records) are obtained after data preprocessing, and 
recorded as Dataset A.  

With a reference to feature sorting results of different 
dimensionalities at high-voltage side phase C in TABLE III, data 
in Dataset A are re-sorted to obtain orderly feature sequences 

sorted according to importance degree from high to low, and 
the obtained data are recorded as Dataset B.  

E. Classification Test 

Feature selection can be regarded as seeking for a feature 
subset containing original features and integrating most or all 
information. This feature subset can reduce uncertainty of other 
unselected features to the greatest extent.  

According to feature sequence in 2 experimental datasets, 
features present orderly progressive increase to constitute a 
feature subset, data characterized by this feature subset is 
taken as input of K-nearest classier, K value is defined as 1, 3 
and 5 respectively for classification, and average value of 
operating results of 10-fold cross validation for 10 times is 
selected as the final classification accuracy. In consideration 
that similarity of surface vibration at the same transformer side 
(high-voltage side or low-voltage side) is high while 
difference between different sides is large, the experiment is 
carried out in 2 parts.  

Vibration data at three measuring points—high-voltage 
side phase A, B and C—with high similarity degree in 
experimental data are selected in the first part to conduct K-
nearest classification. FIGURE II gives change tendencies of 
classification accuracy of the classier when different numbers 
of features are selected to characterize data, where subgraphs 
(a), (b) and (c) show classification results when K value is 
taken as 1, 3 and 5 respectively. Data classification result in 
Dataset A is marked as Sequence, and that in Dataset B is 
marked as UFS-MI.  

The similar method is used in the second part to conduct 
classification test in the whole experimental dataset. FIGURE III 
gives change tendencies of nearest classification accuracy of 
data at six measuring points of the test transformer under 
different K values, and the optimal classification accuracy is 
recorded in TABLE III. 

 
(a)K=1 
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(b)K=3 

 
(c)K=5 

FIGURE II.  COMPARISON OF CLASSIFICATION PERFORMANCE OF 
DIFFERENT VIBRATION FEATURES DATA  

 
(a)K=1 

 
(b)K=3 

 
(c)K=5 

FIGURE III.  FIGURE III. COMPARISON OF CLASSIFICATION 
PERFORMANCE OF DIFFERENT VIBRATION FEATURES DATA  

TABLE III.  TWO METHODS OF DIFFERENT SIZE FEATURE SUBSET 
CLASSIFICATION ACCURACY 

No. Features
Accuracy (%) 

No. Features 
Accuracy (%) 

UFS-MI Sequence UFS-MI Sequence

1 84.42 46.16  11 98.62 96.38  

2 87.90 64.57  12 98.70 96.30  

3 93.48 89.42  13 98.84 97.61  

4 95.58 92.83  14 98.84 98.62  

5 96.38 95.43  15 98.84 98.33  

6 96.30 96.45  16 98.77 98.48  

7 97.39 96.30  17 98.62 98.48  

8 98.77 96.52  18 98.70 98.48  

9 98.84 96.45  19 98.48 98.48  

10 98.55 96.23  20 98.48 98.48  
Notes: No. Features expresses number of features in the feature subset.  

The experiment indicates that as the number of features 
increases, classification accuracy is improved and then tends 
to be a relatively stable value or to decline somehow, 
certifying that feature information initially input in the 
classifier is insufficient, and classification performance 
declines due to addition of redundant or irrelevant data.  

Based on the feature sorting method, classification 
accuracy according to the first feature reaches above 70% and 
presents rapid progressive increase as the number of features 
increases, and the highest classification accuracy is reached 
when number of features is 8 or 9; classification accuracy of 
the first feature of each sequential feature data doesn’t reach 
50%, and the highest classification accuracy is reached only 
when the number of features increases to 14. It’s proved that 
the method proposed in this paper can accurately recognize 
important features of transformer surface vibration, and 
feature dimensionalities reflecting important signal features 
are placed in front row of the feature sequence.  

The highest classification accuracies on experimental 
datasets are 98.84% and 98.62% respectively. Under the same 
quantity of features, classification accuracies of both sorted 
feature data are higher than or equal to classification effect of 
sequential feature data.  
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V. CONCLUSIONS 

An unsupervised feature extraction method of 
transformation surface vibration is given in this paper, and 
conclusions are drawn as follows: For the demand for feature 
extraction of the transformer surface vibration signal, wavelet 
packet analysis-based hierarchical division basis of the 
transformer surface vibration signal and its frequency band-
energy feature representation method is given. Based on 
relevance and redundancy between mutual information-based 
measured features and combining unsupervised maximum 
relevance and minimum redundancy criteria, a feature 
extraction method of the transformer surface vibration signal 
is given. Classification test of measured transformer vibration 
data indicates that the method proposed in this paper can 
acquire classification performance superior to that on a 
complete feature dataset while reducing half of features.  
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