ATLANTIS PRESS

Stochastic Computing and Intelligent Optimization Analysis for a Generalized Information Delivery System

Xiao Xiaonan Xiamen University Tan Kah Kee College Zhangzhou, 363105

Abstract—In this paper, we use the optimal nonlinear random filtering method and intelligent optimization algorithm to study the optimal control problem of a kind of incomplete data and continuous nonstationary stochastic information delivery system. We obtain the two optimal control mathematical models in these two situations; illustrate how to establish the optimal encoding and decoding of the nonstationary stochastic process; and provide an effective and reliable approach for the optimal control of such a process.

Keywords—Generalized information; Delivery system; Stochastic analysis; Intelligent optimization algorithm; Optimal control

I. INTRODUCTION

Information system search, analysis and application is a very complicated issue for information transfer optimization. So is the stochastic dynamic optimization simulation and control. They include a comprehensive analysis of many aspects of information filtering, information processing, and information statistical analysis [1-4]. A great number of facts indicate how filtering information and the result of information processing and analysis play a vital role in the improving of the signal transfer system and the efficiency of information decision [5-9]. In order to effectively solve the optimization modeling and control of random signal of a kind of multi-dimensional, general part in the measurable, stable process, this paper adopts random

$$E\phi(d\lambda) = 0, \qquad E|\phi(d\lambda)|^{2} = \frac{d\lambda}{2\pi},$$
$$P_{n-1}(Z) = \sum_{k=0}^{n-1} b_{k} Z^{k}, \qquad Q_{n}(Z) = \sum_{k=0}^{n} a_{k} z_{k}, \quad a_{n} = 1, \ a_{k}, b_{k} \in \mathbb{R}^{1}$$

All of the roots of equation $Q_n(Z) = 0$ are located in the unit.

From (1) we can infer that the process of $\eta(t)$ has a fractional rational spectral density

$$f_{\eta}(\lambda) = \left| \frac{P_{n-1}(e^{i\lambda})}{Q_n(e^{i\lambda})} \right|^2$$
(2)

optimization analysis and stochastic recursive filtering method. It undertakes an in-depth study in the optimal filtering and estimation of random signal in a partially observational generalized process with a fractional rational spectral density [10-15]. Furthermore it leads to the optimal filter equation and optimal estimation equation of random signals in the generalized process. Hence it provides a reliable theoretical foundation and an efficient mathematic method for further research of the optimal control of such a process and for further improvement of the efficiency of the sort of information transmission system [16-20].

II. SYSTEM DESCRIPTION AND INFORMATION SEARCH

For a class of fractional rational spectral density and some observational generalized process stochastic signal transfer system $\eta(t), t = 0, \pm 1, \pm 2, \cdots$. Its spectral representation formula is

$$\eta(t) = \int_{-\pi}^{\pi} e^{i\lambda t} \frac{P_{n-1}(e^{i\lambda})}{Q_n(e^{i\lambda})} \phi(d\lambda)$$
(1)

In it, $\phi(d\lambda)$ is the orthogonal random measure, and there is

Now according to the constituting process of the measure $\phi(d\lambda)$

$$\mathcal{E}(t) = \int_{-\pi}^{\pi} e^{i\lambda(t-1)} \phi(d\lambda)$$
(3)

then
$$E\varepsilon(t) = 0$$
, $E|\varepsilon(t)|^2 = \int_{-\pi}^{\pi} \frac{d\lambda}{2\pi} = 1$

and
$$E\varepsilon(t)\overline{\varepsilon}(s) = \int_{-\pi}^{\pi} e^{i\lambda(t-s)} \frac{1}{2\pi} d\lambda = \delta(t,s)$$
 (4)

85

(7)

Wherein $\delta(t, s)$ is a Kronecker symbol.

From (4), we can argue that a variable sequence $\varepsilon(t)$, $t = 0, \pm 1, \pm 2, \cdots$, is a sequence of non-relational value.

And along with the process $\eta(t)$ for the spectrum of expression (1), we can also define a new set of procedures $\eta_1(t), \eta_2(t), \dots, \eta_n(t)$ with the following formula:

 $M_{n} W = Z' \sum_{k=0}^{n-1} \alpha_{k} W_{k+1} (Z) + Z^{-1} \beta_{n}$

and $\beta_1 = b_{n-1}, \ \beta_j = b_{n-j} - \sum_{i=1}^{j-1} \beta_i \alpha_{n-j+i}, \quad j = 2, \dots, n$ (8)

$$W_{j}(Z) = Z^{-(n-j)}W_{n}(Z) + \sum_{k=j}^{n-1} \beta_{k} Z^{-(k-j+1)}, \qquad j = 1, 2, \cdots, n-1$$
(6)

Wherein

$$W_{j}(Z) = Z^{-1}[W_{j+1}(Z) + \beta_{j}]$$
(9)

(5)

characteristics

$$W_n(Z) = Z^{-1} \left[-\sum_{k=0}^{n-1} \alpha_k W_{k+1}(Z) + \beta_n \right]$$
(10)

 $\eta_{j}(t) = \int_{-\pi}^{\pi} e^{i\lambda t} W_{j}(e^{i\lambda})\phi(d\lambda), \quad j = 1, 2, \cdots, n$

frequency

the

 $W_{i}(Z), j = 1, 2, \dots, n, \text{ is}$

It is not difficult to deduce

$$W_{n}(Z) = Z^{-1} \left\{ \sum_{k=0}^{n-1} \alpha_{k} \left[Z^{-(n-K-1)} W_{n}(z) + \sum_{j=k+1}^{n-1} \beta_{j} Z^{-(j-k)} \right] + \beta_{n} \right\}$$
(11)

$$d\xi_t = A(t,\theta,\xi)dt + d\omega_t, \xi_0 = 0$$
(15)

 $W_n(Z) = \frac{P_{n-1}^{(n)}(Z)}{Q_n(Z)}$ (12)

In it $P_{n-1}^{(n)}(z)$ is the polynomial formula whose order is no more than n-1

From (9) to (12) we can also extrapolate

From (6), (7) we can obtain respectively

$$W_{j}(Z) = \frac{P_{n-1}^{(j)}(Z)}{Q_{n}(Z)}$$
(13)

In it, the order of the polynomial is no more than n-1, and according to (8), we have

$$P_{n-1}^{(1)}(z) \equiv P_{n-1}(Z) \tag{14}$$

Therefore,

III. OPTIMAL RECURSIVE ALGORITHMS AND ANALYSIS

 η $t = \eta (t)$

Suppose the news which requires transition is what Gaussian random variable " θ " of $M_{\theta} = m, D\theta = r > 0$, holds, meanwhile parameter "m" and "r" are known no matter what they stand for at the beginning end or acceptance point.

The signals received at the outlet of the "transmission systems" $\xi = \xi(t), 0 \le t \le T$

and suppose they satisfy the following stochastic equation:

where $\omega = (\omega_t), 0 \le t \le T$, is Wiener process, which is not decided by θ , non-advanced functional $A = (A(t, \theta, \xi)), 0 \le t \le T$. We give the code and suppose equation (15) has the only strong solution of being

$$p\{\int_0^T A^2(s,\theta,\xi)d\xi < \infty\} = 1$$

we put the limited condition

$$\frac{1}{t} \int_0^t MA^2(s,\theta,\xi) ds \le p \tag{16}$$

to functional $A = (A(t, \theta, \xi)), 0 \le t \le T$ (where p is a given constant).

Then at every moment t, according to acceptance signal $\xi_0^t = \{\xi_s, s \le t\}$, it can form "outlet news" $\tilde{\theta}_t(\xi)$. We make elective decode's non-advanced functional $\hat{\theta} = (\hat{\theta}_t(\xi)), 0 \le t \le T$. Let the optimum form recovery news θ in certain sense.

While regenerating error

$$\Delta(t) = \inf M[\theta - \theta_t(\xi)]^2, 0 \le t \le T$$

where inf was elected based on all permissible code $A = (A(s, \theta, \xi)), s \ge 0$ and decode $\hat{\theta}(\xi)$.

When we give the code, owing to

$$M[\theta - \hat{\theta}_t(\xi)^2]^2 \ge M[\theta - m_t(\xi)]^2$$

where $m_t = M(\theta \mid F_t^{\xi})$, we have $\Delta(t) = \inf_A \langle M[\theta - m_t]^2$ and the optimum decode (for signal ξ_0^t) is a posteriori mean value $m_t = M(\theta \mid F_t^{\xi})$.

In order to seek for the optimum code, the optimum and the minimal regenerating error $\Delta(t)$ of the news caused by transition within the time t, first we study subclass of linear's permissible code function $A(t, \theta, \xi)$ which depends on θ :

$$A(t,\theta,\xi) = A_0(t,\xi) + A_1(t,\xi)\theta$$
(17)

where $A_0 = A_0(t,\xi), A_1 = A_1(t,\xi), 0 \le t \le T$ are the non-advanced functional.

It can be

$$\Delta^{*}(t) = \inf M_{(A_{0},A_{1})} [\theta - m_{t}]^{2}$$
(18)

also we can find variable $\Delta^*(t)$ and the optimum code function (A_0^*, A_1^*) corresponding to inf in(18).

Suppose a certain code (A_0, A_1) has been elected, $\xi = (\xi_t), 0 \le t \le T$, and satisfies the following process of equation:

$$d\xi_t = [A_0(t,\xi) + A_1(t,\xi)\theta]dt + dw_t, \xi_0 = 0.$$
(19)

Consequently
$$m_t = M(\theta \mid F_t^{\xi})$$
 and $r_t = M[(\theta - mt)^2 \mid F_t^{\xi}]$

satisfy the equation

$$dm_{t} = r_{t}A_{1}(t,\xi)[d\xi_{t} - (A_{0}(t,\xi) + A_{1}(t,\xi)m_{t})dt]$$
(20)
$$r = -r_{t}^{2}A_{1}^{2}(t,\xi)$$
(21)

meanwhile they fit the condition $m_0 = m, r_0 = r$. While the solution of equation (21) is

$$r_{t} = \frac{r}{1 + r \int_{0}^{t} A_{1}^{2}(s,\xi) ds}$$

also, we have $P(\inf_{0 \le s \le T} r_t > 0) = 1$. So according to (21)

$$\frac{\cdot}{r_t} = -r_t A_1^2(t,\xi),$$

therefore

$$\ln r_{t} - \ln r = -\int_{0}^{t} r_{s} A_{1}^{2}(s,\xi) ds$$
$$r_{t} = r \exp\{-\int_{0}^{t} r_{s} A_{1}^{2}(s,\xi) ds\}.$$
(22)

Because of

namely

$$M[A_0(t,\xi) + A_1(t,\xi)\theta]^2$$

= $M\{[A_0(t,\xi) + m_t A_1(t,\xi)] + [\theta - m_t]A_1(t,\xi)\}^2 = M\{A_0(t,\xi) + A_1(t,\xi)m_t\}^2 + Mr_t A_1^2(t,\xi)$ (23)

According to the condition (16)

$$\int_{0}^{t} Mr_{s} A_{1}^{2}(s,\xi) ds \leq P_{t}$$

$$\tag{24}$$

According to HeHceH inequality $(Me^{-\eta} \ge e^{-M_m})$,

(22) and (24)

$$Mr_t \ge re^{-pt}, 0 \le t \le T \tag{25}$$

so, to the given code (A_1, A_1)

$$M[\theta - m_t]^2 = Mr_t \ge re^{-pt}$$
(26)

So (see (18))

$$\Delta^*(t) \ge r e^{-pt} \tag{27}$$

To the optimum code (A_0^*, A_1^*) , inequality within (24) and (25) should become equality. If

$$A_{\rm l}^*(t) = \sqrt{\frac{P}{r}} e^{pt/2}$$
(28)

and this transition can take place, because the corresponding r_t^* (see (21)) will be equal to re^{-pt} exactly.

Based on (23) and equality

$$\int_{0}^{t} Mr_{s}^{*}(A_{1}^{*}(s))^{2} ds = \int_{0}^{t} r_{s}^{*}(A_{1}^{*}(s))^{2} ds = pt$$

we can obtain

$$A_0^*(t,\xi^* + A_1^*(t)m_t^*(\xi^*) = 0$$
⁽²⁹⁾

where according to (20), the optimum decode m_t^* is decided by equation

$$dm_t^* = \sqrt{pr} e^{-pt/2} d\xi_t^*, m_0^* = m$$
(30)

while transited signal $\xi^* = (\xi_t^*), 0 \le t \le T$ (see (19)), satisfies the equation

$$d\xi_{t}^{*} = \sqrt{\frac{p}{r}} e^{pt/2} (\theta - m_{t}^{*}) dt + dw_{t}$$
$$\xi_{0}^{*} = 0$$
(31)

It's clear according to (30) that the optimum decode can also be written as

$$m_{t}^{*} = m + \sqrt{pr} \int_{0}^{T} e^{-pt/2} d\xi_{s}^{*}$$
$$= m + \sqrt{pr} [e^{-pt/2} \xi_{t}^{*} + \frac{p}{2} \int_{0}^{t} e^{-pt/2} \xi_{s}^{*} ds] \qquad (32)$$

The equation (31) shows what the optimum operation of code depends on is not the news θ itself, but the error " $\theta - m_t^*$ " between θ and its optimum m_t^* times $\sqrt{\frac{p}{r_t}}$, which causes all time to transit.

IV. APPLICATION

Assuming θ_t and $s_t, t = 0, \pm 1, \pm 2, \cdots$, is an unrelated generalized stable series, and $E\theta_t = ES_t = 0$ and the spectral density is

$$_{\theta} f \lambda \in \left| 1^{j\lambda} e + {}_{i} e^{2} \right|^{2}$$
, $f \lambda = 1/\left| e^{j\lambda} + c_{2} \right|^{2}$
Wherein $\left| c_{i} \right| < 1$, $i = 1, 2$.

If we consider θ_t as a random "valuable signal", ζ as a "disturbance" and assuming the observation process as

$$\xi_t = \theta_t + \zeta_t \tag{33}$$

Then through the formula (1), we can find the unrelated sequences $\varepsilon_1(t)$ and $\varepsilon_2(t)$, $t = 0, \pm 1, \pm 2, \cdots$ associated with $E\varepsilon_i(t) = 0$, $E\varepsilon_j(t) \varepsilon_i(s) = \delta(t, s)$, i = 1, 2, Thereby,

$$\theta_{t+1} = C_1 \theta_t + \varepsilon_1(t+1), \zeta_{t+1} = C_2 \xi_t + \varepsilon_2(t+1)$$
(34)

Through(33)and(34)we can get

$$\xi_{t+1} = \theta_{t+1} + \zeta_{t+1} = (c_1 - c_2)\theta_t + c_2\xi_t + \varepsilon_1(t+1) + \varepsilon_2(t+1)$$

So the "unobservable" process θ_t and "observable"

process ξ_t have satisfied equations

$$\theta_{t+1} = C_1 \theta_t + \varepsilon_1 (t+1)$$

$$\xi_{t+1} = (c_1 - c_2) \theta_t + c_2 \xi_t + \varepsilon_1 (t+1) + \varepsilon_2 (t+1) \quad (35)$$

The best linear estimate m_t , $t = 0, 1, 2, \cdots$ of θ_t and the filtering MSE $r_t = E(\theta_t - m_t)^2$ satisfy the recurrence equation

 $d_{22} = (c_1 - c_2)^2 d_{11} + c_2^2 d_{22} + \partial_2 (c_1 - c_2) d_{12} + 2$

 $d_{11} = \frac{1}{1 - c_1^2}, \ d_{12} = \frac{1}{1 - c_1^2}, \ d_{22} = \frac{2 - c_1^2 - c_2^2}{(1 - c_1^2)(1 - c_2^2)}$

$$m_{t+1} = c_1 m_t + \frac{1 + c_1 (c_1 - c_2) r_t}{2 + (c_1 - c_2)^2 r_t} [\xi_{t+1} - (c_1 - c_2) m_t - c_2 \xi_t]$$
(36)

we can conclude that

we can infer the initial conditions

$$r_{t+1} = c_1^2 r_t + 1 - \frac{\left[+ c_1 (c_1 - c_2) r_t \right]^2}{2 + (c_1 - c_2)^2 r_t}$$
(37)

Since the process (θ_t, ξ_t) , $t = 0, \pm 1, \pm 2, \cdots$ is a generalized stable process and there is $E\theta_t = E\xi_t = 0$ and covariance $d_{11} = E\theta_t^2$, $d_{12} = E\theta_t\xi_t$, $d_{22} = E\xi_t^2$, and they all satisfy the equations:

 $d_{12} = c_1 (c_1 - c_2) d_{11} + c_1 c_2 d_{12} + 1$

 $d_{11} = c_1^2 d_{11}$

ations:
$$+ 1$$

$$m_{0} = \frac{d_{12}}{d_{22}}\xi_{0} = \frac{1 - c_{2}^{2}}{2 - c_{1}^{2} - c_{2}^{2}}\xi_{0},$$

$$r_{0} = d_{11} - \frac{d_{12}^{2}}{d_{22}} = \frac{1}{1 - c_{1}^{2}} - \frac{1 - c_{2}^{2}}{(1 - c_{1}^{2})(2 - c_{1}^{2} - c_{2}^{2})} = \frac{1}{1 - c_{1}^{2} - c_{2}^{2}}$$

So "the useful signal" θ_t can be determined by the equations (36) and (37) through the best linear estimation m_t and MSE r_t in the sense of mean square of ξ_0, \dots, ξ_t . And this equation is based on the initial conditions

$$m_0 = \frac{1 - c_2^2}{2 - c_1^2 - c_2^2} \xi_0 \quad , r_0 = \frac{1}{2 - c_1^2 - c_2^2}$$

to solve the problem.

REFERENCES

- Phng H Y, Ruan L Z, Xiang J L. A note on boundary layer of a nonlinear evolution system with damping and diffusions. [J].J Math Anal Appl, 2015, 426:1099-1129
- [2] Ruan L Z, Zhu C J. Boundary layer for nonlinear evolution equations with damping and diffusion[J]. Discrete Contin Dyn Syst Ser A, 2012, 32:331-352
- [3] Xue L. Well-posedness and zero micro-rotation viscosity limit of the 2D micropolar fluid equations[J]. Math Meth Appl Sci, 2011, 34:1760-1777
- [4] Isaacs I M. Finite group theory[M]. Providence, Rhode Island: American Mathematical Society, 2011:1-354
- [5] Mo jiaqi. Singularly perturbed asymptotic solutions for higher order semilinear elliptic equations with two parameters[J]. Chinese Annals of Mathematics, 2010, 33A(1): 331-336
- [6] Yang Y, Yang Q. Singular value of nonnegative rectangular tensor[J]. Front Math China, 2011, 6(2):363-378
- [7] Qiu Jinming, Zhang Li. F-interfere law genercetion and its feature recognition [J]. Journal of Systems Engineering and Electronics, 2009, 20 (4):777-783.

- [8] Ren Y, Lu S P, Xia N M. Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay [J]. Comput Appl Math, 2008, 220: 364-372.
- [9] Shi Kaiquan, Yao Bingxue. Funtion S-rough sets and las identification [J]. Scince in China Series F: Information Sciences, 2008, 51 (5): 499-510.
- [10] Yuan C G, William G. Approximate solutions of stochastic differential delay equations with Markovian switching [J]. Comput Appl Math, 2006, 194:207-226.
- [11] Frauenfelder P, Schwab C, Todor R A. Finite elements for elliptic problems with stochastic coefficients [J]. Computer Methods in Applied Mechnics and Engineering, 2005, 194 (2/5): 205-228.
- [12] Wang Q H. Statistical Estimation in Partial Linear Models with Covariate Data Missing at Random[J]. Annals of the institute of Statistical Mathematics, 2009, 61:47-84.
- [13] Zhang T, Ge S S, Hang C C. Stable Adaptive Control for a Class of Nonlinear Systems Using a Modified Lyapunov Function [A]. In the proceedings of the 14th IFAC World Congress. Beijing: 1999: 373-378.
- [14] Yu L, Chen G D, Chu J. Optimal Guaranteed Cost Control of Linear Uncertain Systems: LMI approach[J]. IFAC, 1999, G-2e-21-1:541-546
- [15] Anderson T W. An Introduction to Multivariate Statistical Analysis [M]. New York: John Wiley & Sons, 1990, 232-296
- [16] Yan H,Wei Q L.Determining compromise weights for group decision making[J].Journal of Operational Research Society, 2002(53):680—687.
- [17] Xiao Xiaonan. Absolute Continuity and Equivalence of Measure to Stochastic Diffusion Process in a kind of Measurable Space [J]. Journal of Shanxi Normal University (Natural Science Edition), 1995, 23 (4): 21-24
- [18] Xiao Xiaonan. Characteristics Score and Statistics Analysis of Functional Structure of Generalized Nonstationary Random Process [J]. Journal of Xiamen University (Natural Science), 2006, 45(5).
- [19] Xiao Xiaonan. The Minimum Estimation of Corresponding Risk of Statistical Model [J]. Journal of Xiamen University (Natural Science), 2008, 47(5).
- [20] Xiao Xiaonan. Optimum Operation and Optimum Analysis to Premit Coding Function of a Kind of Signal Transitive Stochastic System [J]. Journal of Xiamen University (Natural Science), 2009, 48(2).