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Abstract—In this paper, we use the optimal nonlinear random 

filtering method and intelligent optimization algorithm to study 

the optimal control problem of a kind of incomplete data and 

continuous nonstationary stochastic information delivery system. 

We obtain the two optimal control mathematical models in these 

two situations; illustrate how to establish the optimal encoding 

and decoding of the nonstationary stochastic process; and provide 

an effective and reliable approach for the optimal control of such 

a process. 
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I. INTRODUCTION 

Information system search, analysis and application is a very 
complicated issue for information transfer optimization. So is 
the stochastic dynamic optimization simulation and control. 
They include a comprehensive analysis of many aspects of 
information filtering, information processing, and information 
statistical analysis [1-4]. A great number of facts indicate how 
filtering information and the result of information processing 
and analysis play a vital role in the improving of the signal 
transfer system and the efficiency of information decision [5-9]. 
In order to effectively solve the optimization modeling and 
control of random signal of a kind of multi-dimensional, general 
part in the measurable, stable process, this paper adopts random 

optimization analysis and stochastic recursive filtering method. 
It undertakes an in-depth study in the optimal filtering and 
estimation of random signal in a partially observational 
generalized process with a fractional rational spectral density 
[10-15]. Furthermore it leads to the optimal filter equation and 
optimal estimation equation of random signals in the 
generalized process. Hence it provides a reliable theoretical 
foundation and an efficient mathematic method for further 
research of the optimal control of such a process and for further 
improvement of the efficiency of the sort of information 
transmission system [16-20].   

II. SYSTEM DESCRIPTION AND INFORMATION SEARCH 

For a class of fractional rational spectral density and some 
observational generalized process stochastic signal transfer 

system  ,2 ,1 ,0),( tt , Its spectral representation 

formula is 
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In it, )d(  is the orthogonal random measure, and there is 
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All of the roots of equation 0)( ZQn are located in the 

unit.  

From (1) we can infer that the process of )(t  has a 

fractional rational spectral density 
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Now according to the constituting process of the measure
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Wherein ),( st is a Kronecker symbol. 

From (4), we can argue that a variable sequence

,,2  ,1  ,0  ),( tt  is a sequence of non-relational 

value. 

And along with the process )(t  for the spectrum of 

expression (1), we can also define a new set of procedures 

),(1 t ,),(2 t )(tn with the following formula: 
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Wherein the frequency characteristics 
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From (6), (7) we can obtain respectively 
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It is not difficult to deduce 
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In it )()(

1 zP n

n is the polynomial formula whose order is no 

more than n-1   

From (9) to (12) we can also extrapolate 
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In it, the order of the polynomial is no more than n-1, and 
according to (8), we have        
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III. OPTIMAL RECURSIVE ALGORITHMS AND ANALYSIS 

Suppose the news which requires transition is what Gaussian 

random variable “  ” of ,0,  rDmM   holds, 

meanwhile parameter “m” and “r” are known no matter what 
they stand for at the beginning end or acceptance point.  

The signals received at the outlet of the “transmission 

systems” Ttt  0),(  

and suppose they satisfy the following stochastic equation:  

0,),,( 0   tt ddttAd       (15) 

where Ttt  0),( , is Wiener process, which is 

not decided by  , non-advanced functional

TttAA  0)),,,((  . We give the code and suppose 

equation (15) has the only strong solution of being  
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to functional TttAA  0)),,,((   (where p is a 

given constant). 

Then at every moment t, according to acceptance signal 

},,{0 tss

t    it can form “outlet news” )(
~

 t
. We 

make elective decode’s non-advanced functional 
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0)),((  . Let the optimum form recovery 

news   in certain sense.  

While regenerating error 
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where inf was elected based on all permissible code 

0)),,,((  ssAA   and decode )(


. 

When we give the code, owing to 
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where |(Mmt  F )
t , we have 
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A

mMt    and the optimum decode (for 

signal 
t

0 ) is a posteriori mean value |(Mmt  F )
t . 

In order to seek for the optimum code, the optimum and the 

minimal regenerating error )(t  of the news caused by 

transition within the time t, first we study subclass of linear’s 

permissible code function ),,( tA  which depends on  : 
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where TttAAtAA  0),,(),,( 1100   are the 

non-advanced functional.  
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also we can find variable )(t  and the optimum code 

function ),( 10

 AA  corresponding to inf in(18). 

Suppose a certain code ),( 10 AA  has been elected, 
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equation: 
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we can obtain 

0)()(,( 10    tmtAtA             (29)                            

Advances in Economics, Business and Management Research, volume 82

87



 

 

where according to (20), the optimum decode 


tm  is 

decided by equation 
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It’s clear according to (30) that the optimum decode can also 
be written as 



 s

T
pt

t deprmm 
0

2

 

   ]
2

[
0

22 dse
p

eprm
t

s

pt

t

pt


       (32)                    

The equation (31) shows what the optimum operation of 

code depends on is not the news   itself, but the error 

“
 tm ”between   and its optimum 



tm times

tr

p
,which causes all time to transit. 

IV. APPLICATION 

Assuming , 0, 1, 2,t ts t    and ,is an unrelated 

generalized stable series,and 0 tt ESE  and the 

spectral density is 
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Wherein 2,1   ,1  ici . 

If we consider t as a random “valuable signal” , as a 

“disturbance” and assuming the observation process as 

ttt                    (33) 

Then through the formula (1), we can find the unrelated 

sequences 1( )t and ,2,1,0)(2 tt   ,   associated 
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Through(33)and(34)we can get 
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 So the “unobservable” process t  and “observable” 

process t have satisfied equations 
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 The best linear estimate ,2,1,0=,     tmt of t  and 

the filtering MSE 
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equation 
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Since the process 2,1,0,   ),,( ttt   is a 

generalized stable process and there is 0 tt EE   and 

covariance 
2

2212

2

11 ,, tttt EdEdEd   , and 

they all satisfy the equations: 

    
,1)(

,1

12211121112

11

2

111





dccdcccd

dcd

 

  

2)(2)( 1221222

2

211

2

2122  dcccdcdccd
 

we can conclude that 

)1)(1(

2
   ,

1

1
   ,

1

1
2

2

2

1

2

2

2

1

222

1

122

1

11
cc

cc
d

c
d

c
d












we can infer the initial conditions 

        

Advances in Economics, Business and Management Research, volume 82

88



 

 

2
2

2
1

2
2

2
1

2
1

2
2

2
122

2
12

110

02
2

2
1

2
2

0

22

12
0

1

1

)2)(1(

1

1

1

,
2

1

ccccc

c

cd

d
dr

cc

c

d

d
m















 

So “the useful signal” t  can be determined by the 

equations (36) and(37)through the best linear estimation tm  

and MSE tr  in the sense of mean square of t ,,0  . And 

this equation is based on the initial conditions 
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to solve the problem. 
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