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ABSTRACT
In the two previous papers of this series, the main results on the asymptotic behaviors of empirical divergence measures based
on wavelets theory have been established and particularized for important families of divergence measures like Rényi and Tsallis
families and for the Kullback-Leibler measures. While the proofs of the results in the second paper may be skipped, the proofs
of those in paper 1 are to be thoroughly proved since they serve as a foundation to the whole structure of results. We prove them
in this last paper of the series. We will also address the applicability of the results to usual distribution functions.
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1. INTRODUCTION AND RECALL OF THE RESULTS TO BE PROVED

For a general introduction, we refer the reader to the ten (10) first pages in [1] in which the notation and the assumption are exposed.

Let us recall here the main results we exposed in. The first is related to the empirical process based on wavelets.

Theorem 1.1. Given the (Xn)n≥1, defined in Condition (8) such that f ∈ ℬt
∞,∞ (ℝ) and let fn defined as Formula (13) and 𝔾w

n,X defined as in
Formula (17). Then, under Assumptions [1–3], all in [1] and for any bounded function h, defined on D, belonging toℬt

∞,∞ (ℝ), we have

𝜎−1
h,n𝔾w

n,X (h) ⇝𝒩 (0, 1) as n →∞,

where we have

𝜎2
h,n = 𝔼X

(
Kjn (h) (X)

)2
−
(
𝔼X

(
Kjn (h) (X)

) 2
→ 𝕍ar (h (X)) as n →∞.

Proof. Suppose that Assumptions 1 and 3, in [1], are satisfied and h ∈ ℬt
∞,∞ (ℝ).

We have

∫D
(
fn(x) − f (x)

)
h(x)dx =

(
ℙn,X

(
Kjn (h)

)
− 𝔼X (h)

=
(
ℙn,X − 𝔼X

) (
Kjn (h)

)
+ 𝔼X

((
Kjn (h)

)
(X) − h (X)

)
.

It comes that

𝔾w
n,X (h) = √n

(
ℙn,X − 𝔼X

) (
Kjn (h)

)
+√nR1,n,

where R1,n = 𝔼X

((
Kjn (h)

)
(X) − h (X) .
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To complete the proof, we have to show that (1)√n
(
ℙn,X − 𝔼X

) (
Kjn (h)

)
converges in distribution to a centered normal distribution and

(2) √nR1,n converges to zero in probability, as n → ∞. By the way, we will assume that, in the sequel, all the limits as meant as n → ∞,
unless the contrary is specified.

For the first point, we show that

√n
(
ℙn,X − 𝔼X

) (
Kjnh (X)

)
⇝𝒩 (0, 𝕍ar (h (X))) as n →∞,

by applying the central theorem for independent randoms variables.

Let us denote Zi,n = Z(h)
i,n = Kjnh (Xi), 𝜇jn = 𝔼Zi,n, and 𝜎2

i,n =
(
𝜎(h)
i,n

)2
= 𝕍ar

(
Zi,n

)
< ∞. Let

Tn =
n

∑
i=1

(
Zi,n − 𝜇jn

)
,

s2n = 𝕍ar (Tn) =
n

∑
i=1

𝜎2
i,n.

Tn/sn has mean 0 and variance 1; our goal is to give conditions under which

Tn
sn

⇝𝒩 (0, 1) , as n → +∞.

Such conditions are given in the Lindeberg-Feller-Levy conditions (See [4]), Point B, pp. 292).

We have to check that

(L1) s−1
n max

1≤i≤n
{𝜎i,n} → 0,

and for any 𝜀 > 0,

(L2) L (n) =∶ 1
s2n

n

∑
i=1 ∫(|Zi,n−𝔼Zi,n|>𝜀sn

) |Zi,n − 𝔼Zi,n|2dℙ → 0.

To prove this, let us begin to see that ∀x ∈ ℝ

|
(
Kjnh

)
(x) − h (x) | = 2jn ∫D K

(
2jnx, 2jn t

)
[h (t) − h (x)] dt,

By Assumption 3 in [1], we have for any x ∈ D,

|Kjnh (x) − h (x) | ≤ ∫D Φ (u) |h
(
x + 2−jnu

)
− h (x) |1{(x+2−jnu)∈D}du. (1)

Recall that h is uniformly continuous on D and on the compact𝒦 which supports Φ. We have

𝜌 (h, n) = sup
(s,t)∈D2,|t−s|≤C2−jn

|h (t) − h (s) | → 0.

For all p ≥ 1, for all x ∈ D, and for c = ‖Φ‖∞𝜆 (𝒦),

|Kjnh (x) − h (x) |pf (x) 1D (x) ≤ cp𝜌 (h, n)p f (x) 1D (x) (2)

We get that for all p ≥ 1, for any n ≥ 1

𝔼|Kjnh (X) − h (X) |p ≤ cp𝜌 (h, n)p → 0. (3)

Then for any 1 ≤ i ≤ n,

|𝔼Zi,n − 𝔼h (X) | ≤ 𝔼|Zi,n − h (X) | ≤ c𝜌 (h, n) → 0, (4)
Pdf_Folio:104
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that is,

max
1≤i≤n

|𝔼Zi,n − 𝔼h (X) | → 0. (5)

We have

|𝜎i,n − 𝕍ar (h (X))1/2 | = | [𝕍ar
(
Kjnh (Xi)

)
]
1/2

− [𝕍ar (h (X))]1/2 |

= | [𝔼
(
Zi,n − 𝔼Zi,n

)2]1/2 − [𝔼 (h (X) − 𝔼h (X))2]1/2 |
= |‖Zi,n − 𝔼Zi,n‖2 − ‖h (X) − 𝔼h (X) ‖2|.

Hence,

|𝜎i,n − 𝕍ar (h (X))1/2 | ≤ |‖𝔼Zi,n − 𝔼h (X) ‖2 − ‖Kjnh (Xi) − h (X) ‖2|,

and using (3) and (5), we get that

max
1≤i≤n

|𝜎i,n − 𝕍ar (h (X))1/2 | → 0. (6)

We have from (2) (
Zi,n

)2 = ((
Kjnh

)
(Xi)

)2
= [h (X) +

((
Kjnh

)
(Xi) − h (X)

)
]
2

≤ 2 [(h (X))2 + |
(
Kjnh

)
(Xi) − h (X) |2]

≤ 2 [(h (X))2 + c2𝜌 (h, n)2] .

Thus, (
Zi,n

)2 + 𝔼
(
Zi,n

)2 ≤ 2 [| h (X)) |2 + c2𝜌 (h, n)2] + 𝔼 [2 (h (X))2 + 2c2𝜌 (h, n)2]
≤ 2 [| h (X)) |2 + 2c2𝜌 (h, n)2] + 2𝔼 (h (X))2

≤ 2 (h (X))2 + 𝔼 (h (X))2
)
+ 2c2𝜌 (h, n)2

≤ 1
2 (Z + 𝛿n)

where

Z = 4
(
(h (X))2 + 𝔼 (h (X))2

)
and 𝛿n = 8c2𝜌 (h, n)2 .

Besides, the C2−inequality gives

|Zi,n − 𝔼Zi,n|2 ≤ 2
((

Zi,n
)2 + |𝔼Zi,n|2

)
≤ Z + 𝛿n.

By the way, we have also

Z + 𝛿n ≤ 8‖h‖2∞ + 𝛿n = Δn → 8‖h‖2∞.

To prove (L1), put 𝛼 (n) = max1≤i≤n {|𝜎i,n − (𝕍ar (h (X)))1/2 |} . Then,

𝜎2
i,n ≤ max

(
[−𝛼 (n) + (𝕍ar (h (X)))1/2]

2 , [𝛼 (n) + (𝕍ar (h (X)))1/2]
2) , for any 1 ≤ i ≤ n.

We get

s2n ≤ nmax [(𝕍ar (h (X)))1/2 − 𝛼 (n)]
2 , [(𝕍ar (h (X)))1/2 + 𝛼 (n)]

2 ,

hence

s2n
n𝕍ar (h (X)) ≤ max

(
[1 − 𝛼 (n)

(𝕍ar (h (X)))1/2
]
2

, [1 + 𝛼 (n)
(𝕍ar (h (X)))1/2

]
2)

.
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By (6), we have

|||
s2n

n𝕍ar (h (X)) − 1
||| ≤ max

(|||[1 − 𝛼 (n)
(𝕍ar (h (X)))1/2 ]

2
− 1

||| ,
|||[1 +

𝛼 (n)
(𝕍ar (h (X)))1/2 ]

2
− 1

|||

)
→ 0.

And then

s2n ∼ n𝕍ar (h (X)) . (7)

 
Next

s−1
n max

1≤i≤n
{𝜎i,n} ≤

(1 + 𝛼 (n)) (𝕍ar (h (X)))1/2
sn

∼ (1 + 𝛼 (n))
√n

→ 0,

which proves (L1).

We have

L (n) ≤ 1
s2n

n

∑
i=1 ∫(Z+𝛿n>𝜀2s2n) Δndℙ

= n
s2n

(
8‖h‖2∞ + 𝛿n

)
∫(Z+𝛿n>𝜀2s2n) dℙ

= n
s2n

(
8‖h‖2∞ + 𝛿n

)
ℙ
(
Z + 𝛿n > 𝜀2s2n

)
≤ n

s4n

(
8‖h‖2∞ + 𝛿n

) 𝔼 (Z + 𝛿n)
𝜀2

by Chebyshev’s inequality. So

L (n) ∼
(
8‖h‖2∞ + 𝛿n

)
n (𝕍ar (h (X)))2

𝛿n + 𝔼 (Z)
𝜀2 → 0,

since s4n ∼ n2 (𝕍ar (h (X)))2 as n → +∞.

Which proves (L2).

Now that Conditions (L1) and (L2) have been proved, we have

Tn
sn

∼ 𝒩 (0, 1) , as n → +∞. (8)

But we have

Tn
sn

= 1
sn
n

(
1
n

n

∑
i=1

(Zi,n − 𝜇jn )
)

= n
sn

(
1
n

n

∑
i=1

(Zi,n − 𝜇jn )
)

= n
sn

(
1
n

n

∑
i=1

Kjnh(Xi) − 𝔼Kjnh(X)

)
= n

sn
(
ℙn,X − 𝔼X

) (
Kjnh (X)

)
.

Using (7), we get

Tn
sn

∼
n
(
ℙn,X − 𝔼

) (
Kjnh

)
√n (𝕍 (h (X)))1/2

.
Pdf_Folio:106
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Finally, from (8), we obtain

√n
(
ℙn,X − 𝔼

) (
Kjnh

)
(𝕍 (h (X)))1/2

⇝𝒩 (0, 1) , as n → +∞,

that is,

√n
(
ℙn,X − 𝔼

) (
Kjnh

)
⇝𝒩 (0, 𝕍 (h (X))) , as n → +∞. (9)

This ends the first point.

As to the second point, we apply Theorem 9.3 in [3] to have

||𝔼X

(
Kjnh − h

)
(X)|| ≤ ∫D ||(Kjnh)(x) − h(x)|| f(x)dx

≤ C3||
(
Kjnh

)
− h||∞|| f ||∞

≤ 𝜅2C32−jnt.

Therefore, we have

√nR1,n (h) ≤ 𝜅2C3√n2−jnt = 𝜅2C3n(1−2t)/8 = oℙ (1) ,

for any 1/2 < t < T.

The two others main results are related to the asymptotics of class of the 𝜙-divergence measures. They concern the almost sure efficiency
of them.

Theorem 1.2. Under Assumptions [1–3], C-A, C-h, C1-𝜙, C2-𝜙, and (BD) all in [1], we have

lim sup
n→+∞

|J
(
fn, g

)
− J

(
f, g

)
|

an
≤ A1, a.s (10)

lim sup
n→+∞

|J
(
f, gn

)
− J

(
f, g

)
|

bn
≤ A2, a.s (11)

lim sup
(n,m)→(+∞,+∞)

||||
J
(
fn, gm

)
− J

(
f, g

)
cn,m

||||
≤ A1 + A2 a.s (12)

where an, bn and cn are as in Formulas (16) in [1].

Proof. In the proofs, we will systematically use the mean values theorem. In the multivariate handling, we prefer to use the Taylor-Lagrange-
Cauchy as stated in [5], page 230. The assumptions have already been set up to meet these two rules. To keep the notation simple, we
introduce the two following notations:

an = ‖Δn f‖∞ and bn = ‖Δng‖∞.

Recall that

𝔾w
n,X (h) = √n ∫D Δn f (x) h (x) dx and 𝔾w

n,Y (h) = √n ∫D Δng (x) h (x) dx,

We start by showing that (10) holds.

We have

𝜙
(
fn (x) , g (x)

)
= 𝜙

(
f (x) + Δn f (x) , g (x)

)
.

So by applying the mean value theorem to the function u1 (x) ↦ 𝜙
(
u1 (x) , g (x)

)
, we have

𝜙
(
fn (x) , g (x)

)
= 𝜙

(
f (x) , g (x)

)
+Δn f (x)𝜙(1)

1
(
f (x) + 𝜃1 (x)Δn f (x) , g (x)

)
(13)
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where 𝜃1 (x) is some number lying between 0 and 1. In the sequel, any 𝜃i satisfies |𝜃i| < 1. By applying again the mean values theorem to
the function u2 (x) ↦ 𝜙(1)

1
(
u2 (x) , g (x)

)
, we have

Δn f (x)𝜙(1)
1

(
f (x) + 𝜃1 (x)Δn f (x) , g (x)

)
= Δn f (x) 𝜙(1)

1
(
f (x) , g (x)

)
+𝜃1 (x)

(
Δn f (x)

)2 𝜙(2)
1

(
f (x) + 𝜃2 (x)Δn f (x) , g (x)

)
,

where 𝜃2 (x) is some number lying between 0 and 1. We can write (13) as

𝜙
(
fn (x) , g (x)

)
= 𝜙

(
f (x) , g (x)

)
+ Δn f (x)𝜙(1)

1
(
f (x) , g (x)

)
+𝜃1 (x)

(
Δn f (x)

)2 𝜙(2)
1

(
f (x)

+ 𝜃2 (x)Δn f (x) , g (x)
)
.

Now we have

J
(
fn, g

)
− J

(
f, g

)
= ∫D Δn f(x)𝜙(1)

1
(
f(x), g(x)

)
dx

+ ∫D 𝜃1(x)
(
Δn f(x)

)2𝜙(2)
1
(
f(x) + 𝜃2(x)Δn f(x), g(x)

)
dx, (14)

and hence,

|J
(
fn, g

)
− J

(
f, g

)
| ≤ an ∫D |𝜙

(1)
1

(
f (x) , g (x)

)
|dx + a2n ∫D |𝜙

(2)
1

(
f (x) + 𝜃2 (x)Δn f (x) , g (x)

)
|dx.

Therefore,

lim sup
n→∞

|J
(
fn, g

)
− J

(
f, g

)
|

an
≤ A1 + an ∫D 𝜙

(2)
1

(
f (x) + 𝜃2 (x)Δn f (x) , g (x)

)
dx.

Under the Boundedness Assumption (6) in [1], we know that A1 < ∞ and that condition (19), [1], is satisfied, that is

∫D 𝜙
(2)
1

(
f (x) + 𝜃2 (x)Δn f (x) , g (x)

)
dx → ∫D 𝜙

(2)
1

(
f (x) , g (x)

)
dx < ∞ as n →∞.

This proves (10).

Formula (11) is obtained in a similar way. We only need to adapt the result concerning the first coordinate to the second.

The proof of (12) comes by splitting ∫D
(
𝜙
(
fn (x) , gm (x)

)
− 𝜙

(
f (x) , g (x)

))
dx, into the following two terms:

∫D
(
𝜙
(
fn(x), gm(x)

)
− 𝜙

(
f(x), g(x)

))
dx = ∫D

(
𝜙
(
fn(x), gm(x)

)
− 𝜙

(
f(x), gm(x)

))
dx

+ ∫D
(
𝜙
(
f(x), gm(x)

)
− 𝜙

(
f(x), g(x)

))
dx

≡ In,1 + In,2

We already know how to handle In,2. As to In,1, we may still use the Taylor-Lagrange-Cauchy formula since we have

‖
(
fn (x) , gm (x)

)
−
(
f (x) , gm (x) ‖∞ = ‖

(
fn (x) − f (x) , 0

)
‖∞ = an → 0.

By the Taylor-Lagrange-Cauchy (see [5], page 230), we have

In,1 = ∫D Δfn(x)𝜙
(
fn(x) + 𝜃Δn f(x), gm(x)

)
dx

≤ an ∫D 𝜙
(
fn(x) + 𝜃Δfn(x), gm(x)

)
dx

= an (A2 + o (1)) .

From there, the combination of these remarks directs to the result.

The second main result concerns the asymptotic normality of the 𝜙−divergence measures.Pdf_Folio:108
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Theorem 1.3. Under Assumptions [1–3], C-A, C-h, C1-𝜙, C2-𝜙, and (BD) all in [1], we have

√n
(
J
(
fn, g

)
− J

(
f, g

))
⇝𝒩 (0, 𝕍ar (h1 (X))) , as n → +∞ (15)

√n
(
J
(
f, gn

)
− J

(
f, g

))
⇝𝒩 (0, 𝕍ar (h2 (Y))) , as n → +∞ (16)

and as n → +∞ andm → +∞, (
nm

m𝕍ar (h1 (X)) + n𝕍ar (h2 (Y))

)1/2 (
J
(
fn, gm

)
− J

(
f, g

))
⇝𝒩 (0, 1) . (17)

Proof.We start by proving (15). By going back to (14), we have

√n
(
J
(
fn, g

)
− J

(
f, g

))
= √n ∫D Δn f(x)𝜙(1)

1
(
f(x), g(x)

)
dx

+ ∫D 𝜃1(x)√n
(
Δn f(x)

)2𝜙(2)
1
(
f(x) + 𝜃2(x)Δn f(x), g(x)

)
dx.

= 𝔾w
n,X (h1) +√nR2,n

where R2,n = ∫D 𝜃1 (x)√n
(
Δn f (x)

)2 𝜙(2)
1

(
f (x) + 𝜃2 (x)Δn f (x) , g (x)

)
dx.

Now by theorem 1.1, one knows that 𝔾w
n,X (h1) ⇝ 𝒩 (0) , 𝕍ar (h1 (X)) as n → ∞ provided that h1 ∈ Bt

∞,∞ (ℝ). Thus, (15) will be proved if
we show that√nR2,n = 0ℙ (1). We have

|√nR2,n| ≤ √na2n ∫D 𝜙
(2)
1

(
f (x) + 𝜃2 (x)Δn f (x) , g (x)

)
dx. (18)

Let show that√na2n = oℙ (1). By the Bienaymé-Tchebychev inequality, we have, for any 𝜖 > 0

ℙ
(
√na2n > 𝜖

)
= ℙ

(
an >

√𝜖
n1/4

)
≤ n1/4

√𝜖
𝔼X [a2n] .

From Theorem 3 in [2], we have

(
𝔼X [a2n]

)1/2 = O

(
√

jn2jn
n + 2−tjn

)

= O

(
√

1
4log 2

log n
n3/4

+ n−t/4

)
where we use the fact that 2jn ≈ n1/4. Thus,

(
ℙ
(
√na2n > 𝜖

))2
= O

(
√

1
4log 2

log n
n1/2

+ n(1−2t)/8

)

Finally√na2n = oℙ (1) since

√
1

4log 2
log n
n1/2

+ n(1−2t)/8 → 0 as n → +∞

for any t > 1/2. Finally from (18) and using Condition (19) in [1], we have√nR2,n →ℙ 0as n → +∞.

This ends the proof of (15).

The result (16) is obtained by a symmetry argument by swapping the role of f and g.Pdf_Folio:109
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Now, it remains to prove Formula (17) of the theorem. Let us use bivariate Taylor-Lagrange-Cauchy formula to get,

J
(
fn, gm

)
− J

(
f, g

)
= ∫D Δn f (x)𝜙(1)

1
(
f (x) , g (x)

)
dx + ∫D Δmg (x)𝜙(1)

2
(
f (x) , g (x)

)
dx

1
2 ∫D

(
Δn f (x)2 𝜙(2)

1 + Δn f (x)Δng (x)𝜙(2)
1,2 + Δng (x)2 𝜙(2)

2

) (
un (x) , vn

(
y
))

dx.

We have (
un (x) , vn

(
y
))

=
(
f (x)

)
+ 𝜃Δn f (x) , g (x) + 𝜃Δng (x) .

Thus we get

J
(
fn, gm

)
− J

(
f, g

)
= 1
√n

𝔾w
n,X (h1) +

1
√m

𝔾w
m,Y (h2) + Rn,m,

where Rn,m is given by

1
2 ∫D

(
Δn f (x)2 𝜙(2)

1 + Δn f (x)Δmg (x)𝜙(2)
1,2 + Δmg (x)2 𝜙(2)

2

) (
un (x) , vn

(
y
))

dx.

But we have

𝔾w
n,X (h1) = Nn (1) + oℙ (1)

𝔾w
m,Y (h2) = Nn (2) + oℙ (1) ,

where Nn (i) ∼ 𝒩 (0, 𝕍ar (hi (X))), i ∈ {1, 2} and Nn (1) and Nn (2) are independent.

Using this independence, we have

f 1
√n

𝔾w
n,X (h1) +

1
√m

𝔾w
m,Y (h2) = N

(
0, 𝕍 (h1 (X))

n + 𝕍 (h2 (Y))
m

)
+ oℙ

(
1
√n

)
+ oℙ

(
1
√m

)
.

Therefore, we have

J
(
fn, gm

)
− J

(
f, g

)
= 𝒩

(
0, 𝕍 (h1 (X))

n + 𝕍 (h2 (Y))
m

)
+ oℙ

(
1
√n

)
+ oℙ

(
1
√m

)
+ Rn,m.

Hence,

1

√
𝕍(h1(X))

n
+ 𝕍(h2(Y))

m

(
J
(
fn, gm

)
− J

(
f, g

))
= N (0, 1) + oℙ

⎛⎜⎜⎜⎜⎝
1
√n

1

√
𝕍(h1(X))

n
+ 𝕍(h2(Y))

m

⎞⎟⎟⎟⎟⎠
+ oℙ

⎛⎜⎜⎜⎜⎝
1
√m

1

√
𝕍(h1(X))

n
+ 𝕍(h2(Y))

m

⎞⎟⎟⎟⎟⎠
+ 1

√
𝕍(h1(X))

n
+ 𝕍(h2(Y))

m

Rn,m.

That leads to

√
nm

m𝕍 (h1 (X)) + n𝕍 (h2 (Y))
(
J
(
fn, gm

)
− J

(
f, g

))
= N (0, 1) + oℙ (1)

+√
nm

m𝕍 (h1 (X)) + n𝕍 (h2 (Y))
Rn,m,
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sincem/ (m𝕍 (h1 (X)) + n𝕍 (h2 (Y))) andm/ (n𝕍 (h1 (X)) + n𝕍 (h2 (Y))) are bounded, and then

oℙ

⎛⎜⎜⎜⎜⎝
1
√n

1

√
𝕍(h1(X))

n
+ 𝕍(h2(Y))

m

⎞⎟⎟⎟⎟⎠
= oℙ

(
√

m
m𝕍 (h1 (X)) + n𝕍 (h2 (Y))

)
= oℙ (1)

and

oℙ

⎛⎜⎜⎜⎜⎝
1
√m

1

√
𝕍(h1(X))

n
+ 𝕍(h2(Y))

m

⎞⎟⎟⎟⎟⎠
= oℙ

(
√

n
m𝕍 (h1 (X)) + n𝕍 (h2 (Y))

)
= oℙ (1) .

It remains to prove that |||√
nm

m𝕍(h1(X))+n𝕍(h2(Y))
Rn,m

||| = oℙ (1) . But we have by the continuity assumptions on 𝜙 and on its partial derivatives
and by the uniform convergence of Δn f (x) and Δng (x) to zero, that

|||√
nm

m𝕍 (h1 (X)) + n𝕍 (h2 (Y))
Rn,m

||| ≤
1
2

(
√na2n

(
∫D 𝜙

(2)
1

(
f (x) , g (x)

)
dx + o (1)

))(
√

m
m𝕍 (h1 (X)) + n𝕍 (h2 (Y))

)
+ 1

2

(
√mb2m

(
∫D 𝜙

(2)
2

(
f (x) , g (x)

)
dx + o (1)

))(
√

n
m𝕍 (h1 (X)) + n𝕍 (h2 (Y))

)
+ 1

2

(
√nambm

(
∫D 𝜙

(2)
2

(
f (x) , g (x)

)
dx + o (1)

))(
√

n
m𝕍 (h1 (X)) + n𝕍 (h2 (Y))

)
As previously, we have√na2n = oℙ (1),√mb2m = oℙ (1) and√nambm = oℙ (1).

From there, the conclusion is immediate.

We finish the series by this section on the applicability of our results for usual pdf ’s.

2. APPLICABILITY OF THE RESULTS FOR USUAL PROBABILITY LAWS

Here, we address the applicability of our results on usual distribution functions. We have seen that we need to avoid infinite and null values.
For example, integrals in the Rényi’s and the Tsallis family, we may encounter such problems as signaled in the first pages of paper [1]. To
avoid them, we already suggested to used a modification of the considered divergence measure in the following way:

First of all, it does not make sense to compare two distributions of different supports. Comparing a pdf with support ℝ, like the Gaussian
one, with another with support [0, 1], like the standard uniform one, is meaningless. So, we suppose that the pdf ’s we are comparing have
the same support D.

Next, for each 𝜀 > 0, we find a domain D𝜀 included in the common support D of f and g such that

∫D𝜀

f (x) dx ≤ 1 − 𝜀 and ∫D𝜀

g (x) dx ≤ 1 − 𝜀. (19)

And there exist two finite numbers 𝜅1 > 0 and 𝜅2 > 0, such that we have

𝜅1 ≤ f1D𝜀
, g1D𝜀

≤ 𝜅2. (20)

Besides, we choose the D𝜖 ’s increasing to D as 𝜖 decreases to zero. We define the modified divergence measure

𝒟(𝜀) (f, g) = 𝒟
(
f𝜀 , g𝜀

)
, (21)

where

f𝜀 = D−1
1 f1D𝜀

, g𝜀 = D−1
2 g1D𝜀

,

with D1 = ∫D f (x) dx and D2 = ∫D g (x) dx.

Based on the remarks that the D𝜖 ’s increases to D as 𝜖 decreases to zero and that the equality between f and g implies that of f𝜀 and g𝜀 , we
recommend to replace the exact test of f = g by the approximated test f𝜀 = g𝜀 , for 𝜀 as small as possible.Pdf_Folio:111
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So each application should begin by a quick look at the domain D of the two pdfs and the founding of the appropriate sub-domain D𝜀 on
which are applied the tests.

Assumption (20) also ensures that the pdf ’s f𝜀 and g𝜀 lie inℬt
∞,∞ for almost all the usual laws. Actually, according to [3], page 104, we have

that f ∈ lBt
∞,∞, for some t > 0, if and only if

sup
x∈ℝ

|f (x) | + sup
x∈ℝ

sup
h≠0

|f [t] (x + h) − 2f [t] (x) + f [t] (x − h) |
|h|t−[t] < ∞,

where [t] stands for the integer part of the real number t, that is the greatest integer less or equal to t and f [p] denotes the [p]-th derivative
function of f.

Whenever the functions f𝜀 and g𝜀 have ([t] + 1)-th derivatives bounded and not vanishing on D𝜀 , they will belong to ℬt
∞,∞. Assumption

(20) has been set on purpose for this. Once this is obtained, all the functions that are required to lie onℬt
∞,∞ for the validity of the results,

effectively are in that space. All examples we will use in this sections satisfy these conditions, including the following random variables to
cite a few: Gaussian, Gamma, Hyperbolic, and so on.

3. CONCLUSION

In this last paper of this series, themain results have been proved.Wavelet theory has proved to be a good framework for processing estimates
of divergence measures. We believe that having exactly the values of the scaling function will give better results in our work.
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