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ABSTRACT
The data generated by many factorial experiments are analyzed by linear regression models. Often the higher order interac-
tion terms of such models are negligible (e.g., R. Mead, The Design of Experiments, Cambridge University Press, Cambridge,
1988, p. 368) although there is uncertainty around it. This kind of nonsample prior information (NSPI) can be presented by null
hypotheses (cf. T.A. Bancroft, Ann. Math. Stat. 15 (1944), 190–204), and its uncertainty removed through appropriate statistical
test. Depending on the level of the NSPI the unrestricted, restricted, and pretest (PTT) tests are defined. The sampling distri-
butions of test statistics and power functions of the three tests are derived. The graphical and analytical comparisons of powers
reveal that the PTT dominates over the other tests.

© 2019 The Authors. Published by Atlantis Press SARL.
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1. INTRODUCTION

In many real-life applications, the data of factorial experiments are analyzed using linear regression models. Unlike the classical and cell
mean models, the regression model based method has the advantage of fitting the model in the presence of missing values or even with
unbalanced data. The regression model for the response, Y of a 23 factorial experiment without any replication can be written as

Y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽124x1x2 + 𝛽13x1x3 + 𝛽23x2x3 + 𝛽123x1x2x3 + 𝜖, (1)

where 𝛽’s are unknown regression parameters and x1, x2, and x3 represent the coded level of factors 1, 2, and 3, respectively, each assuming
value −1 or 1 for the absence and presence of the factor. It is commonly assumed that the error term 𝜖 ∼ N

(
0, 𝜎2), where 𝜎2 > 0 is a

unknown spread parameter.

Mead [1] and Hinkelmann and Kempthorne [2] discussed how the higher order interactions of factorial experiments are believed to be
negligible. Kabaila and Tesseri [3] reinforced that this kind of believe on the higher order interactions is the basis for fractional factorial
experiments. Tomake valid inference on the remaining parameters, the uncertainty in the assumption of negligible interactions of any order
can be represented by a hypothesis and conduct an appropriate test to remove the uncertainty (cf. Bancroft [4]). Any such assumptions can
be considered as the nonsample prior information (NSPI) and used in the formal inferences on the remaining parameters of the model.
Hodges and Lehmann [5] discussed the use of prior information from previous experience in reaching statistical decisions. Kabaila and
Dharmarathne [6] compared Bayesian and frequentist interval estimators in regression utilizing uncertain prior information.

In the classical approach inferences about, unknown population parameters are drawn exclusively from the sample data. This is true for
both estimation of parameters and hypothesis tests. Use of reliable NSPI from trusted sources (cf. Bancroft [4]), in addition to the sample
data, is likely to improved the quality of estimation and test. The use of NSPI has also been demonstrated by Kempthorne [7,8], Bickel [9],
Khan [10–12], Khan and Saleh [13–15], Khan et al. [38] and Saleh [16].
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Such NSPI is usually available from previous studies or experts in the field or practical experience of the researchers, and is independent
of the sample data under study. The main purpose of inclusion of NSPI is to improve the quality of statistical inference. In reality, NSPI
on the value of any parameter may or may not be close to the unknown true value of the parameter, and hence there is always an element
of uncertainty. But the uncertain NSPI can be expressed by a null hypothesis and an appropriate statistical test can be used to remove the
uncertainty. The purpose of the preliminary test (pretest) on the uncertain NSPI in the hypothesis testing or estimation is to improve the
quality of the inference (cf. Khan [17]; Saleh [16]; Yunus [18]). Kabaila and Dharmarathne [6] and Kabaila and Tissera [3] used NSPI to
construct confidence intervals for regression parameters. In this paper, we express the data from a factorial experiment as a linear model
(see (1)) in order to test the coefficients of the main effects (and lower order interactions) when there is uncertain NSPI on the coefficients
of higher level interactions.

The uncertain NSPI can be any of the following types: (i) unknown (unspecified)—NSPI is not available, (ii) known (certain or
specified)—exact value is the same as the parameter, and (iii) uncertain—suspected value is unsure. In the estimation regime, to cater for
the three different scenarios, the following three different estimators are appropriate: (i) unrestricted estimator (UE), (ii) restricted estima-
tor (RE), and (iii) preliminary test estimator (PTE) (see eg Judge and Bock [19]; Saleh [16]).

Almost all of the works in this area are on the estimation of parameter(s). These include Bancroft [4,20], Han and Bancroft [21], and Judge
and Bock [19] introduced the preliminary test estimation method to estimate the parameters of a model with uncertain NSPI. Later Khan
[10–12], Khan and Saleh [14], and Khan and Hoque [22] covered various work in the area of improved estimation.

The testing of parameters in the presence of uncertain NSPI is relatively new. The earlier works include Tamura [23] and Saleh and Sen
[24,25] in the nonparametric setup. Later Yunus and Khan [26–28] used the NSPI for testing hypothesis using nonparametric methods. The
problem is yet to be explored in the parametric context. In this paper testing of hypotheses is considered on the coefficients of the main
effects in the model in (1) when uncertain nonsample information on the coefficients of the higher order interactions is available.

To set up the hypotheses for the tests, let’s assume that the interaction terms (e.g., last four 𝛽′s) of model (1) are suspected to be zero, but not
sure. Then under the three different scenarios define three different tests: (i) unrestricted test (UT), (ii) restricted test (RT), and (iii) pretest
test (PTT) to test on the remaining regression parameters (first four 𝛽′s) of the model. The UT uses the sample data alone but the RT and
PTT use both the NSPI and the sample data. The PTT is a choice between the UT and the RT.

The regression model and hypotheses are provided in Section 2. Some useful results are discussed in Section 3. The proposed test statistics
and their sampling distributions are provided in Sections 4 and 5 respectively. Section 6 derives the power function and size of the tests. An
example with real data is included in Section 7. The power of the tests are compared in Section 8. Some concluding remarks are provided
in Section 9.

2. THE REGRESSION MODEL AND HYPOTHESES

The regression model for the data from a 23 factorial experiment, as stated in (1), can be viewed as special case of the multiple regression
model where each of the main effect and interaction terms are represented as the explanatory variables. For an n set of observations on the
response (Y) and k explanatory/independent variables (X1,⋯ ,Xk), that is,

(
Xij,Yi

)
, for i = 1, 2,⋯ , n and j = 1, 2,⋯ , k, the linear model

is given by

Yi = 𝛽0 + 𝛽1Xi1 +⋯+ 𝛽kXik + ei, (2)

where 𝛽′s are the regression parameters and ei’s are the error terms. The model in equation (2) can be here expressed following convenient
form

Y = X𝛽 + e, (3)

where 𝛽 = (𝛽0, 𝛽1,⋯ , 𝛽r−1, 𝛽r,⋯ , 𝛽k)′ is a column vector of order (k + 1) = p, Y =
(
y1,⋯ , yn

)′ is vector of response variables of
dimension n × 1, X is an n × pmatrix of full rank of the independent variables, and e is a vector of errors. It is assumed components e are
identically and independently distributed as normal variable with mean 0 and variance 𝜎2, so that e ∼ Nn

(
0, 𝜎2In

)
, where In is an identity

matrix of order n.

To formulate the testing problem, let 𝛿1 = (𝛽0,⋯ , 𝛽r−1) be a subset of r regression parameters and 𝛿2 = (𝛽r,⋯ , 𝛽k) be another subset of(
p − r

)
= s regression parameters, so that r+ s = p. The regression vector 𝛽 is then partitioned as 𝛽′ =

(
𝛿′1, 𝛿′2

)
, where 𝛿′1 is a r dimensional

sub-vector, and 𝛿′2 is a subvector of dimension s = p − r. In a similar way, matrix X is partitioned as (X1,X2) with X1 = (1, x1,⋯ , xr−1), an
n × rmatrix, and X2 = (xr,⋯ , xk), an n × smatrix. Then the multiple regression model in (3) can be written as

Y = X1𝛿1 + X2𝛿2 + e. (4)

We wish to perform test on the subvector 𝛿1 (or 𝛽1) when NSPI on the subvector 𝛿2 (or 𝛽2) is available.Pdf_Folio:104
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Depending on the nature of the NSPI on the subvector, 𝛿2, to be (i) unspecified, (ii) specified (fixed), or (iii) suspected to be a specific value
but not sure, we define three different tests for testing the other subvector, 𝛿1. Let A1 be a q1 × rmatrix of constants and A2 be another q2 × s
matrix of constants, where q = q1 + q2 so that

A =
(
A1 O
O A2

)
, (5)

that is,A is a q × pmatrix andO is amatrix of zeros. TheNSPI on the value of 𝛿2 is expressed in the form of a null hypothesis,H∗
0 : A2𝛿2 = h2.

Then to test the null hypothesis H0: A1𝛿1 = h1 against Ha: A1𝛿1 ≠ h1.

The hypothesis defined here, H0: A𝛽 = h, that is,

H0: A𝛽 =
(
A1 O
O A2

)(
𝛿1
𝛿2

)
=
(
h1
h2

)
is a generalization of the test of equality of components of the regression vector and the subhypothesis

H0:
(
𝛽1
𝛽2

)
=
(
𝛿1
𝛿2

)
=
(
𝛿1
0

)
(cf. Saleh [16], pp. 340). Note that h2 is only used for the pretest on 𝛽2 (i.e., PT), as such its value remains the same when testing 𝛽1.

3. SOME PRELIMINARIES

To formally define the tests let us consider the following expressions, partitions and results. For the full rank design matrix X we write

X′X =
(
X′1X1 X′1X2
X′2X1 X′2X2

)
, (X′X)−1 =

(
A11 A12
A21 A22

)
, (6)

where

A−1
11 = X′1X1 − X′1X2

(
X′2X2

)−1 X′2X1 andA−1
22 = X′2X2 − X′2X1

(
X′1X1

)−1 X′1X2.

Then the unrestricted least squares estimator of the regression parameters is given by

𝛽 = (X′X)−1 X′Y =
( ̃𝛿1

̃𝛿2

)
, (7)

so that the UE of the two subvectors are

̃𝛿1 = A11X′1Y + A12X′2Y and ̃𝛿2 = A22X′2Y + A21X′1Y. (8)

Then the sum of square errors for the full regression model with k regressors is given by

SSEF =
(
Y − X𝛽

)′ (
Y − X𝛽

)
, (9)

so an unbiased estimator of 𝜎2 isMSEF = SSEF/
(
n − p

)
.

Let 𝛿2 be specified to be 𝛿20, so the RE of 𝛽 becomes,

̂𝛽 =
( ̂𝛽1

̂𝛽2

)
=
( ̂𝛿1

̂𝛿2

)
= 𝛽 − C−1A′ (AC−1A′)−1

(
A𝛽 − h

)
, (10)

where C = X′X. Since 𝛽 ∼ Np
(
𝛽, 𝜎2C−1), we get

̃𝛿1 ∼ Nr
(
𝛿1, 𝜎2A−1

11
)

̃𝛿2 ∼ Ns
(
𝛿2, 𝜎2A−1

22
)
.

Similarly, as ̂𝛽 ∼ Np
(
𝛽, 𝜎2D−1), where D = [C−1 − C−1A′ (AC−1A′)−1 AC−1]

−1
, we get

̂𝛿1 ∼ Nr
(
𝛿1, 𝜎2D−1

11
)

̂𝛿2 ∼ Ns
(
𝛿2, 𝜎2D−1

22
)
,

Pdf_Folio:105



106 S. Khan et al. / Journal of Statistical Theory and Applications 18(2) 103–112

in which

D =
(
D11 D12
D21 D22

)
.

Since A𝛽 is linear combination of normal variables A𝛽 ∼ Nq

(
A𝛽, 𝜎2 [AC−1A′]−1

)
and A ̂𝛽 ∼ Nq

(
A𝛽, 𝜎2 [AD−1A′]−1

)
.

Furthermore, the test statistic for testing H0: A1𝛿1 = h1 is given by

F∗ =
1
qs2e

{
(
A1 ̃𝛿1 − h1

)′ [A1
(
X′1X1

)−1 A′
1]
−1 (

A1 ̃𝛿1 − h1
)
} , (11)

where s2e =
1

n−p

(
Y − X𝛽

)′ (
Y − X𝛽

)
is an unrestricted unbiased estimator of 𝜎2.

It is clear that 1
𝜍2 [

(
A1 ̃𝛿1 − h1

)′ (A1C−1
1 A′

1
)−1 (A1 ̃𝛿1 − h1

)
], whereC1 = X′1X1, follows a noncentral chi-squared distributionwith q1 degrees

of freedom (df) and noncentrality parameter Δ2
1/2, where

Δ2
1 =

(A1𝛿1 − h1)
′ [A1C−1

1 A′
1]
−1 (A1𝛿1 − h1)

𝜎2 . (12)

UnderHa, the F∗ statistic follows a noncentral F distributionwith
(
q1, n − p

)
df and noncentrality parameterΔ2

1/2, and underH0, F∗ follows
a central F distribution with

(
q1, n − p

)
df. Ohtani and Toyoda [29] and Gurland andMcCullough [30] also used the above F test for testing

linear hypotheses.

4. THE THREE TESTS

For testing 𝛿1 when NSPI is available on 𝛿2, define the tests as

i. For theUT, let𝜙UT be the test function andTUT be the test statistic for testingH0: A1𝛿1 = h1, a vector of order q1, againstHa: A1𝛿1 ≠ h1
when 𝛿2 is unspecified,

ii. For the RT, let 𝜙RT be the test function and TRT be the test statistic for testing H0: A1𝛿1 = h1 against Ha: A1𝛿1 ≠ h1 when 𝛿2 = 𝛿02
(specified) and

iii. For the PTT, let 𝜙PTT be the test function and TPTT be the test statistic for testing H0: A1𝛿1 = h1 against Ha: A1𝛿1 ≠ h1 when 𝛿2 is
suspected to be 𝛿02 following a pretest (PT) on 𝛿2. For the PT, let 𝜙PT be the test function for testingH∗

0 : A2𝛿2 = h2 (a suspected vector
of order q2) against H∗

a : A2𝛿2 ≠ h2. If H∗
0 is rejected in the PT, then the UT is used to test on 𝛿1, otherwise the RT is used to test H0.

Then the proposed three test statistics are defined as follows:

i. The UT for testing H0: A1𝛽1 = h1 is given by

LUT =

(
A1𝛽1 − h1

)′
[A1

(
X′1X1

)−1 A′
1]
−1 (

A1𝛽1 − h1
)

q s2e
, (13)

where s2e is the unbiased estimator of 𝜎2. Under H0, LUT follows an F distribution with q1 and
(
n − p

)
df whereas under Ha the LUT

follows a noncentral F distribution with
(
q1, n − p

)
df and noncentrality parameter Δ2

1/2.
ii. The RT is given by

LRT =
(
A1 ̂𝛿1 − h1

)′ [(A1 (D11)
−1 A′

1 ]
−1 (

A1 ̂𝛿1 − h1
)

q1 s2e
. (14)

Under Ha, LRT follows a noncentral F distribution with
(
q1, n − p

)
df and noncentrality parameter Δ2

2/2, where

Δ2
2 =

(A1𝛿1 − h1)
′ [A1D−1

11 A
′
1]
−1 (A1𝛿1 − h1)

𝜎2 . (15)
Pdf_Folio:106
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iii. For the preliminary test on 𝛿2, we test H∗
0 : A2𝛿2 = h2 against H∗

a : A2𝛿2 ≠ h2 using the statistic

LPT =
(
A2𝛿2 − h2

)′ [A2A−1
22 A

′
2]
−1 (A2𝛿2 − h2

)
q1 s2e

, (16)

where s2e is an unbiased estimator of 𝜎2. Under Ha, LPT follows a noncentral F distribution with
(
q2, n − p

)
df and noncentrality

parameter Δ2
3/2, where

Δ2
3 =

(A2𝛿2 − h2)
′ [A2D−1

22 A
′
2]
−1 (A2𝛿2 − h2)

𝜎2 . (17)

Let 𝛼j
(
0 < 𝛼j < 1, for j = 1, 2, 3

)
be a positive number. Then set F𝜈1,𝜈2,𝛼j

, in which 𝜈1 and 𝜈2 are the numerator and denominator d.f.,
respectively, such that

P
(
LUT > Fq1,n−p,𝛼1

|A1𝛿1 = h1
)
= 𝛼1, (18)

P
(
LRT > Fq1,n−p,𝛼2

|A1𝛿1 = h1
)
= 𝛼2, (19)

P
(
LPT > Fq2,n−p,𝛼3

|A2𝛿2 = h2
)
= 𝛼3. (20)

To test H0: A1𝛽1 = h1 against Ha: A1𝛽1 ≠ h1, after pretesting on 𝛿2, the test function is

Φ = {1, if
(
LPT ≤ Fc, LRT > Fb

)
or

(
LPT > Fc, LUT > Fa

)
;

0, otherwise, (21)

where Fa = F𝛼1,q1,n−p, Fb = F𝛼2,q1,n−p and Fc = F𝛼3,q2,n−p.

5. SAMPLING DISTRIBUTION OF TEST STATISTICS

The sampling distribution of the test statistics are discussed in this section. For the power function of the PTT the joint distribution of(
LUT, LPT

)
and

(
LRT, LPT

)
are essential. Following Khan and Pratikno [31], let {Mn} be a sequence of alternative hypotheses defined as

Mn: (A1𝛽1 − h1,A2𝛽2 − h2) =
(
𝜆1
√n

, 𝜆2
√n

)
= 𝜆, (22)

where 𝜆(q×2) is a vector of fixed real numbers. UnderMn both (A1𝛽1 − h1) and (A2𝛽2 − h2) are nonsingular matrices and underH0 they are
singular matrices.

From Yunus and Khan [28] and (13), define the test statistic of the UT when 𝛿2 is unspecified, underMn, as

LUT1 = LUT − n𝜎
q1s2e

(
A1𝛽1 − h1

)′
[A1

(
X′1X1

)−1 A′
1]
−1 (

A1𝛽1 − h1
)
. (23)

The statistic LUT1 follows a noncentral F distribution with
(
q1, n − p

)
df and a noncentrality parameter which is a function of (A1𝛽1 − h1).

From (14), underMn, (A1𝛽1 − h1) the test statistic of the RT becomes

LRT2 = LRT − n𝜎
q1s2e

(
A1 ̂𝛿1 − h1

)′ [A1D−1
11 A

′
1]
−1 (A1 ̂𝛿1 − h1

)
. (24)

The statistic LRT2 also follows a noncentral F distributionwith
(
q1, n − p

)
df and a noncentrality parameter which is a function of (A1𝛽1 − h1)

underMn. From (16) the test statistic of the PT is given by

LPT3 = LPT − n𝜎
q2s2e

(
A2 ̃𝛿2 − h2

)′ [A2 (A22)
−1 A′

2]
−1 (

A2 ̃𝛿2 − h2
)
. (25)

UnderHa, the LPT3 follows a noncentral F distribution with
(
q2, n − s

)
df and a noncentrality parameter which is a function of (A2𝛽2 − h2).

From (13), (14), and (16) we observe that the LUT and LPT are correlated, and that LRT and LPT are uncorrelated. The joint distribution of
the LUT and LPT is a correlated bivariate F distribution with

(
q1, n − p

)
and

(
q2, n − p

)
df. The details on the bivariate central F distribution

is found in Krishnaiah [32], Amos and Bulgren [33], and El-Bassiouny and Jones [34]. Khan et al. [35] provided the probability densityPdf_Folio:107
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function and some properties of correlated noncentral bivariate F distribution. The covariance and correlation of the correlated bivariate F
distribution for the LUT ∼ F1(q1,n−p) and LPT ∼ F2(q2,n−p) are then given, respectively, as

Cov
(
LUT, LPT

)
=

2
(
n − p

) (
n − p

)(
n − p − 2

) (
n − p − 2

) (
n − p − 4

) and

𝜌
LUT ,LPT

= {
q1q2

(
n − p − 4

)(
n − p + q1 − 2

) (
n − p + q2 − 2

) (
n − p − 4

)}1/2 . (26)

6. POWER FUNCTION AND SIZE OF TESTS

The power function and size of the three tests are derived in this section.

6.1. The Power of the Tests

From (13) and (23), (14) and (24), and (16), (21), and (25), the power function of the UT, RT, and PTT are given below.

i. The power of the UT,

𝜋UT (𝜆) = P
(
LUT > F𝛼1,q,n−r|Mn

)
= 1 − P

(
LUT1 ≤ F𝛼1,q1,n−p −Ωut

)
= 1 − P

(
LUT1 ≤ F𝛼1,q1,n−p − kut 𝜁1

)
, (27)

whereΩut =
𝜍
q1s2e

(𝜆1)′ [𝛾1]−1 (𝜆1), 𝛾1 = A1
(
X′1X1

)−1 A′
1, 𝜁1 = (𝜆1)

′ [𝛾1]−1 (𝜆1) and kut =
𝜍
q1s2e

.

ii. The power of the RT,

πRT (𝜆) = P
(
LRT > F𝛼1,q1,n−p|Mn

)
= P

(
LRT2 > F𝛼2,q1,n−p −Ωrt

)
= 1 − P

(
LRT2 ≤ F𝛼2,q1,n−p −Ωrt

)
= 1 − P

(
LRT2 ≤ F𝛼2,q1,n−p − krt 𝜁1

)
(28)

whereΩrt =
𝜍
q1s2e

(𝜆1)′ [𝛾1]−1 (𝜆1), 𝛾1 = A1
(
X′1X1

)−1 A′
1, 𝜁1 = (𝜆1)′ [𝛾1]−1 (𝜆1) and krt =

𝜍
qs2rt

.

The power function of the PT is

𝜋PT (𝜆) = P
(
TPT > F𝛼3,q2,n−p|Mn

)
= 1 − P

(
LPT3 ≤ F𝛼3,q2,n−p − kpt𝜁2

)
, (29)

where kpt =
𝜍
q2s2e

and 𝜁2 = (𝜆2)′ [𝛾2]−1 (𝜆2) with 𝛾2 = A2
(
X′2X2

)−1 A′
2.

iii. Then the power of the PTT becomes,

𝜋PTT (𝜆) = P
(
LPT < F𝛼3,q2,n−p, LRT > F𝛼2,q2,n−p|Mn

)
+P

(
LPT ≥ F𝛼3,q2,n−p, LUT > F𝛼1,q2,n−p|Mn

)
= P [LPT < F𝛼3,q,n−s] P [LRT > F𝛼2,q,n−p] + d1r (a, b)

= [1 − P
(
LPT > F𝛼3,q2,n−p

)
] P

(
LRT > F𝛼2,q2,n−p

)
+ d1r (a, b) , (30)

where a = F𝛼3,q1,n−p −
𝜍
qs2e

(𝜆2)′ [𝛾pt]
−1

(𝜆2) = F𝛼3,q2,n−p − kpt𝜁2, and d1r (a, b) is bivariate F probability integral. The value of 𝜁1 and 𝜁2
depend on 𝜆1 and 𝜆2, respectively, and

d1r (a, b) = ∫
∞

a ∫
∞

b
f(FPT, FUT)dFPTdFUT

= 1 − ∫
b

0 ∫
a

0
f(FPT, FUT)dFPTdFUT, (31)

Pdf_Folio:108



S. Khan et al. / Journal of Statistical Theory and Applications 18(2) 103–112 109

with b = F𝛼1,q1,n−p − Ωut. The integral ∫
b

0 ∫
a

0
f
(
FPT, FUT

)
dFPTdFUT is the cdf of the correlated bivariate noncentral F (BNCF) distri-

bution of the UT and PT. Following Yunus and Khan [36], we define the pdf and cdf of the BNCF distribution as

f
(
y1, y2

)
=

(m
n

)m ⎡
⎢
⎢
⎣

(
1 − 𝜌2

)m+n
2

Γ (n/2)
⎤
⎥
⎥
⎦

∞
∑
j=0

∞
∑
r1=0

∞
∑
r2=0

[𝜌2j
(
m
n

)2j

Γ(m/2 + j)]

×
⎡
⎢
⎢
⎣

(
e−𝜃1/2 (𝜃1/2)r1

r1!

)⎛⎜⎜⎜⎝
(

m
n

)r1

Γ
(
m/2 + j + r1

)⎞⎟⎟⎟⎠
(
ym/2+j+r1−1
1

)⎤
⎥
⎥
⎦

×
⎡
⎢
⎢
⎣

(
e−𝜃2/2 (𝜃2/2)r2

r2!

)⎛⎜⎜⎜⎝
(

m
n

)r2

Γ
(
m/2 + j + r2

)⎞⎟⎟⎟⎠
(
ym/2+j+r2−1
2

)⎤
⎥
⎥
⎦

×Γ
(
qrj
)
[
(
1 − 𝜌2

)
+ m

n y1 +
m
n y2]

−
(
qrj

)
, and (32)

FY1,Y2
(a, b) = P (Y1 < a,Y2 < b) = ∫

a

0 ∫
b

0
f
(
y1, y2

)
dy1dy2. (33)

By setting a = b = d, Schuurmann et al. [37] presented the critical values of d for the probability table of multivariate F distribution.

From (30), it is clear that the cdf of the BNCF distribution involved in the expression of the power function of the PTT.

6.2. The Size of the Tests

The size of a test is the value of its power under the null hypothesis, H0. The size of the UT, RT, and PTT are given by

i. The size of the UT

𝛼UT = P
(
LUT > F𝛼1,q1,n−p|H0: A1𝛽1 = h1

)
= 1 − P

(
LUT1 ≤ F𝛼1,q1,n−p|H0: A1𝛽1 = h1

)
= 1 − P

(
LUT1 ≤ F𝛼1,q1,n−p

)
, (34)

ii. The size of the RT

𝛼RT = P
(
LRT > F𝛼2,q1,n−p|H0: A1𝛽1 = h1

)
= 1 − P

(
LRT2 ≤ F𝛼2,q1,n−p|H0: A1𝛽1 = h1

)
= 1 − P

(
LRT2 ≤ F𝛼2,q1,n−p − k2𝜁2

)
, (35)

where the value of 𝜁1 = 0 but 𝜁2 ≠ 0. The size of the PT is given by

𝛼PT (𝜆) = P
(
TPT > F𝛼3,q2,n−p|H0: A2𝛽2 = h2

)
= 1 − P

(
LPT3 ≤ F𝛼3,q2,n−p

)
and then (36)

iii. The size of the PTT

𝛼PTT = P
(
LPT ≤ a, LRT > d|H0

)
+ P

(
LPT > a, LUT > h|H0

)
= P

(
LPT ≤ a

)
P
(
LRT > d

)
+ d1r (a, h)

= [1 − P
(
LPT ≤ a

)
] P

(
LRT > d

)
+ d1r (a, h) , (37)

where h = F𝛼1,q1,n−p, d = F𝛼2,q1,n−p, and under H0 the value of a is F𝛼1,q1,n−p.
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Figure 1 Comparing power of three tests against 𝜁1 with selected values of 𝜌, 𝜁2, df, and noncentrality parameters.

7. ILLUSTRATIVE EXAMPLE

To compare the tests, the properties of the three tests are studied using simulated data. The R statistical package was used to gener-
ate data on Y and X. Using k = 3, three covariates

(
xj, j = 1, 2, 3

)
were generated from the U (0, 1) distribution. The error vector (e)

was generated from the N
(
𝜇 = 0, Σ = 𝜎2I3

)
distribution. For n = 100 random variates the dependent variable

(
y
)
was determined by

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3 + ei for i = 1, 2,⋯ , n.
The power functions of the tests are computed for k = 3, p = 4, r = 2, and s = 2 so that 𝛿1 = (𝛽0, 𝛽1), 𝛿2 = (𝛽2, 𝛽3), and 𝛼1 = 𝛼2 = 𝛼3 =
𝛼 = 0.05. Thus to compute the power of the tests, we fix the size to be 0.05 for all the tests. The power functions of the tests are calculated
using the formulas in (27), (28), and (30). Whereas the graphs for the size of the three tests are produced using formulas in (34), (35), and
(37). The power and size curves of the tests are shown in Figs. 1 and 2.

8. POWER AND SIZE COMPARISON

Figure 1 shows that the power of the UT does not depend on 𝜁2 and 𝜌, but it slowly increases as the value of 𝜁1 increases. The form of the
power curve of the UT is concave. For very small values of 𝜁1, near 0, the power curve of the UT slowly increases as 𝜁1 becomes larger. The
power of the UT reaches its minimum, around 0.05, for 𝜁1 = 0 and for any value of 𝜁2.
Like the power of the UT, the power of the RT increases as the values of 𝜁1 increases and reaches 1 for large values of 𝜁1 (see Fig. 1). The
power of the RT is greater, or equal to, than that of the UT for all values of 𝜁1 and/or 𝜁2. The RT achieves its minimum power, around 0.05,
for 𝜁1 = 0 and all values of 𝜁2 (see Fig. 1). The maximum power of the RT is 1 for reasonably larger values of 𝜁1.
The power of the PTT depends on the values of 𝜁1, 𝜁2, and 𝜌. The power of the RT and PTT increases as the values of 𝜁1 and 𝜁2 increase for
𝜌 = 0.9. For 𝜁2 = 5 and 𝜌 = 0.9, the power of the PTT increases as the value of 𝜈1 increases (see Fig. 1(d)), but not for 𝜌 = 0.1 and 𝜌 = 0.5.Pdf_Folio:110
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Figure 2 Comparison of size of three tests against 𝜁1 for selected values of 𝜌, 𝜁2, df, and noncentrality parameters.

Moreover, the power of the PTT is always larger than that of the UT and tends to be the same as that of the RT for large values of 𝜁1 (see
Fig. 1(d)). The minimum power of the PTT is around 0.07 for 𝜁1 = 0, and 𝜌 = 0.1, 0.5 (see Fig. 1(d)), and it decreases (close to RT) as the
value of 𝜁2 and 𝜈1 becomes larger.

From Fig. 2 or (34) it is evident that the size of the UT does not depend on 𝜁2. It is constant for all values of 𝜁1 and 𝜁2. Like the size of the
UT, the size of the RT is also constant for all values of 𝜁1 and 𝜁2. Moreover, the size of the RT is the same or larger than that of the UT for
all values of 𝜁2 and does not depend on 𝜌.
The size of the PTT increases as the values of 𝜈1 and 𝜁2 increase for 𝜌 = 0.9 (see Fig. 2(c) and 2(d)). But it decreases as the values of 𝜃1
increases (see Fig. 2(a) and 2(b)).

The size of the UT is 𝛼UT = 0.05 for all values of 𝜁1 and 𝜁2. The size of the RT, 𝛼RT ≥ 𝛼UT for all values of 𝜁2. The size of the PTT, 𝛼PTT ≥ 𝛼RT

for all values of 𝜁1, a2 and 𝜌.

9. CONCLUSION

The above analyses reveal that the UT has lower power than the RT. The power of the UT is also less than that of the PTT for all values of
𝜁1 and 𝜁2 and 𝜌. The size of the RT and PTT is larger or equal to that of the UT for all values of 𝜁1 and 𝜁2.
For smaller values of 𝜁1, the UT and RT have lower power than the PTT. But for larger values of 𝜁1 the RT has higher, or same, power than
the PTT and UT. Thus when the NSPI is reasonably accurate (i.e., 𝜁1 is small) the PTT over performs the UT and RT with higher power.

The UT has the smallest size among the three tests. But it also has the lowest power. The RT has the highest power and highest size. The
PTT achieves higher power than the UT and lower size than the RT. Thus in the face of uncertainty, if NSPI is reasonably close to the true
value of the parameters than the PTT is a better choice compared to UT and RT.Pdf_Folio:111
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