## Review

# Tests on a Subset of Regression Parameters for Factorial Experimental Data with Uncertain Higher Order Interactions 

Shahjahan Khan ${ }^{1, \star}$, Budi Pratikno ${ }^{2}$, Shafiqur Rahman ${ }^{3}$, M. Zakir Hossain ${ }^{3}$<br>${ }^{1}$ School of Agricultural, Computational and Environmental Sciences, University of Southern Queensland, Queensland, Australia<br>${ }^{2}$ Department of Mathematics and Natural Science, Jenderal Soedirman University, Central Java, Indonesia<br>${ }^{3}$ Department of Operations Management and Business Statistics, Sultan Qaboos University, Muscat, Oman

## ARTICLE INFO

Article History
Received 11 Sept 2017
Accepted 04 Dec 2019

## Keywords

Correlated bivariate noncentral
$F$ distribution
factorial experiment
linear regression
pretest test
power and size of tests

## 2010 Mathematics Subject

Classification: Primary 62F03 and Secondary 62J05.


#### Abstract

The data generated by many factorial experiments are analyzed by linear regression models. Often the higher order interaction terms of such models are negligible (e.g., R. Mead, The Design of Experiments, Cambridge University Press, Cambridge, 1988, p. 368) although there is uncertainty around it. This kind of nonsample prior information (NSPI) can be presented by null hypotheses (cf. T.A. Bancroft, Ann. Math. Stat. 15 (1944), 190-204), and its uncertainty removed through appropriate statistical test. Depending on the level of the NSPI the unrestricted, restricted, and pretest (PTT) tests are defined. The sampling distributions of test statistics and power functions of the three tests are derived. The graphical and analytical comparisons of powers reveal that the PTT dominates over the other tests.


© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

## 1. INTRODUCTION

In many real-life applications, the data of factorial experiments are analyzed using linear regression models. Unlike the classical and cell mean models, the regression model based method has the advantage of fitting the model in the presence of missing values or even with unbalanced data. The regression model for the response, $Y$ of a $2^{3}$ factorial experiment without any replication can be written as

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{12} 4 x_{1} x_{2}+\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3}+\beta_{123} x_{1} x_{2} x_{3}+\epsilon \tag{1}
\end{equation*}
$$

where $\beta$ 's are unknown regression parameters and $x_{1}, x_{2}$, and $x_{3}$ represent the coded level of factors 1,2 , and 3 , respectively, each assuming value -1 or 1 for the absence and presence of the factor. It is commonly assumed that the error term $\epsilon \sim N\left(0, \sigma^{2}\right)$, where $\sigma^{2}>0$ is a unknown spread parameter.
Mead [1] and Hinkelmann and Kempthorne [2] discussed how the higher order interactions of factorial experiments are believed to be negligible. Kabaila and Tesseri [3] reinforced that this kind of believe on the higher order interactions is the basis for fractional factorial experiments. To make valid inference on the remaining parameters, the uncertainty in the assumption of negligible interactions of any order can be represented by a hypothesis and conduct an appropriate test to remove the uncertainty (cf. Bancroft [4]). Any such assumptions can be considered as the nonsample prior information (NSPI) and used in the formal inferences on the remaining parameters of the model. Hodges and Lehmann [5] discussed the use of prior information from previous experience in reaching statistical decisions. Kabaila and Dharmarathne [6] compared Bayesian and frequentist interval estimators in regression utilizing uncertain prior information.
In the classical approach inferences about, unknown population parameters are drawn exclusively from the sample data. This is true for both estimation of parameters and hypothesis tests. Use of reliable NSPI from trusted sources (cf. Bancroft [4]), in addition to the sample data, is likely to improved the quality of estimation and test. The use of NSPI has also been demonstrated by Kempthorne [7,8], Bickel [9], Khan [10-12], Khan and Saleh [13-15], Khan et al. [38] and Saleh [16].

[^0]Such NSPI is usually available from previous studies or experts in the field or practical experience of the researchers, and is independent of the sample data under study. The main purpose of inclusion of NSPI is to improve the quality of statistical inference. In reality, NSPI on the value of any parameter may or may not be close to the unknown true value of the parameter, and hence there is always an element of uncertainty. But the uncertain NSPI can be expressed by a null hypothesis and an appropriate statistical test can be used to remove the uncertainty. The purpose of the preliminary test (pretest) on the uncertain NSPI in the hypothesis testing or estimation is to improve the quality of the inference (cf. Khan [17]; Saleh [16]; Yunus [18]). Kabaila and Dharmarathne [6] and Kabaila and Tissera [3] used NSPI to construct confidence intervals for regression parameters. In this paper, we express the data from a factorial experiment as a linear model (see (1)) in order to test the coefficients of the main effects (and lower order interactions) when there is uncertain NSPI on the coefficients of higher level interactions.

The uncertain NSPI can be any of the following types: (i) unknown (unspecified) -NSPI is not available, (ii) known (certain or specified) - exact value is the same as the parameter, and (iii) uncertain - suspected value is unsure. In the estimation regime, to cater for the three different scenarios, the following three different estimators are appropriate: (i) unrestricted estimator (UE), (ii) restricted estimator (RE), and (iii) preliminary test estimator (PTE) (see eg Judge and Bock [19]; Saleh [16]).

Almost all of the works in this area are on the estimation of parameter(s). These include Bancroft [4,20], Han and Bancroft [21], and Judge and Bock [19] introduced the preliminary test estimation method to estimate the parameters of a model with uncertain NSPI. Later Khan [10-12], Khan and Saleh [14], and Khan and Hoque [22] covered various work in the area of improved estimation.

The testing of parameters in the presence of uncertain NSPI is relatively new. The earlier works include Tamura [23] and Saleh and Sen [24,25] in the nonparametric setup. Later Yunus and Khan [26-28] used the NSPI for testing hypothesis using nonparametric methods. The problem is yet to be explored in the parametric context. In this paper testing of hypotheses is considered on the coefficients of the main effects in the model in (1) when uncertain nonsample information on the coefficients of the higher order interactions is available.

To set up the hypotheses for the tests, let's assume that the interaction terms (e.g., last four $\beta^{\prime} s$ ) of model (1) are suspected to be zero, but not sure. Then under the three different scenarios define three different tests: (i) unrestricted test (UT), (ii) restricted test (RT), and (iii) pretest test (PTT) to test on the remaining regression parameters (first four $\beta^{\prime} s$ ) of the model. The UT uses the sample data alone but the RT and PTT use both the NSPI and the sample data. The PTT is a choice between the UT and the RT.

The regression model and hypotheses are provided in Section 2. Some useful results are discussed in Section 3. The proposed test statistics and their sampling distributions are provided in Sections 4 and 5 respectively. Section 6 derives the power function and size of the tests. An example with real data is included in Section 7. The power of the tests are compared in Section 8. Some concluding remarks are provided in Section 9.

## 2. THE REGRESSION MODEL AND HYPOTHESES

The regression model for the data from a $2^{3}$ factorial experiment, as stated in (1), can be viewed as special case of the multiple regression model where each of the main effect and interaction terms are represented as the explanatory variables. For an $n$ set of observations on the response $(Y)$ and $k$ explanatory/independent variables $\left(X_{1}, \cdots, X_{k}\right)$, that is, $\left(X_{i j}, Y_{i}\right)$, for $i=1,2, \cdots, n$ and $j=1,2, \cdots, k$, the linear model is given by

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{k} X_{i k}+e_{i}, \tag{2}
\end{equation*}
$$

where $\beta^{\prime} s$ are the regression parameters and $e_{i}$ 's are the error terms. The model in equation (2) can be here expressed following convenient form

$$
\begin{equation*}
Y=X \beta+e, \tag{3}
\end{equation*}
$$

where $\beta=\left(\beta_{0}, \beta_{1}, \cdots, \beta_{r-1}, \beta_{r}, \cdots, \beta_{k}\right)^{\prime}$ is a column vector of order $(k+1)=p, Y=\left(y_{1}, \cdots, y_{n}\right)^{\prime}$ is vector of response variables of dimension $n \times 1, X$ is an $n \times p$ matrix of full rank of the independent variables, and $e$ is a vector of errors. It is assumed components $e$ are identically and independently distributed as normal variable with mean 0 and variance $\sigma^{2}$, so that $e \sim N_{n}\left(0, \sigma^{2} I_{n}\right)$, where $I_{n}$ is an identity matrix of order $n$.

To formulate the testing problem, let $\delta_{1}=\left(\beta_{0}, \cdots, \beta_{r-1}\right)$ be a subset of $r$ regression parameters and $\delta_{2}=\left(\beta_{r}, \cdots, \beta_{k}\right)$ be another subset of $(p-r)=s$ regression parameters, so that $r+s=p$. The regression vector $\beta$ is then partitioned as $\beta^{\prime}=\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)$, where $\delta_{1}^{\prime}$ is a $r$ dimensional sub-vector, and $\delta_{2}^{\prime}$ is a subvector of dimension $s=p-r$. In a similar way, matrix $X$ is partitioned as $\left(X_{1}, X_{2}\right)$ with $X_{1}=\left(1, x_{1}, \cdots, x_{r-1}\right)$, an $n \times r$ matrix, and $X_{2}=\left(x_{r}, \cdots, x_{k}\right)$, an $n \times s$ matrix. Then the multiple regression model in (3) can be written as

$$
\begin{equation*}
Y=X_{1} \delta_{1}+X_{2} \delta_{2}+e \tag{4}
\end{equation*}
$$

We wish to perform test on the subvector $\delta_{1}\left(\operatorname{or} \beta_{1}\right)$ when NSPI on the subvector $\delta_{2}$ (or $\beta_{2}$ ) is available.

Depending on the nature of the NSPI on the subvector, $\delta_{2}$, to be (i) unspecified, (ii) specified (fixed), or (iii) suspected to be a specific value but not sure, we define three different tests for testing the other subvector, $\delta_{1}$. Let $A_{1}$ be a $q_{1} \times r$ matrix of constants and $A_{2}$ be another $q_{2} \times s$ matrix of constants, where $q=q_{1}+q_{2}$ so that

$$
A=\left(\begin{array}{cc}
A_{1} & O  \tag{5}\\
O & A_{2}
\end{array}\right)
$$

that is, $A$ is a $q \times p$ matrix and $O$ is a matrix of zeros. The NSPI on the value of $\delta_{2}$ is expressed in the form of a null hypothesis, $H_{0}^{*}: A_{2} \delta_{2}=h_{2}$. Then to test the null hypothesis $H_{0}: A_{1} \delta_{1}=h_{1}$ against $H_{a}: A_{1} \delta_{1} \neq h_{1}$.

The hypothesis defined here, $H_{0}: A \beta=h$, that is,

$$
H_{0}: A \beta=\left(\begin{array}{cc}
A_{1} & O \\
O & A_{2}
\end{array}\right)\binom{\delta_{1}}{\delta_{2}}=\binom{h_{1}}{h_{2}}
$$

is a generalization of the test of equality of components of the regression vector and the subhypothesis

$$
H_{0}:\binom{\beta_{1}}{\beta_{2}}=\binom{\delta_{1}}{\delta_{2}}=\binom{\delta_{1}}{0}
$$

(cf. Saleh [16], pp. 340). Note that $h_{2}$ is only used for the pretest on $\beta_{2}$ (i.e., PT), as such its value remains the same when testing $\beta_{1}$.

## 3. SOME PRELIMINARIES

To formally define the tests let us consider the following expressions, partitions and results. For the full rank design matrix $X$ we write

$$
X^{\prime} X=\left(\begin{array}{ll}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} X_{2}  \tag{6}\\
X_{2}^{\prime} X_{1} & X_{2}^{\prime} X_{2}
\end{array}\right), \quad\left(X^{\prime} X\right)^{-1}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where

$$
A_{11}^{-1}=X_{1}^{\prime} X_{1}-X_{1}^{\prime} X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} X_{1} \text { and } A_{22}^{-1}=X_{2}^{\prime} X_{2}-X_{2}^{\prime} X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}
$$

Then the unrestricted least squares estimator of the regression parameters is given by

$$
\begin{equation*}
\widetilde{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=\binom{\tilde{\delta}_{1}}{\tilde{\delta}_{2}} \tag{7}
\end{equation*}
$$

so that the UE of the two subvectors are

$$
\begin{equation*}
\tilde{\delta}_{1}=A_{11} X_{1}^{\prime} Y+A_{12} X_{2}^{\prime} Y \text { and } \tilde{\delta}_{2}=A_{22} X_{2}^{\prime} Y+A_{21} X_{1}^{\prime} Y \tag{8}
\end{equation*}
$$

Then the sum of square errors for the full regression model with $k$ regressors is given by

$$
\begin{equation*}
S S E_{F}=(Y-X \widetilde{\beta})^{\prime}(Y-X \widetilde{\beta}) \tag{9}
\end{equation*}
$$

so an unbiased estimator of $\sigma^{2}$ is $M S E_{F}=S S E_{F} /(n-p)$.
Let $\delta_{2}$ be specified to be $\delta_{20}$, so the RE of $\beta$ becomes,

$$
\begin{equation*}
\hat{\beta}=\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}=\binom{\hat{\delta}_{1}}{\hat{\delta}_{2}}=\widetilde{\beta}-C^{-1} A^{\prime}\left(A C^{-1} A^{\prime}\right)^{-1}(A \widetilde{\beta}-h) \tag{10}
\end{equation*}
$$

where $C=X^{\prime} X$. Since $\widetilde{\beta} \sim N_{p}\left(\beta, \sigma^{2} C^{-1}\right)$, we get

$$
\begin{aligned}
& \tilde{\delta}_{1} \sim N_{r}\left(\delta_{1}, \sigma^{2} A_{11}^{-1}\right) \\
& \tilde{\delta}_{1} \sim N
\end{aligned}
$$

Similarly, as $\hat{\beta} \sim N_{p}\left(\beta, \sigma^{2} D^{-1}\right)$, where $D=\left[C^{-1}-C^{-1} A^{\prime}\left(A C^{-1} A^{\prime}\right)^{-1} A C^{-1}\right]^{-1}$, we get

$$
\begin{aligned}
& \hat{\delta}_{1} \sim N_{r}\left(\delta_{1}, \sigma^{2} D_{11}^{-1}\right) \\
& \hat{\delta}_{2} \sim N_{s}\left(\delta_{2}, \sigma^{2} D_{22}^{-1}\right),
\end{aligned}
$$

in which

$$
D=\left(\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right) \text {. }
$$

Since $A \widetilde{\beta}$ is linear combination of normal variables $A \widetilde{\beta} \sim N_{q}\left(A \beta, \sigma^{2}\left[A C^{-1} A^{\prime}\right]^{-1}\right)$ and $A \hat{\beta} \sim N_{q}\left(A \beta, \sigma^{2}\left[A D^{-1} A^{\prime}\right]^{-1}\right)$.
Furthermore, the test statistic for testing $H_{0}: A_{1} \delta_{1}=h_{1}$ is given by

$$
\begin{equation*}
F_{*}=\frac{1}{q s_{e}^{2}}\left\{\left(A_{1} \tilde{\delta}_{1}-h_{1}\right)^{\prime}\left[A_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \tilde{\delta}_{1}-h_{1}\right)\right\}, \tag{11}
\end{equation*}
$$

where $s_{e}^{2}=\frac{1}{n-p}(Y-X \widetilde{\beta})^{\prime}(Y-X \widetilde{\beta})$ is an unrestricted unbiased estimator of $\sigma^{2}$.
It is clear that $\frac{1}{\sigma^{2}}\left[\left(A_{1} \tilde{\delta}_{1}-h_{1}\right)^{\prime}\left(A_{1} C_{1}^{-1} A_{1}^{\prime}\right)^{-1}\left(A_{1} \tilde{\delta}_{1}-h_{1}\right)\right]$, where $C_{1}=X_{1}^{\prime} X_{1}$, follows a noncentral chi-squared distribution with $q_{1}$ degrees of freedom (df) and noncentrality parameter $\Delta_{1}^{2} / 2$, where

$$
\begin{equation*}
\Delta_{1}^{2}=\frac{\left(A_{1} \delta_{1}-h_{1}\right)^{\prime}\left[A_{1} C_{1}^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \delta_{1}-h_{1}\right)}{\sigma^{2}} . \tag{12}
\end{equation*}
$$

Under $H_{a}$, the $F_{*}$ statistic follows a noncentral $F$ distribution with $\left(q_{1}, n-p\right)$ df and noncentrality parameter $\Delta_{1}^{2} / 2$, and under $H_{0}, F_{*}$ follows a central $F$ distribution with $\left(q_{1}, n-p\right)$ df. Ohtani and Toyoda [29] and Gurland and McCullough [30] also used the above $F$ test for testing linear hypotheses.

## 4. THE THREE TESTS

For testing $\delta_{1}$ when NSPI is available on $\delta_{2}$, define the tests as
i. For the UT, let $\phi^{U T}$ be the test function and $T^{U T}$ be the test statistic for testing $H_{0}: A_{1} \delta_{1}=h_{1}$, a vector of order $q_{1}$, against $H_{a}: A_{1} \delta_{1} \neq h_{1}$ when $\delta_{2}$ is unspecified,
ii. For the RT, let $\phi^{R T}$ be the test function and $T^{R T}$ be the test statistic for testing $H_{0}: A_{1} \delta_{1}=h_{1}$ against $H_{a}: A_{1} \delta_{1} \neq h_{1}$ when $\delta_{2}=\delta_{2}^{0}$ (specified) and
iii. For the PTT, let $\phi^{P T T}$ be the test function and $T^{P T T}$ be the test statistic for testing $H_{0}: A_{1} \delta_{1}=h_{1}$ against $H_{a}: A_{1} \delta_{1} \neq h_{1}$ when $\delta_{2}$ is suspected to be $\delta_{2}^{0}$ following a pretest (PT) on $\delta_{2}$. For the PT, let $\phi^{P T}$ be the test function for testing $H_{0}^{*}: A_{2} \delta_{2}=h_{2}$ (a suspected vector of order $q_{2}$ ) against $H_{a}^{*}$ : $A_{2} \delta_{2} \neq h_{2}$. If $H_{0}^{*}$ is rejected in the PT, then the UT is used to test on $\delta_{1}$, otherwise the RT is used to test $H_{0}$.

Then the proposed three test statistics are defined as follows:
i. The UT for testing $H_{0}: A_{1} \beta_{1}=h_{1}$ is given by

$$
\begin{equation*}
L^{U T}=\frac{\left(A_{1} \widetilde{\beta_{1}}-h_{1}\right)^{\prime}\left[A_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \widetilde{\beta_{1}}-h_{1}\right)}{q s_{e}^{2}}, \tag{13}
\end{equation*}
$$

where $s_{e}^{2}$ is the unbiased estimator of $\sigma^{2}$. Under $H_{0}, L^{U T}$ follows an $F$ distribution with $q_{1}$ and $(n-p)$ df whereas under $H_{a}$ the $L^{U T}$ follows a noncentral $F$ distribution with $\left(q_{1}, n-p\right)$ df and noncentrality parameter $\Delta_{1}^{2} / 2$.
ii. The RT is given by

$$
\begin{equation*}
L^{R T}=\frac{\left(A_{1} \hat{\delta}_{1}-h_{1}\right)^{\prime}\left[\left(A_{1}\left(D_{11}\right)^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \hat{\delta}_{1}-h_{1}\right)\right.}{q_{1} s_{e}^{2}} . \tag{14}
\end{equation*}
$$

Under $H_{a}, L^{R T}$ follows a noncentral $F$ distribution with $\left(q_{1}, n-p\right)$ df and noncentrality parameter $\Delta_{2}^{2} / 2$, where

$$
\begin{equation*}
\Delta_{2}^{2}=\frac{\left(A_{1} \delta_{1}-h_{1}\right)^{\prime}\left[A_{1} D_{11}^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \delta_{1}-h_{1}\right)}{\sigma^{2}} . \tag{15}
\end{equation*}
$$

iii. For the preliminary test on $\delta_{2}$, we test $H_{0}^{*}: A_{2} \delta_{2}=h_{2}$ against $H_{a}^{*}: A_{2} \delta_{2} \neq h_{2}$ using the statistic

$$
\begin{equation*}
L^{P T}=\frac{\left(A_{2} \widetilde{\delta_{2}}-h_{2}\right)^{\prime}\left[A_{2} A_{22}^{-1} A_{2}^{\prime}\right]^{-1}\left(A_{2} \widetilde{\delta_{2}}-h_{2}\right)}{q_{1} s_{e}^{2}} \tag{16}
\end{equation*}
$$

where $s_{e}^{2}$ is an unbiased estimator of $\sigma^{2}$. Under $H_{a}, L^{P T}$ follows a noncentral $F$ distribution with $\left(q_{2}, n-p\right)$ df and noncentrality parameter $\Delta_{3}^{2} / 2$, where

$$
\begin{equation*}
\Delta_{3}^{2}=\frac{\left(A_{2} \delta_{2}-h_{2}\right)^{\prime}\left[A_{2} D_{22}^{-1} A_{2}^{\prime}\right]^{-1}\left(A_{2} \delta_{2}-h_{2}\right)}{\sigma^{2}} \tag{17}
\end{equation*}
$$

Let $\alpha_{j}\left(0<\alpha_{j}<1\right.$, for $\left.\mathrm{j}=1,2,3\right)$ be a positive number. Then set $F_{\nu_{1}, \nu_{2}, \alpha_{j}}$, in which $\nu_{1}$ and $\nu_{2}$ are the numerator and denominator d.f., respectively, such that

$$
\begin{align*}
& P\left(L^{U T}>F_{q_{1}, n-p, \alpha_{1}} \mid A_{1} \delta_{1}=h_{1}\right)=\alpha_{1},  \tag{18}\\
& P\left(L^{R T}>F_{q_{1}, n-p, \alpha_{2}} \mid A_{1} \delta_{1}=h_{1}\right)=\alpha_{2},  \tag{19}\\
& P\left(L^{P T}>F_{q_{2}, n-p, \alpha_{3}} \mid A_{2} \delta_{2}=h_{2}\right)=\alpha_{3} . \tag{20}
\end{align*}
$$

To test $H_{0}: A_{1} \beta_{1}=h_{1}$ against $H_{a}: A_{1} \beta_{1} \neq h_{1}$, after pretesting on $\delta_{2}$, the test function is

$$
\Phi= \begin{cases}1, & \text { if }\left(\mathrm{L}^{\mathrm{PT}} \leq \mathrm{F}_{\mathrm{c}}, \mathrm{~L}^{\mathrm{RT}}>\mathrm{F}_{\mathrm{b}}\right) \text { or }\left(\mathrm{L}^{\mathrm{PT}}>\mathrm{F}_{\mathrm{c}}, \mathrm{~L}^{\mathrm{UT}}>\mathrm{F}_{\mathrm{a}}\right) ;  \tag{21}\\ 0, & \text { otherwise, }\end{cases}
$$

where $F_{a}=F_{\alpha_{1}, q_{1}, n-p}, F_{b}=F_{\alpha_{2}, q_{1}, n-p}$ and $F_{c}=F_{\alpha_{3}, q_{2}, n-p}$.

## 5. SAMPLING DISTRIBUTION OF TEST STATISTICS

The sampling distribution of the test statistics are discussed in this section. For the power function of the PTT the joint distribution of $\left(L^{U T}, L^{P T}\right)$ and $\left(L^{R T}, L^{P T}\right)$ are essential. Following Khan and Pratikno [31], let $\left\{M_{n}\right\}$ be a sequence of alternative hypotheses defined as

$$
\begin{equation*}
M_{n}:\left(A_{1} \beta_{1}-h_{1}, A_{2} \beta_{2}-h_{2}\right)=\left(\frac{\lambda_{1}}{\sqrt{n}}, \frac{\lambda_{2}}{\sqrt{n}}\right)=\lambda \tag{22}
\end{equation*}
$$

where $\lambda_{(q \times 2)}$ is a vector of fixed real numbers. Under $M_{n}$ both $\left(A_{1} \beta_{1}-h_{1}\right)$ and $\left(A_{2} \beta_{2}-h_{2}\right)$ are nonsingular matrices and under $H_{0}$ they are singular matrices.

From Yunus and Khan [28] and (13), define the test statistic of the UT when $\delta_{2}$ is unspecified, under $M_{n}$, as

$$
\begin{equation*}
L_{1}^{U T}=L^{U T}-\frac{n \sigma}{q_{1} s_{e}^{2}}\left(A_{1} \widetilde{\beta}_{1}-h_{1}\right)^{\prime}\left[A_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \widetilde{\beta}_{1}-h_{1}\right) . \tag{23}
\end{equation*}
$$

The statistic $L_{1}^{U T}$ follows a noncentral $F$ distribution with $\left(q_{1}, n-p\right)$ df and a noncentrality parameter which is a function of $\left(A_{1} \beta_{1}-h_{1}\right)$. From (14), under $M_{n},\left(A_{1} \beta_{1}-h_{1}\right)$ the test statistic of the RT becomes

$$
\begin{equation*}
L_{2}^{R T}=L^{R T}-\frac{n \sigma}{q_{1} s_{e}^{2}}\left(A_{1} \hat{\delta}_{1}-h_{1}\right)^{\prime}\left[A_{1} D_{11}^{-1} A_{1}^{\prime}\right]^{-1}\left(A_{1} \hat{\delta}_{1}-h_{1}\right) . \tag{24}
\end{equation*}
$$

The statistic $L_{2}^{R T}$ also follows a noncentral $F$ distribution with $\left(q_{1}, n-p\right)$ df and a noncentrality parameter which is a function of $\left(A_{1} \beta_{1}-h_{1}\right)$ under $M_{n}$. From (16) the test statistic of the PT is given by

$$
\begin{equation*}
L_{3}^{P T}=L^{P T}-\frac{n \sigma}{q_{2} s_{e}^{2}}\left(A_{2} \tilde{\delta}_{2}-h_{2}\right)^{\prime}\left[A_{2}\left(A_{22}\right)^{-1} A_{2}^{\prime}\right]^{-1}\left(A_{2} \tilde{\delta}_{2}-h_{2}\right) \tag{25}
\end{equation*}
$$

Under $H_{a}$, the $L_{3}^{P T}$ follows a noncentral $F$ distribution with $\left(q_{2}, n-s\right) \mathrm{df}$ and a noncentrality parameter which is a function of $\left(A_{2} \beta_{2}-h_{2}\right)$. From (13), (14), and (16) we observe that the $L^{U T}$ and $L^{P T}$ are correlated, and that $L^{R T}$ and $L^{P T}$ are uncorrelated. The joint distribution of the $L^{U T}$ and $L^{P T}$ is a correlated bivariate $F$ distribution with $\left(q_{1}, n-p\right)$ and $\left(q_{2}, n-p\right)$ df. The details on the bivariate central $F$ distribution is found in Krishnaiah [32], Amos and Bulgren [33], and El-Bassiouny and Jones [34]. Khan et al. [35] provided the probability density
function and some properties of correlated noncentral bivariate $F$ distribution. The covariance and correlation of the correlated bivariate $F$ distribution for the $L^{U T} \sim F_{1\left(q_{1}, n-p\right)}$ and $L^{P T} \sim F_{2\left(q_{2}, n-p\right)}$ are then given, respectively, as

$$
\begin{align*}
& \operatorname{Cov}\left(L^{U T}, L^{P T}\right) \\
& =\frac{2(n-p)(n-p)}{(n-p-2)(n-p-2)(n-p-4)} \text { and }  \tag{26}\\
& \rho_{\mathrm{L}} \mathrm{UT}, \mathrm{~L}^{\mathrm{PT}}
\end{align*} \quad=\left\{\frac{q_{1} q_{2}(n-p-4)}{\left(n-p+q_{1}-2\right)\left(n-p+q_{2}-2\right)(n-p-4)}\right\}^{1 / 2} .
$$

## 6. POWER FUNCTION AND SIZE OF TESTS

The power function and size of the three tests are derived in this section.

### 6.1. The Power of the Tests

From (13) and (23), (14) and (24), and (16), (21), and (25), the power function of the UT, RT, and PTT are given below.
i. The power of the UT,

$$
\begin{align*}
\pi^{U T}(\lambda) & =P\left(L^{U T}>F_{\alpha_{1}, q, n-r} \mid M_{n}\right)=1-P\left(L_{1}^{U T} \leq F_{\alpha_{1}, q_{1}, n-p}-\Omega_{u t}\right) \\
& =1-P\left(L_{1}^{U T} \leq F_{\alpha_{1}, q_{1}, n-p}-k_{u t} \zeta_{1}\right) \tag{27}
\end{align*}
$$

where $\Omega_{u t}=\frac{\sigma}{q_{1} s_{e}^{s}}\left(\lambda_{1}\right)^{\prime}\left[\gamma_{1}\right]^{-1}\left(\lambda_{1}\right), \gamma_{1}=A_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} A_{1}^{\prime}, \zeta_{1}=\left(\lambda_{1}\right)^{\prime}\left[\gamma_{1}\right]^{-1}\left(\lambda_{1}\right)$ and $k_{u t}=\frac{\sigma}{q_{1} s_{e}}$.
ii. The power of the RT,

$$
\begin{align*}
\pi^{R T}(\lambda) & =P\left(L^{R T}>F_{\alpha_{1}, q_{1}, n-p} \mid M_{n}\right)=P\left(L_{2}^{R T}>F_{\alpha_{2}, q_{1}, n-p}-\Omega_{r t}\right) \\
& =1-P\left(L_{2}^{R T} \leq F_{\alpha_{2}, q_{1}, n-p}-\Omega_{r t}\right)=1-P\left(L_{2}^{R T} \leq F_{\alpha_{2}, q_{1}, n-p}-k_{r t} \zeta_{1}\right) \tag{28}
\end{align*}
$$

where $\Omega_{r t}=\frac{\sigma}{q_{1} s_{e}^{2}}\left(\lambda_{1}\right)^{\prime}\left[\gamma_{1}\right]^{-1}\left(\lambda_{1}\right), \gamma_{1}=A_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} A_{1}^{\prime}, \zeta_{1}=\left(\lambda_{1}\right)^{\prime}\left[\gamma_{1}\right]^{-1}\left(\lambda_{1}\right)$ and $k_{r t}=\frac{\sigma}{q s_{r t}^{2}}$.
The power function of the PT is

$$
\begin{align*}
\pi^{P T}(\lambda) & =P\left(T^{P T}>F_{\alpha_{3}, q_{2}, n-p} \mid M_{n}\right) \\
& =1-P\left(L_{3}^{P T} \leq F_{\alpha_{3}, q_{2}, n-p}-k_{p t} \zeta_{2}\right) \tag{29}
\end{align*}
$$

where $k_{p t}=\frac{\sigma}{q_{2} s_{e}^{s}}$ and $\zeta_{2}=\left(\lambda_{2}\right)^{\prime}\left[\gamma_{2}\right]^{-1}\left(\lambda_{2}\right)$ with $\gamma_{2}=A_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} A_{2}^{\prime}$.
iii. Then the power of the PTT becomes,

$$
\begin{align*}
\pi^{P T T}(\lambda)= & P\left(L^{P T}<F_{\alpha_{3}, q_{2}, n-p}, L^{R T}>F_{\alpha_{2}, q_{2}, n-p} \mid M_{n}\right) \\
& +P\left(L^{P T} \geq F_{\alpha_{3}, q_{2}, n-p}, L^{U T}>F_{\alpha_{1}, q_{2}, n-p} \mid M_{n}\right) \\
= & P\left[L^{P T}<F_{\alpha_{3}, q, n-s}\right] P\left[L^{R T}>F_{\alpha_{2}, q, n-p}\right]+d_{1 r}(a, b) \\
= & {\left[1-P\left(L^{P T}>F_{\alpha_{3}, q_{2}, n-p}\right)\right] P\left(L^{R T}>F_{\alpha_{2}, q_{2}, n-p}\right)+d_{1 r}(a, b) } \tag{30}
\end{align*}
$$

where $a=F_{\alpha_{3}, q_{1}, n-p}-\frac{\sigma}{q s_{e}^{2}}\left(\lambda_{2}\right)^{\prime}\left[\gamma_{p t}\right]^{-1}\left(\lambda_{2}\right)=F_{\alpha_{3}, q_{2}, n-p}-k_{p t} \zeta_{2}$, and $d_{1 r}(a, b)$ is bivariate $F$ probability integral. The value of $\zeta_{1}$ and $\zeta_{2}$ depend on $\lambda_{1}$ and $\lambda_{2}$, respectively, and

$$
\begin{align*}
d_{1 r}(a, b) & =\int_{a}^{\infty} \int_{b}^{\infty} f\left(F^{P T}, F^{U T}\right) d F^{P T} d F^{U T} \\
& =1-\int_{0}^{b} \int_{0}^{a} f\left(F^{P T}, F^{U T}\right) d F^{P T} d F^{U T} \tag{31}
\end{align*}
$$

with $b=F_{\alpha_{1}, q_{1}, n-p}-\Omega_{u t}$. The integral $\int_{0}^{b} \int_{0}^{a} f\left(F^{P T}, F^{U T}\right) d F^{P T} d F^{U T}$ is the cdf of the correlated bivariate noncentral $F$ (BNCF) distribution of the UT and PT. Following Yunus and Khan [36], we define the pdf and cdf of the BNCF distribution as

$$
\begin{align*}
& f\left(y_{1}, y_{2}\right)=\left(\frac{m}{n}\right)^{m}\left[\frac{\left(1-\rho^{2}\right)^{\frac{m+n}{2}}}{\Gamma(n / 2)}\right] \sum_{j=0}^{\infty} \sum_{r_{1}=0}^{\infty} \sum_{r_{2}=0}^{\infty}\left[\rho^{2 j}\left(\frac{m}{n}\right)^{2 j} \Gamma(m / 2+j)\right] \\
& \times\left[\left(\frac{e^{-\theta_{1} / 2}\left(\theta_{1} / 2\right)^{r_{1}}}{r_{1}!}\right)\left(\frac{\left(\frac{m}{n}\right)^{r_{1}}}{\Gamma\left(m / 2+j+r_{1}\right)}\right)\left(y_{1}^{m / 2+j+r_{1}-1}\right)\right] \\
& \times\left[\left(\frac{e^{-\theta_{2} / 2}\left(\theta_{2} / 2\right)^{r_{2}}}{r_{2}!}\right)\left(\frac{\left(\frac{m}{n}\right)^{r_{2}}}{\Gamma\left(m / 2+j+r_{2}\right)}\right)\left(y_{2}^{m / 2+j+r_{2}-1}\right)\right] \\
& \times \Gamma\left(q_{r j}\right)\left[\left(1-\rho^{2}\right)+\frac{m}{n} y_{1}+\frac{m}{n} y_{2}\right]^{-\left(q_{r j}\right)}, \text { and }  \tag{32}\\
& F_{Y_{1}, Y_{2}}(a, b)=P\left(Y_{1}<a, Y_{2}<b\right)=\int_{0}^{a} \int_{0}^{b} f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} . \tag{33}
\end{align*}
$$

By setting $a=b=d$, Schuurmann et al. [37] presented the critical values of $d$ for the probability table of multivariate $F$ distribution.
From (30), it is clear that the cdf of the BNCF distribution involved in the expression of the power function of the PTT.

### 6.2. The Size of the Tests

The size of a test is the value of its power under the null hypothesis, $H_{0}$. The size of the UT, RT, and PTT are given by
i. The size of the UT

$$
\begin{align*}
\alpha^{U T} & =P\left(L^{U T}>F_{\alpha_{1}, q_{1}, n-p} \mid H_{0}: A_{1} \beta_{1}=h_{1}\right) \\
& =1-P\left(L_{1}^{U T} \leq F_{\alpha_{1}, q_{1}, n-p} \mid H_{0}: A_{1} \beta_{1}=h_{1}\right) \\
& =1-P\left(L_{1}^{U T} \leq F_{\alpha_{1}, q_{1}, n-p}\right) \tag{34}
\end{align*}
$$

ii. The size of the RT

$$
\begin{align*}
\alpha^{R T} & =P\left(L^{R T}>F_{\alpha_{2}, q_{1}, n-p} \mid H_{0}: A_{1} \beta_{1}=h_{1}\right) \\
& =1-P\left(L_{2}^{R T} \leq F_{\alpha_{2}, q_{1}, n-p} \mid H_{0}: A_{1} \beta_{1}=h_{1}\right) \\
& =1-P\left(L_{2}^{R T} \leq F_{\alpha_{2}, q_{1}, n-p}-k_{2} \zeta_{2}\right) \tag{35}
\end{align*}
$$

where the value of $\zeta_{1}=0$ but $\zeta_{2} \neq 0$. The size of the PT is given by

$$
\begin{align*}
\alpha^{P T}(\lambda) & =P\left(T^{P T}>F_{\alpha_{3}, q_{2}, n-p} \mid H_{0}: A_{2} \beta_{2}=h_{2}\right) \\
& =1-P\left(L_{3}^{P T} \leq F_{\alpha_{3}, q_{2}, n-p}\right) \text { and then } \tag{36}
\end{align*}
$$

iii. The size of the PTT

$$
\begin{align*}
\alpha^{P T T} & =P\left(L^{P T} \leq a, L^{R T}>d \mid H_{0}\right)+P\left(L^{P T}>a, L^{U T}>h \mid H_{0}\right) \\
& =P\left(L^{P T} \leq a\right) P\left(L^{R T}>d\right)+d_{1 r}(a, h) \\
& =\left[1-P\left(L^{P T} \leq a\right)\right] P\left(L^{R T}>d\right)+d_{1 r}(a, h), \tag{37}
\end{align*}
$$

where $h=F_{\alpha_{1}, q_{1}, n-p}, d=F_{\alpha_{2}, q_{1}, n-p}$, and under $H_{0}$ the value of $a$ is $F_{\alpha_{1}, q_{1}, n-p}$.


Figure 1 Comparing power of three tests against $\zeta_{1}$ with selected values of $\rho, \zeta_{2}$, df, and noncentrality parameters.

## 7. ILLUSTRATIVE EXAMPLE

To compare the tests, the properties of the three tests are studied using simulated data. The R statistical package was used to generate data on $Y$ and $X$. Using $k=3$, three covariates $\left(x_{j}, j=1,2,3\right)$ were generated from the $U(0,1)$ distribution. The error vector (e) was generated from the $N\left(\mu=0, \Sigma=\sigma^{2} I_{3}\right)$ distribution. For $n=100$ random variates the dependent variable $(y)$ was determined by $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+e_{i}$ for $i=1,2, \cdots, n$.

The power functions of the tests are computed for $k=3, p=4, r=2$, and $s=2$ so that $\delta_{1}=\left(\beta_{0}, \beta_{1}\right), \delta_{2}=\left(\beta_{2}, \beta_{3}\right)$, and $\alpha_{1}=\alpha_{2}=\alpha_{3}=$ $\alpha=0.05$. Thus to compute the power of the tests, we fix the size to be 0.05 for all the tests. The power functions of the tests are calculated using the formulas in (27), (28), and (30). Whereas the graphs for the size of the three tests are produced using formulas in (34), (35), and (37). The power and size curves of the tests are shown in Figs. 1 and 2.

## 8. POWER AND SIZE COMPARISON

Figure 1 shows that the power of the UT does not depend on $\zeta_{2}$ and $\rho$, but it slowly increases as the value of $\zeta_{1}$ increases. The form of the power curve of the UT is concave. For very small values of $\zeta_{1}$, near 0 , the power curve of the UT slowly increases as $\zeta_{1}$ becomes larger. The power of the UT reaches its minimum, around 0.05 , for $\zeta_{1}=0$ and for any value of $\zeta_{2}$.

Like the power of the UT, the power of the RT increases as the values of $\zeta_{1}$ increases and reaches 1 for large values of $\zeta_{1}$ (see Fig. 1). The power of the RT is greater, or equal to, than that of the UT for all values of $\zeta_{1}$ and/or $\zeta_{2}$. The RT achieves its minimum power, around 0.05 , for $\zeta_{1}=0$ and all values of $\zeta_{2}$ (see Fig. 1). The maximum power of the RT is 1 for reasonably larger values of $\zeta_{1}$.
The power of the PTT depends on the values of $\zeta_{1}, \zeta_{2}$, and $\rho$. The power of the RT and PTT increases as the values of $\zeta_{1}$ and $\zeta_{2}$ increase for $\rho=0.9$. For $\zeta_{2}=5$ and $\rho=0.9$, the power of the PTT increases as the value of $\nu_{1}$ increases (see Fig. $1(\mathrm{~d})$ ), but not for $\rho=0.1$ and $\rho=0.5$.


Figure 2 Comparison of size of three tests against $\zeta_{1}$ for selected values of $\rho, \zeta_{2}$, df, and noncentrality parameters.

Moreover, the power of the PTT is always larger than that of the UT and tends to be the same as that of the RT for large values of $\zeta_{1}$ (see Fig. 1(d)). The minimum power of the PTT is around 0.07 for $\zeta_{1}=0$, and $\rho=0.1,0.5$ (see Fig. 1(d)), and it decreases (close to RT) as the value of $\zeta_{2}$ and $\nu_{1}$ becomes larger.

From Fig. 2 or (34) it is evident that the size of the UT does not depend on $\zeta_{2}$. It is constant for all values of $\zeta_{1}$ and $\zeta_{2}$. Like the size of the UT, the size of the RT is also constant for all values of $\zeta_{1}$ and $\zeta_{2}$. Moreover, the size of the RT is the same or larger than that of the UT for all values of $\zeta_{2}$ and does not depend on $\rho$.

The size of the PTT increases as the values of $\nu_{1}$ and $\zeta_{2}$ increase for $\rho=0.9$ (see Fig. 2(c) and 2(d)). But it decreases as the values of $\theta_{1}$ increases (see Fig. 2(a) and 2(b)).
The size of the UT is $\alpha^{U T}=0.05$ for all values of $\zeta_{1}$ and $\zeta_{2}$. The size of the RT, $\alpha^{R T} \geq \alpha^{U T}$ for all values of $\zeta_{2}$. The size of the PTT, $\alpha^{P T T} \geq \alpha^{R T}$ for all values of $\zeta_{1}, a_{2}$ and $\rho$.

## 9. CONCLUSION

The above analyses reveal that the UT has lower power than the RT. The power of the UT is also less than that of the PTT for all values of $\zeta_{1}$ and $\zeta_{2}$ and $\rho$. The size of the RT and PTT is larger or equal to that of the UT for all values of $\zeta_{1}$ and $\zeta_{2}$.

For smaller values of $\zeta_{1}$, the UT and RT have lower power than the PTT. But for larger values of $\zeta_{1}$ the RT has higher, or same, power than the PTT and UT. Thus when the NSPI is reasonably accurate (i.e., $\zeta_{1}$ is small) the PTT over performs the UT and RT with higher power.
The UT has the smallest size among the three tests. But it also has the lowest power. The RT has the highest power and highest size. The PTT achieves higher power than the UT and lower size than the RT. Thus in the face of uncertainty, if NSPI is reasonably close to the true value of the parameters than the PTT is a better choice compared to UT and RT.

## ACKNOWLEDGMENTS

The authors acknowledge valuable feedback of Emeritus Professor A K Md Ehsanes Saleh, Carleton University, Canada, and Dr Rossita M Yunus, University of Malaya, Malaysia for checking the computation of the power functions. The paper was completed when the first author visited Sultan Qaboos University, Oman.

## REFERENCES

1. R. Mead, The Design of Experiments, Cambridge University Press, Cambridge, 1988, pp. 368.
2. K. Hinkelmann, O. Kempthorne, Design and Analysis of Experiments: Introduction to Experimental Design, vol. 1, Wiley, India, 1994, pp. 350.
3. P. Kabaila, D. Tissera, Aust. NZ. J. Stat. 54 (2014), 371-383.
4. T.A. Bancroft, Ann. Math. Stat. 15 (1944), 190-204.
5. J.L. Hodges, E.L. Lehmann, Ann. Math. Stat. 23 (1952), 396-407.
6. P. Kabaila, G. Dharmarathne, Aust. NZ. J. Stat. 57 (2015), 99-118.
7. P.J. Kempthorne, 1983 Business and Economic Statistics Proceedings of the American Statistical Association, MIT, USA, 1983, pp. 568-573.
8. P.J. Kempthorne, Ann. Stat. 16 (1988), 1594-1608.
9. P.J. Bickel, Ann. Stat. 12 (1984), 864-879.
10. S. Khan, Biom. J. 44 (2003), 73-90.
11. S. Khan, J. Stat. Res. 39 (2005), 79-94.
12. S. Khan, Commun. Stat. Theory Methods. 37 (2008), 247-260.
13. S. Khan, A.K.Md.E. Saleh, Stat. Pap. 42 (2001), 451-473. http://www.springerlink.com/content/mbqc7a26qm6cf41c/fulltext.pdf
14. S. Khan, A.K.Md.E. Saleh, Stat. Pap. 46 (2005), 379-394.
15. S. Khan, A.K.Md.E. Saleh, Commun. Stat. Theory Methods. 37 (2008), pp. 2564-2581.
16. A.K.Md.E. Saleh, Theory of Preliminary Test and Stein-Type Estimation with Applications, John Wiley and Sons, Inc., New Jersey, 2006.
17. S. Khan Biometrical J. vol 45 (2003), 73-90.
18. R.M. Yunus, Increasing power of M-test through pretest, Unpublished PhD Thesis, University of Southern Queensland, Australia, 2010.
19. G.G. Judge, M.E. Bock, The Statistical Implications of Pre-test and Stein-pule Estimators in Econoetrics, North-Holland, New York, 1978.
20. T.A. Bancroft, Biometrics. 20 (1964), 427-442.
21. C.P. Han, T.A. Bancroft, J. Am. Stat. Assoc. 63 (1968), 1333-1342.
22. S. Khan, Z. Hoque, J. Stat. Res. 37 (2003), 43-55.
23. R. Tamura, Bull. Math. Stat. 11 (1965), 38-61.
24. A.K.Md.E. Saleh, P.K. Sen, Ann. Stat. 6 (1978), 154-168.
25. A.K.Md.E. Saleh, P.K. Sen, Procedings of the Fifth Pannonian Symposium on Mathematical Statistics, Visegrád, Hungary, 13-18 September, 1982, pp. 307-325.
26. R.M. Yunus, S. Khan, 9th Islamic Countries Conference on Statistical Sciences (ICCS-IX): Statistics in the Contemporary World - Theories, Methods and Applications, Kuala Lumpur, Malaysia, 2007.
27. R.M. Yunus, S. Khan, Commun. Stat. Theory Methods. 40 (2011), 581-597.
28. R.M. Yunus, S. Khan, J. Nonparamatr. Stat. 23 (2011), 201-218.
29. K. Ohtani, T. Toyoda, J. Econ. Lett. 17 (1985), 111-114.
30. J. Gurland, R.S. McCullough, J. Biometrika. 49 (1962), 403-417.
31. S. Khan, B. Pratikno, Stat. Pap. 54 (2013), 605-617.
32. P.R. Krishnaiah, Part of PhD thesis, University of Minnesota, 1964.
33. D.E. Amos, W.G. Bulgren, J. Math. Comput. 26 (1972), 255-264.
34. A.H. El-Bassiouny, M.C. Jones, Stat. Methods Appl. 18 (2009), 465-481.
35. S. Khan, B. Pratikno, A.I.N. Ibrahim, M.R. Yunus, Commun. Stat. Simul. Comput. 45 (2016), 3491-3507.
36. R.M. Yunus, S. Khan, Appl. Math. Comput. 217 (2011), 6237-6247.
37. F.J. Schuurmann, P.R. Krishnaiah, A.K. Chattopadhyay, Indian J. Stat. 37 (1975), 308-331.
38. S. Khan, Z. Hoque, A.K.Md.E. Saleh, J. Stat. Res. 31 (2002), 51-72.

[^0]:    *Corresponding author. Email: Shahjahan.Khan@usq.edu.au

