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1. INTRODUCTION

The Marshall-Olkin extended exponential distribution is considered as a probability model for the lifetime of the product, if the lifetime
shows a large variability.

A random variable X is said to have the Marshall-Olkin extended exponential distribution if its pdf is of the form (Marshall and Olkin [1])

f(x)=ﬁ, x>0,1>0, (1)

and corresponding survival function
ﬁ(x)=[1—(1/l+il)e—x]’ x>0,1>0. ©)

Now in view of (1) and (2), we have
Fo=[1-0-efw. (3)

Let n > 2 be a given integer and i = (m, m,, ..., m,_;) € R"~1, k > 1 be the parameters such that

n—1
yi=k+n—i+ ) m>0 for 1<i<n—1
j=i
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The random variables X (1, n,m, k), X (2, n,m, k), ..., X (n, n, m, k) are said to be generalized order statistics (gos) from an absolutely con-
tinuous distribution function F () with the probability density funtion (pdf) f(), if their joint density function is of the form

n—1
(H 76) <H [1- F(xi)]Mif(xi)> [1- F(xn)]k_lf(xn) (4)
i=1

onthecone F71 (0) < x; < x, < ... < x, <F'(1).

If m; =m=0;i=1..n—1,k =1, we obtain the joint pdf of the order statistics and for m = —1,k € N, we get joint pdf of k — th record
values. (Kamps [2]).

In view of (4), the marginal pdf of r — th gos X (r, n, m, k) is

G- -
fX(rnmk)( ) = ( 1)| [ (X)] f(X) g;x I(F(x)) (5)

and the joint pdf of X (r,n,m, k) and X (s, n,m, k), 1 <r <s < n,is

G - m .
fX(rnmk)X(snmk) (Xy) r—1)! (Sl_r 1)|[F(x)] %l(F(x))
%[y (F (7)) = EF] ™ [FO)] f@F () x <, (©)

where F(x) = 1 — F(x)

r
Cr—l = H Vi
i=1

and

X

gm(x>=hm(x)—hm<0)=J (1—n"dt, xelo,1].

0

Relations for marginal and joint moment generating functions of record values and gos for some specific distributions are investigated by
several authors in literature. For more detailed survey one may refer to Ahsanullah and Ragab [3], Raqab and Ahsanullah [4,5], Saran and
Pandey [6], Al-Hussaini et al. [7,8], and references therein. Here in this paper some recurrence relations for marginal and joint moment
generating function of generalized order statistics from Marshall-Olkin extended exponential distribution are derived. Further the results
are deduced for order statistics and k — th record values.

Let us denote the moment generating function of X (r, n, m, k) by M X(rymymk) (t) and it j — th derivative by Mgz 0 63

My S O= WJ e [1‘?(x)]y‘_l & (F () f(x) dx 7)

and the joint moment generating function of X (r, n, m, k) and X (s, n,m, k), 1 < r < s < nis denoted by MX(“’n,m,k) (t,t,) and its i, j — th
i)

partial derivative by M( rsmmd) (t1, 8)
C_ o0 (oo}
Mitesinma) (1:12) = (r—l)!(;—lr—l)!J J SRR
X g FC) I (F (7)) = b EF)] ™ [FO)]7 () dyd. )

Using the relation (3), we shall derived the recurrence relation for moment generating function (mgf) of generalized order statistics from
Marshall-Olkin extended exponential distribution.
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2. MARGINAL MOMENT GENERATING FUNCTION

Lemma 2.1. For the distribution givenin (1)and 1 <r <n, M X(rymmk) (1) exists.
Proof: Since,
)(m+1)i

g F e = — r42<n< )@m

Therefore, (7) may also be written as

o _ i1
- Z (1) ( >J e (F(x))y £ d.
0

M )=
X(runmk) 0= (r—1n! (m +1)

Now in view of (2) and (3), we have

MX(r,n,m,k) (t) =

=S (1Y) #-

(r —1)'( +1)

r’ (- ) P
X
o == Re =1

Since,

oo B_Mx
—————dx =B, 1),F, (o, ;. + 1; 8),
L RE (1, 1), Fy (o, s e+ 15 8)

where B (m, n) is complete beta function

and

> (@), (b)), 2
Z n 2 n 7

oFi(a,b;c;2) = 2, n!

®),=x(x+1..(x+n—1), n>0.

(Gradshteyn and Ryzhik [9])

Therefore,

MX(r,n,m,k) (t) =

-1
1 I
(r— 1>'(m+1)" Z( )< >

XB(y—i —t,1), F (Vr—, + LY i — LY —t+ (1= 2).
Hence the lemma.

Lemma2.2. For2<r<nn>2k=1,2,..

Cr_ ® x [T o
i. MX(r,n,m,k) - MX(r—l,n,m,k) = n(r——ll)l tJ_oo ot [F(x)]y gfn 1 (F () dx
ii. MX(r—l,rl,m,k) (t) - MX(V—I,n—I,m,k) (t)
L mAnC,
AT tLo e"[F)]" g (Fx))dx

Croi

iii. MX(r,n,m,k) (t) X(r Ln—1,m k) ( ) m fJ e”‘ [ﬁ (x)]% g:n_l (F (.X')) dx.

131

9

(10)

(11)
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Proof: Relations (9-11) can be seen in view of Athar and Islam [10].

Theorem 2.1. Fix a positive integer k. Forn e Nym € R,2<r<mn,n>2andj=1,2,..,

+1) /1) +1)
Mil((rnmk) (t) X(r—1,n,m,k) (t)_ M(};(rnmk) t_ 1)
] + 1 ) )
{Mg((rnmk) (t)_(l Mg((,,,mk) (t_ 1)}’ (12)
where M(’z o (t) is the j — th derivative of Miy(, i) -

Proof: On application of (3) in (9), we get

MX(r,n,m,k) - MX(r—l n,m k) ®

t C._ » =
= (7_11),1 1-1-De ] [Fw]" g (F@)fx)dx
MX(r,n,m,k) (t) X(r 1,n,m k) (t) - d { X(r n,m k) (t) - (1 - /1) (r,n,m,k) (t - 1)} : (13)

Differentiating both the sides of (13) (j + 1) times w.r.t. t and rearranging the terms, we get the required result.

Remark 2.1. For m = 0, k = 1, the recurrence relation for marginal moment generating function of order statistics from Marshall-Olkin
extended exponential distribution is

. _ 1_/1 .
f; 0) PN R
+n_r+1_t{MXM(t) a-m 1)}. (14)

At A = 11in (14), we get the result for standard exponential distribution.

Remark 2.2. Letting m — —1 in (12), we get the recurrence relation for marginal moment generating function of k — th upper record
values as

(]+1) k (]+1) ( ) (]+1)
(k) (t) = k—t t x® ® - —t (k) -1
U(r) U(y—l) U(r)
M9 1 G
+k—t§ ()(t) a-AHyM ())(t 1)}.

Theorem 2.2. For distribution as givenin (1) and2 <r<n,n>2,j=1,2,..

oMY p=a- A)M(JH) t—1)

Mxtnm) X(r,m,0)
_<J+71){M>0<()mm>“)‘“"”Mg() o=}
Rl NGRS Ul
: fj(tln)mk)() - (;th){ g()m )(t)—(l—l)MS(),nmk)(t—l)}
+<,,1_t) S(tl)l,,l )(t)—(l—/l)M}(;(J'l) NGRS

Proof: Results can be established on the lines of Theorem 2.1 in view of (10) and (11).
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3. JOINT MOMENT GENERATING FUNCTION

Lemma3.l. Forl1<r<s<n—1,n>2andk=1,2,..

MX(”S’”’W‘JC) (t, 1) = MX(r,s—l,n,m,k) (t1, 1)

C._ oo o0 _ m
= ;—z(r_ 1)!(;_17,_ D! J J ehx+hy [F(x)] f(x)g:n—l (F(x))

(15)
X [ (F (3)) = ED] ™ [E (7).
Proof: Relation (15) can be established in view of Athar and Islam [10].
Theorem 3.1. For the distribution as givenin (1)andn e N,m e R, 1 <r<s—1<nk>1,
Mi(Jtl)mk) (b 12) = <#) Mi(]tl_)lmk) (ti:1)
_—(17/5__’1:;2 M%:l_)l,n,m,k) (ti,t, — 1)
+yi - 12 P =M ). (16)
Proof: In view of (3) and (15), we have
My(rommp) (1) = My(o 1 i) (F1 1)
B th_z (r—1) !%_—1 r—1D1 L°° Lm et [F)]” foo g (F o)
X[ (F (7)) = b G ™ [F ()] 1= = D e1£ () dyd.
After simplification, we get
My mmoi) (> 22) = My ooy pmi) (B £2)
=2 {MX(r,s,n,m,k) (ti ) = (=D My(, 1 mg) Bt = D}. (17)

¥s

Differentiating (17) i times w.r.t. t; and j + 1 times w.r.L. t,, we get the required result.

Remark 3.1. Putting m = 0 and k = 1 in Theorem 3.1, we get the recurrence relations for joint moment generating function of order
statistics and at m — —1, we get the result for k — th upper record values.

Remark 3.2. Theorem 2.1 can be deduced from Theorem 3.1 by letting t; — 0.

4. CHARACTERIZATIONS

This section contains characterization results for the given distribution using the recurrence relations for the marginal as well as joint
moment generating functions using Miintz-Szdsz theorem.

Theorem 4.1. The necessary and sufficient condition for a random variable X to be distributed with pdf given by (1) is that

MX(r,n,m,k) (t) - MX(r—l,n,m,k) (t) = % {MX(r,n,m,k) (t) - (1 - A) MX(r,n,m,k) (t - 1)} : (18)

Proof: The necessary part follows immediately from (13). On the other hand if the recurrence relation (18) is satisfied, then

C ©
G _"fwj et [F(x)]y 1 gV (F (%)) f(x) dx
SN T R
eyl I G R R VO
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Cov [ = e
B ;;{(r—r D1 J e [F]" g (F () f) dx
C,._ © _ -
—0-DEEy J 0 [ gt (Foon foo daf.

—0o0

Integrating the first part on the left-hand side of the equation by parts, treating —di [?7 (x)]}', for integration and the rest of the terms for
X

differentiation, we get after simplification that

i Cr—l
7 r—1!

J e [1?(x)]y’_1 g F@) [~ [F] +f0) — 1 = D e™*f()] dx = 0.

Using Miintz — Szasz theorem (See, Hwang and Lin [11]), we get

™G

which proves that f(x) has the form (1).

Theorem 4.2. The necessary and sufficient condition for a random variable X to be distributed with pdf given by (1) is that
My, onmp) o 22) = My o1 i) (F1s B2)

t
= ;2 My oy B t) = A= DMy, oy (Bt = D} (19)

Proof: The necessary part follows immediately from (17). On the other hand if the recurrence relation (19) is satisfied, then

Cs—l
r—=D!s—r—1)!

s—r—1

J J e+ [F)|" f00 g (F ) [ (F (7)) = b (F ()]
0 X

F <1 Cs— =" tx+ty [T ] -
<[ 0 e~ gy )| e Pl s mw

X[FO)™ ™ [ (F () = B FG] ™ () dyx

¢ Cs— © o0 . _ m 3
- e, | e Fel s dw)
S—=r— e sT t CS—
X[hm (F()’))_hm(F(x))] I[F()’)]y 1f(y)dydx_(1_A)i(r_l)!(s_lr_l)!

s—r—1

x r, Joo et [F )" f g (F) [y (F(9)) = b E ™ [FO)] f(y) dydx.

Integrating the first part on the left-hand side of the equation by parts, treating —dﬁ [I_J(y)]ys for integration and the rest of the terms for
y

differentiation, we get after simplification that

G, = -
;t/_z(r—l)!(;—lr—mJ J et [F] g (F )

X [ (E () = b G [F O™ [-[F0)] +£0) = 0 = e (3)] =,

Now on application of Miintz — Sza’sz theorem (See, Hwang and Lin [11]), we get

Ale ™

fx) = —[1 Eppp g

which proves that f(x) has the form (1).
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