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ABSTRACT
LINEX weighted k-means is a version of weighted k-means clustering, which computes the weights of features in each cluster
automatically. Determining which entity is belonged to which cluster depends on the cluster centers. In this study, the asym-
metric LINEX loss function is used to compute the dissimilarity in the weighted k-means clustering. So, the cluster centroids are
obtained by minimizing a LINEX based cost function. This loss function is used as a dissimilarity measure in clustering when
one wants to overestimate or underestimate the cluster centroids, which helps to reduce some errors of misclassifying entities.
Therefore, we discuss the LINEX weighted k-means algorithm. We examine the accuracy of the algorithm with some synthetic
and real datasets.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Consider the dataset X = (X1, … ,Xn)
′ with n entities andm features Xi = (Xi1, … ,Xim). The aim of clustering is to group the observations

of a dataset into K disjoint similar clusters, S = {S1, … , SK}. The most common clustering algorithm is k-means [1] which partitions the
dataset in different groups by minimizing the dissimilarity between objects and their corresponding cluster centroids Ck ∈ (C1, … ,CK)

′,
Ck = (Ck1, … ,Ckm), for k = 1, … ,K. Consider the following cost function:

J (H,C) =
K

∑
k=1

n

∑
i=1

hikL (Xi,Ck) ,

where∑K
k=1 hik = 1 and hik ∈ {0, 1} is a variable that represents weather if Xi belongs to Sk or not. L can be a famous symmetric measure

such as Euclidean, City Block, and Minkowski. In k-means clustering algorithms, all features in a dataset have an equal effect on results.
However, in fact, all the features are not equally importance and some of them are noisy. Huang et al. [2] have proposed weighted k-means
clustering algorithm (Wk-means) which assigned different weights to each feature. It minimized the below equation

J𝛽,2 (H,C,W) =
K

∑
k=1

n

∑
i=1

m

∑
d=1

hikw
𝛽
d |Xid − Ckd|2, (1)

where∑K
k=1 hik = 1 andH is amatrix that includes hik ∈ {0, 1},W = (w1, … ,wm) is the vector of feature weights, eachw is nonnegative such

that∑m
d=1 wd = 1 and 𝛽 ≥ 1 represents the impact of weights (when 𝛽 < 0, it assigns small weights to the features, therefore in this work

we consider 𝛽 ≥ 1.). To minimize the cost function (1) between Xi and its corresponding centroid Ck in each class subject to∑m
d=1 wd = 1

(wd ≥ 0), the weights are updated using the following relation:

wd =
⎧⎪
⎨
⎪
⎩

0 Ed = 0
1

∑u∈M [
Ed
Eu
]

1
𝛽−1

Ed ≠ 0,M = {1, … ,m} , (2)

where

Ed =
K

∑
k=1

n

∑
i=1

hik|Xid − Ckd|2.
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The Wk-mean algorithm is as below:

1. Specify the number of clusters, K. Set the initial centroids and feature weights randomly such that∑m
d=1 wd = 1, it could be wd =

1
m
.

2. Allocate each entity to the nearest centroid by minimizing (1).

3. All centroids must be updated to the centers of the corresponding groups. Stop if there is no change in clusters of step 2. Then, S =
{S1, … , SK} are the final partitions.

4. Using (2), the weights are updated by considering the constraint∑m
d=1 wd = 1

Amorin et al. [3] generalized this algorithm to the Minkowski Wk-means (MWk-means), which used the Minkowski distance as the dis-
similarity measure instead of Euclidean. It minimizes the following criterion:

J𝛽,𝛽 (H,C,W) =
K

∑
k=1

n

∑
i=1

m

∑
d=1

hikw
𝛽
d |Xid − Ckd|𝛽 .

The MWk-means algorithm is used to classify the dataset Xn×m into K disjoint clusters of analogous objects using the Minkowski distance
such that different weights are assigned to each feature at different clusters. Choosing the dissimilarity measure in clustering algorithms
is an important issue. Modha and Spangler [4] explained that one could use a nonnegative, complex, and symmetric loss function as the
dissimilarity measure in the clustering, and they introduced the convex k-means algorithm. Kummamuru et al. [5] illustrated the class of
dissimilarity measures, which are asymmetric. Parsian and Kirmani [6] explained that the symmetric loss functions are useful when the
overestimating and underestimating of the estimator are not important; otherwise, an asymmetric loss function as LINEX is appropriate.
For example, the risk of overfilling the gasoline tank of an aircraft is less than underfilling it, or misdiagnosis of cancer in a patient might
be more costly. LINEX is an asymmetric loss function, which is convex and has some interesting properties. For example, it is exponential
or linear for different input values according to its parameter. In the next part, we talk more about this loss function, see [6].

Here, we want to generalize the Wk-means algorithms to the one with the asymmetric LINEX loss function, as the dissimilarity measure.
We call this LINEXweighted k-means (LINEXWk-means) clustering algorithm. It is useful, especially when one wants to force some data to
place in specific clusters to reduce some losses, while it assigns different weights to each feature. For example, misclassifying a set of bombs
into two groups of high energy or low energy may lead to hazardous results. To check the accuracy of our LINEX Wk-means algorithm,
which means how much it can partition the data well, we use some synthetic and real datasets, which are labeled before. We also compute
the Davies–Bouldin (DB) index, the normalized variation information (NVI), and an accuracy measure (AM) that measures the percent of
actual clustering labels to compare the results.

2. LINEX k-MEANS ALGORITHMS

Sometimes we deal with clustering a dataset such that misclassification of an entity into a specific cluster might be costly, hazardous, or we
tend to put some data into a particular cluster. In this case, the k-means algorithm with a symmetric dissimilarity measure may not be so
appropriate. Therefore, we need to use an asymmetric dissimilarity measure like LINEX so that the overestimating or underestimating error
is different. This algorithm is called LINEX k-means algorithm [7].

Suppose the parameter 𝜃 ∈ Θ be unknown and let 𝛿 (X) be an estimator of 𝜃 which is based on X. Then Λ = 𝛿 (X) − 𝜃 is the error of
estimating 𝜃. The LINEX loss function, which was proposed by Varian [8], is as the following:

LLINEX = (Λ) = exp (aΛ) − (aΛ) − 1, (3)

where a ∈ R is a scalar and LLINEX (Λ) is convex, asymmetric, and nonnegative. LLINEX (Λ) is linear for negative Λ if a < 0 and it is
exponential if a > 0 for positive Λ. For small values of a, LLINEX (Δ) is not far from the symmetric Euclidean loss. So the optimal estimate
falls on themeanwhich is obtained by the Euclidean one. Thismeans that estimation under LINEX loss is consistent with one achieved from
the Euclidean loss (when a → 0). When the overestimating is more costly than the underestimating, LLINEX (Λ) is completely asymmetric
and a is close to one [6]. The multiparameter case is as below,

LLINEX (Λ) =
m

∑
d=1

(
exp (adΛd) − adΛd − 1

)
,

where ad ≠ 0, Λd = 𝛿d (X) − 𝜃d and Λ = (Λ1, … , Λm).

Now we want to use the LINEX loss function in the weighted k-means clustering, as the dissimilarity measure. Suppose we have a dataset
X, as was introduced before. The LINEX k-means algorithm uses the following cost function to measure the distance between each entityPdf_Folio:148
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in a cluster and its corresponding centroid,

JLINEX (H,C, a) =
K

∑
k=1

n

∑
i=1

m

∑
d=1

hik [exp (a (Xid − Ckd)) − a (Xid − Ckd) − 1] .

The process is like the k-means algorithm except in the dissimilarity measure and optimal points of centroids in each cluster. The optimal
centers are achieved by minimizing JLINEX (H,C, a) with respect to C, [7].

Ckj =
1
a log

∑n
i=1 hike

aXid

∑n
i=1 hik

, for d = 1, … ,m.

When a is close to zero, the results are close to the common k-means algorithm with symmetric dissimilarity measures. When a > 0, the
overestimation is more important than the underestimation and the entities which are close to the border of two clusters are pushed into a
cluster, according to the overestimated centers.

For large values ofXid, since eXid is not computable, soCkj cannot be evaluated. Therefore, before processing, the data should be standardized
by the following relation:

Zid =
Xid −mind (Xid)

maxd (Xid) −mind (Xid)
.

When a is small enough, eaXid is computable and normalizing the data is not needed.

3. THE LINEX Wk-MEANS CLUSTERING

LINEX Wk-means clustering is a generalization of Wk-means and LINEX k-means algorithms. It assigns different weights to each feature
while using a LINEX loss function as the dissimilarity measure. The processes are as the Wk-means algorithm with some differences.
Consider the following equation:

J1 (H,C,W, a) =
K

∑
k=1

n

∑
i=1

m

∑
d=1

hikw
𝛽
d [exp (a (Xid − Ckd)) − a (Xid − Ckd) − 1] , (4)

where each weight is nonnegative,∑m
d=1 wd = 1 and 𝛽 is the impact of weights and hik ∈ {0, 1}, as it was defined before. The goal is to find

the optimal centers and feature weights w∗(1)
d , for d = 1, … ,m, by minimizing (4). We rewrite (4) as

J1 (H,C,W, a) =
m

∑
d=1

w𝛽
d Ed, (5)

where

Ed =
K

∑
k=1

n

∑
i=1

hik [exp (a (Xid − Ckd)) − a (Xid − Ckd) − 1] .

First, we find the optimal feature weights according to the constraint ∑m
d=1 wd = 1, [3,9]. We derive the Lagrange function L1 =

∑m
d=1 w

𝛽
d Ed + 𝜆

(
1 −∑m

d=1 wd

)
with respect to wd. Therefore,

𝜕L1
𝜕Wd

= 𝛽w𝛽−1
d Ed − 𝜆.

Equating it to zero leads to wd =
(

𝜆
𝛽Ed

) 1
𝛽−1 and by summing over d, 1 = ∑m

d=1

(
𝜆
𝛽Ed

) 1
𝛽−1 and finally,

w∗(1)
d =

⎧⎪
⎨
⎪
⎩

0 Ed = 0
1

∑u∈M [
Ed
Eu
]

1
𝛽−1

Ed ≠ 0,M = {1, … ,m} . (6)
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When Ed = 0, a unique value is assigned to the d-th variable in each cluster. So, we put w∗(1)
d = 0. If Eu is equal to zero for a u ∈ M then

(6) is not efficient. To avoid these conditions, adding a positive constant to Ed is suggested [9]. This constant could be the average of the
dispersion of the features in a dataset. When 𝛽 = 1, the minimum of (4) is then achieved at w∗(1)

d∗ = 1 and the weights of the other features

are zero, where d∗ is the feature that has the smallest sum of within-cluster variance. The optimum weight depends on the ratio of [ Ed
Eu
],

which are based on the LINEX loss directly. It seems overestimation or underestimation affect just on centers (not weights).

Now it is turned to find the optimal centers. Consider the following optimization problem:

T (H,C,W) =
K

∑
k=1

n

∑
i=1

m

∑
d=1

hikw
𝛽
d LLINEX (Xi,Ck) ,

where LLINEX is the LINEX dissimilarity measure and we have is hik ∈ {0, 1} for i = 1, … , n and k = 1, … ,K,∑K
k=1 hik = 1 for i = 1, … , n

and∑m
d=1 wd = 1. We minimize T(H, C, W) according to the above conditions in the following three steps:

1. Fix C = C̃ andW = W̃. T
(
H, C̃, W̃

)
is minimized iff,

hik = 1 if LLINEX (Xi,Ck) < LLINEX (Xi,Cr) for 1 ≤ r ≤ K,
hik = 0 if r ≠ k.

2. Fix C = C̃ andH = H̃ and solve T (H,C,W). Then T is minimized at w∗(1)
d in relation (6).

3. FixW = W̃ andH = H̃ and solve T (H,C,W). Then it is minimized if and only if for each entity we have,

Ckd =
1
a log

∑n
i=1 hike

aXid

∑n
i=1 hik

, for d = 1, … ,m. (7)

To show step 3, fix k and d, then it is enough to minimize,

n

∑
i=1

hikw
𝛽
d

(
exp (a (Xid − Ckd)) − a (Xid − Ckd) − 1

)
.

By differentiating it with respect to Ckd and then equating it to zero,

−ae−aCkdw𝛽
d

n

∑
i=1

hikeaXid + aw𝛽
d

n

∑
i=1

hik = 0,

and (7) is obtained.

The LINEXWk-means is the same as theWk-means algorithm except in cluster centers optimization, weights, and the dissimilaritymeasure
(steps 2, 3, and 4). That is,

2. Allocate each entity to the nearest centroid by minimizing (4).

3. All centroids must be updated to the centers of the corresponding groups using (7).

4. Using (6), the weights are updated by considering the constraint 2.

There is also another version of LINEX Wk-means algorithm, which differs in its exponential weights and the cost function is as the
following:

J2 (H,C,W, a) =
K

∑
k=1

n

∑
i=1

m

∑
d=1

hikewd [exp (a (Xid − Ckd)) − a (Xid − Ckd) − 1] , (8)

such that∑m
d=1 wd = 1. We call it LINEX exponentially weighted k-means algorithm (LINEX EWk-means). The optimal centers are the

same as (7), so it is enough to find the optimal feature weights, w∗(2)
d , by minimizing (8) with respect to∑m

d=1 wd = 1. We rewrite (8) as

J2 (H,C,W, a) =
m

∑
d=1

ewdEd,
Pdf_Folio:150
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then we minimize the Lagrange function L2 = ∑m
d=1 e

wdEd + 𝜆
(
1 −∑m

d=1 wd

)
with respect to wd. Therefore,

𝜕L2
𝜕Wd

= ewdEd − 𝜆.

Equating it to zero leads to wd = log
(

𝜆
Ed

)
and by summing over d, 1 = ∑m

d=1 log
(

𝜆
Ed

)
. However,

m

∑
d=1

(
log (𝜆) − log (Ed)

)
= m log (𝜆) −

m

∑
d=1

log (Ed) .

Therefore,

log (𝜆) =
1 +∑m

d=1 log (Ed)
m

and finally

w∗(2)
d =

⎧⎪
⎨
⎪
⎩

0 Ed = 0

1 −∑
u∈M

log
(

Ed
Eu

)
m , Ed ≠ 0

. (9)

For u ∈ M, we add the average of the dispersion of the features in a dataset to Eu to avoid a division by zero in (9).

4. PERFORMING THE EXPERIMENTS

In comparison with the LINEX k-means clustering, one advantage of the LINEXWk-means algorithm is to assign different feature weights
in a dataset to classify the entities. Here we want to check the performance of LINEXWk-means on some simulated and real datasets, which
are available in the UC IrvineMachine Learning Repository [10]. The simulated datasets are generated fromNormal, Log-Normal, Gamma,
and Poisson distributions as the following densities:

Normal (𝜇, 𝜎) ∶ 1
𝜎√2𝜋

exp
(
− (x − 𝜇)2

2𝜎2

)
, x, 𝜇 ∈ R, 𝜎 > 0

Log-Normal (𝜇, 𝜎) ∶ 1
x𝜎√2𝜋

exp

(
−
(
log (x) − 𝜇

)
2𝜎2

)
, x > 0, 𝜎 > 0, 𝜇 ∈ R

Gamma (α, 𝛽) ∶ 𝛽𝛼x𝛼−1e−x𝛽

Γ (α) , x ≥ 0, 𝛼, 𝛽 > 0

Poisson (𝜆) ∶ e−𝜆𝜆x
x! , x = 0, 1, … .

All of these datasets are labeled, which helps us to evaluate the accuracy of an algorithm. To accomplish this, we map these labels to their
clusters, which are generated from the algorithm.We run the algorithms several times since the initial centroids are chosen from the entities
randomly and lead to different results in each iteration. Each time, the percent of the corrected labels are computed, and finally, the average
of the accuracies is calculated. In the next experiment, we add some features to our datasets such that they contain random noises [3,10].
These random noises are generated from uniform density. Then we specify the impact of these noisy features on the algorithm results. We
want to represent how much the LINEXWk-means algorithm results remained fixed when adding these noisy features. Now we introduce
the datasets:

4.1. Simulated Datasets

The sum of n independent and identically distributed (iid) random variables with Normal, Gamma (with the same 𝛼), and Poisson dis-
tributions have the same respective distributions, and the product of some iid Log-Normal random variables is Log-Normal. We produce
three datasets with 100 dependent data (using the above rules) and each with three features from Normal, Log-Normal, and Gamma den-
sities. Our fourth dataset is from Poisson density, but with one feature. Each dataset is partitioned into two clusters. The first 50 entities are
labeled as 1 and the second 50 entities have labeled 2. To see the procedure of generating these datasets, one can see [7].Pdf_Folio:151
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4.2. Real Datasets

We choose some real datasets such that classifying some events in a special cluster might be better or worse, since sometimes when some
entities are labeled wrongly, they may lead to irreparable losses. Therefore, we say the overestimating and the underestimating are not of
equal importance.

Gamma Telescope: This dataset contains 19020 events with 11 features of different high-energy gamma particles. These events are divided
into two groups, background, and single. Clustering a background event as a single is worse than its conversing.

Haberman’s Survival: It contains 306 data of breast cancer patients with three features. It is divided into two clusters “the patients who were
alive five years or more” and “the patients who were alive less than five years.”

Seismic bumps: It contains 2584 data with 18 features that represent the energy of seismic bums in a coal mine. This is clustered into two
classes “high energy” and “no high energy.”

First, we illustrate the performance of the two LINEXWk-means algorithms for different values of a and 𝛽 which we choose them in steps
of 0.1 in (0, 1) and [1, 5], respectively. Note that when a is close to zero, the results are not so different from Wk-means algorithm with
Euclidean distance. Then, we add the noisy features to the datasets to see how much the LINEX Wk-means algorithm is sensitive to these
noisy features.

5. EVALUATION

Now we check the results in 14 datasets (8 simulated and 6 real datasets). To evaluate the two versions of LINEXWk-means algorithms, we
compute AM, NVI, and DB [11,12]. NVI and AM are two external criteria that depend on the datasets inherently. To compute them, we
need a dataset, which is prelabeled. They compare the output labels of an algorithm with the dataset labels. AM is our accuracy measure
that represents the percent of the actual classified observations and is better when it is close to 100. If NVI takes values from 0 to 1 it shows
good clustering performance. It decreases, as the clusters are more homogeneous. DB is an internal criterion that depends on the dispersion
between clusters and the inherent data. The smaller value of DB states that the clusters are separated well. The computations have been
performed on the Intel Core i3 processor CPU 2.13 GHz, Ram 6 GB, on the MATLAB, version 2013a.

5.1. Performance in Simulated Datasets

For each dataset, we run theWk-means, the LINEXWk-means, and the LINEXEWk-means 100 times (since the initial centroids are selected
from the entities randomly) and obtain the average of AM, NVI, and DB criteria. Table 1 shows the results of the four simulated datasets for
the above three algorithms. The parameter 𝛽 is the power of weights in Wk-means and LINEX Wk-means algorithms and a is the LINEX
parameter. The smaller values of AM, NVI, and DB helps to determine better values of a and 𝛽. We examine different values of 2 in steps
of 0.1. In most datasets, 𝛽 = 1 leads to better results in LINEXWk-means algorithm. As the overestimating and the underestimating in the
datasets of Table 1, are not important, we consider a close to zero. In all Tables, the best values of the criteria in each column of different
datasets, are bolded.

In Table 2, we add three noisy feature to Normal, Log-Normal, and Gamma datasets and one noisy feature to Poisson dataset to check how
much the algorithms are sensitive to the noisy features. As you see the results in Tables 1 and 2 are very close together and in almost cases,
the LINEXWk-means, and the LINEX EWk-means leads to better results than Wk-means.

Table 1 The results of Wk-means, LINEXWk-means, and LINEX EWk-means algorithms on simulated datasets.

Dataset Algorithm 𝛽 a AM Max of AM DB NVI

Wk-means 2.1 - 99.66 100.0 0.57 0.03
Normal LINEXWk-means 1 10−6 100.0 100.0 0.57 0.00

LINEX EWk-means - 10−6 100.0 100.0 0.57 0.00

Wk-means 2 - 84.60 89.00 0.89 0.74
Log-Normal LINEXWk-means 1 10−6 93.91 100.0 0.85 0.42

LINEX EWk-means - 10−6 95.72 100.0 0.79 0.40

Wk-means 2 - 97.61 98.00 0.63 0.28
Gamma LINEXWk-means 1 10−6 98.00 98.00 0.62 0.21

LINEX EWk-means - 10−6 98.00 98.00 0.62 0.21

Wk-means 1 - 94.60 100.00 0.43 0.21
Poisson LINEXWk-means 1 10−6 97.96 100.00 0.44 0.14

LINEX EWk-means - 10−6 97.18 100.00 0.44 0.14
Abbreviations:AM:Accuracymeasure (average percent of actual clustering labels);DB:Davies–Bouldin index;NVI:Normalized variation
information.

Pdf_Folio:152
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Table 2 The results of Wk-means, LINEXWk-means, and LINEX EWk-means algorithms on the simulated datasets with the added
noisy features.

Dataset Algorithm 𝛽 a AM Max of AM DB NVI

Wk-means 2.1 - 98.2 100.0 0.62 0.08
Normal with three LINEXWk-means 1 10−6 100 100.0 0.60 0.00

noisy feature LINEX EWk-means - 10−6 100 100.0 0.60 0.00

Wk-means 2 - 83.9 100.0 0.74 0.29
Log-Normal with three LINEXWk-means 1 10−6 92.1 100.0 0.80 0.20

noisy feature LINEX EWk-means - 10−6 94.2 100.0 0.78 0.17

Wk-means 2 - 94.78 98.00 0.65 0.36
Gamma with three LINEXWk-means 1 10−6 98.00 98.00 0.62 0.21

noisy feature LINEX EWk-means - 10−6 98.00 98.00 0.62 0.21

Wk-means 1 - 89.32 95.00 1.80 0.48
Poisson with a LINEXWk-means 1 10−6 94.00 100.0 0.46 0.32

noisy feature LINEX EWk-means - 10−6 96.94 100.0 0.45 0.18

5.2. Performance in Real Datasets

In this part, we examine the LINEX Wk-means, the LINEX EWk-means, and the Wk-means algorithms on three real datasets and three
real datasets with added noisy features. Like the previous part, each time, we run the algorithm 100 times, and we compute the averages of
AM, NVI, and DB criteria in all iterations. In these datasets, the overestimating and the underestimating are important since misclassifying
an entity in a special cluster might be hazardous or costly. We consider a ∈ (0, 1) in steps of 0.1 and we choose a according to the lowest
values of the criteria. We note that a = 1 means the highest overestimating, and a > 1 does not lead to good results most of the times (since
it may push all of the data into one cluster). Choosing 𝛽 is the same as a, but we take 𝛽 ∈ [1, 5] in steps of 0.1. According to the results of
Tables 3 and 4, we understand that in most datasets 𝛽 = 1 leads to the best results in LINEX Wk-means and LINEX EWk-means algo-
rithms. The performances of LINEXWk-means and LINEX EWk-means algorithms are not so different, but they seem to give better results
than Wk-means algorithm. One advantage of LINEX EWk-means algorithm in comparison with LINEXWk-means is that it has only one
parameter, a. In Table 4, we add some noisy features to each dataset and repeat the clustering algorithms. The results illustrate that our
algorithms are not sensitive to the noisy features like Wk-means algorithm.

Table 3 The results of Wk-means, LINEXWk-means, and LINEX EWk-means algorithms on three real datasets.

Dataset Algorithm 𝛽 a AM Max of AM DB NVI

Wk-means 1 - 81.43 95.75 3.98 0.82
Haberman’s survival LINEXWk-means 1 0.2 100.0 100.0 4.43 0.00

LINEX EWk-means - 0.2 75.26 76.14 1.36 0.96

Wk-means 2 - 64.90 66.37 1.44 0.99
Magic Gamma telescope LINEXWk-means 1 0.1 70.79 71.25 1.34 0.95

LINEX EWk-means - 0.1 70.17 71.31 1.34 0.96

Wk-means 1 - 92.17 93.42 0.81 1.00
Seismic bumps LINEXWk-means 1 0.1 93.42 93.42 0.79 1.00

LINEX EWk-means - 0.1 93.42 93.42 0.79 1.00

Table 4 The results of algorithms in Table 3 on three real datasets with the added noisy features.

Dataset Algorithm 𝛽 a AM Max of AM DB NVI

Wk-means 1 - 90.86 95.75 11.00 0.41
Haberman’s survival with LINEXWk-means 1 0.2 100.0 100.0 9.78 0.00

three noisy feature LINEX EWk-means - 0.2 66.14 68.30 2.34 0.99

Wk-means 2 - 64.75 64.93 2.18 0.99
Magic Gamma telescope with LINEXWk-means 1 0.1 70.61 71.33 1.96 0.94

11 noisy feature LINEX EWk-means - 0.1 70.29 71.33 1.97 0.94

Wk-means 1 - 91.08 93.42 0.83 1.00
Seismic bumps with 19 LINEXWk-means 1 0.1 93.42 93.42 0.79 1.00

noisy feature LINEX EWk-means - 0.1 93.42 93.42 0.79 1.00

Pdf_Folio:153
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6. CONCLUSIONS

In Wk-means algorithms, different weights are assigned to various features. Therefore, the less important features have lower influences in
clustering results. We propose two weighted k-means algorithms with asymmetric LINEX loss function as the dissimilarity measure. They
are useful when the overestimating and the underestimating are important, while they consider features with different weights. In these
algorithms, the optimal centers are different from Wk-means algorithms with Euclidian dissimilarity distance. To evaluate the proposed
algorithms, we investigate the results on some real and simulated datasets, and we compute some internal and external criterion to check
the accuracies. The results represent good performances of the algorithms.
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