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ABSTRACT
In this paper, we investigate some new properties of the mean vitality function (MVF) of a random variable, proposed by A.
Toomaj, M. Doostparast, J. Stat. Theory Appl. 13 (2013), 189–195. Specifically, we explore properties of MVF and study under
what conditions the MVF of the first-order statistics can uniquely determines the parent distribution. We show that in all dis-
tributions the Weibull family, which is commonly used in several fields of applied probability, is characterized through the ratio
of the MVF of the first-order statistics to its expectation.
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1. INTRODUCTION

The notion of entropy as a measure of uncertainty, introduced by Shannon [1], has a fundamental importance in different areas such as
probability and statistics, financial analysis, engineering, and information theory; see, for example, Cover and Thomas [2]. For a continuous
random variable X with probability density function (pdf) f and cumulative distribution function (cdf) F, the differential entropy of X is
defined as H (X) = −E(log f (X)). Throughout this paper ‶ log″ stands for the natural logarithm. Recently Rao et al. [3] introduced an
alternate measure of uncertainty, called it cumulative residual entropy (CRE) and is used for measuring the residual uncertainty of a random
variable. For a nonnegative random variable X, the CRE is defined by

 (X) = − ∫
∞

0
F (x) log F (x) dx, (1)

where F (x) = 1 − F (x) stands for the reliability function. This measure, in general, is more stable since the distribution function is more
regular than the density function and has a lot of mathematical properties. The applications and other properties and some new version of
the mentionedmeasure can be found in Asadi and Zohrevand [4], Baratpour [5], Baratpour andHabibi rad [6], Navarro et al. [7], Psarrakos
and Navarro [8], Rao [9], and the references therein.

Let X be a random lifetime with cdf F.Moreover, let us suppose that F (t) = 0 for t < 0,with a finite moment. The mean residual life (MRL)
is defined as

m (t) = E
(
X − t|X > t

)
=

∫
∞

t
F (x)

F (t)
dx, (2)

where F (t) > 0 for t > 0. If F is absolutely continuous with the pdf f, then MRL can be rewritten as

m (t) =
∫
∞

t
xf (x)

F (t)
dx − t = v (t) − t, t > 0. (3)
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The function v (t) = E
(
X|X⟩t

)
=

∫
∞

t
xf (x)

F(t)
dx is known as the vitality function (VF) or life expectancy which introduced by Kupka and Loo

[10]. The VF and MRL play important roles in engineering reliability, biomedical science, and survival analyzes; see Kotz and Shanbhag
[11], Murari and Sujit [12], Ruiz and Navarro [13], and Bairamov et al. [14] and the references therein. It is worth mentioning that the rapid
ageing on average of a component needs to low vitality relatively, whereas high vitality implies relatively slow (or even possibly “negative”)
ageing during the time period. By using (3), Toomaj and Doostparat [15] defined a new measure which called it mean vitality function
(MVF) and defined as

E (v (X)) =  (X) + 𝜇, (4)

where  (X) is given in (1) and 𝜇 = E (X) denotes the expectation of a random variable. It is worth pointing out that the MVF expresses as
the sum of two terms, the CRE and the mean value of X. Hence to compute the MVF, one can compute the mentioned measures. Another
useful representation for the MVF is given as

E (v (X)) = ∫
∞

0
xf (x)𝜓

(
F (x)

)
dx,

where 𝜓 (v) = − log v, 0 < v < 1. Also, the probability integral transformation U = F (X) provides a useful expression as follows:

E (v (X)) = ∫
1

0
F
−1

(u)𝜓 (u) du = 𝜇E [𝜓 (ZF)] , (5)

where F
−1

(u) = sup {x ∶ F (x) ≥ u} and ZF has a pdf

hF (u) =
F
−1

(u)
𝜇 , 0 < u < 1.

It is worth pointing out that hF (u) = 0 if either u ≥ 1 or u ≤ 0 and it has a decreasing probability density function. The aim of the
present paper is to investigate some new properties of the MVF measure. Specifically, we provide some stochastic ordering properties and
characterization results.

2. MAIN RESULTS

First, we observe that MVF is shift and scale dependent under linear transformation. In other terms, E (v (X)) has the same properties of the
expectation of a random variable. First, we have the following lemma for CRE.

Lemma 2.1. Let a, b > 0. It holds that

 (aX + b) = a (X) . (6)

Proof . The result follows by noting that FaX+b (x) = F
(

x−b
a

)
, x ≥ 0, and using (1).

From (4), Lemma 2.1 and the properties of the expected value we have the following proposition.

Proposition 2.1. Let a, b > 0. It holds that

E (v (aX + b)) = aE (v (X)) + b. (7)

Let X⋆𝜃 be an absolutely continuous nonnegative random variable with survival function F
⋆
𝜃 (x) . The survival function of the proportional

hazard rate model with proportionality constant 𝜃 > 0, is defined as

F
⋆
𝜃 (x) = [F (x)]

𝜃
, x ≥ 0. (8)

For more details on the applications and properties of proportional hazards rate model, see, for example, Gupta et al. [16], Gupta et al. [17],
and Mudholkar et al. [18], and the references therein. In the next proposition, we provide an upper bound for the MVF of X⋆𝜃 depending
on E (v (x)) .Pdf_Folio:124
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Proposition 2.2. For n = 1, 2, …, we have

E
(
v
(
X⋆𝜃

))
≤ 𝜃 E (v (X)) if 𝜃 ≥ 1,

and the inequality being reversed if 0 < 𝜃 ≤ 1.
Proof. Recalling (1) and (8), we have

 (
X⋆𝜃

)
= −𝜃 ∫

∞

0
[F (x)]

𝜃
log F (x) dx.

Since [F (x)]
𝜃 ≤ F (x), when 𝜃 ≥ 1, we obtain

 (
X⋆𝜃

)
≤ 𝜃 (X) .

On the other hand, we obtain

E
(
X⋆𝜃

)
≤ E (X) ≤ 𝜃E (X) .

Hence representation (4) completes the proof. For 0 < 𝜃 ≤ 1, we have F (x) ≤ [F (x)]
𝜃

, and hence the desired result follows.

Hereafter, we obtain some stochastic ordering properties and characterization results of the MVF. For this purpose, we consider two abso-
lutely continuous nonnegative random variables X and Y with cdfs F and G and pdfs f and g, respectively. First, we recall that a random
variable X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y, if E [𝜙 (X)] ≤ E [𝜙 (Y)] for all increasing functions
𝜙 such that the expectations exist. A random variable X is said to be smaller than Y in the increasing convex order, denoted by X ≤icx Y, if
E [𝜙 (X)] ≤ E [𝜙 (Y)] for all increasing convex functions 𝜙 such that the expectations exist. A random variable X is said to be smaller than Y
in the convex order, denoted by X ≤cx Y, if E [𝜙 (X)] ≤ E [𝜙 (Y)] for all convex functions 𝜙 such that the expectations exist. Further proper-
ties and applications can be found in the book of Shaked and Shanthikumar [19]. Also, we recall the following definition given by Toomaj
and Doostparast [15].

Definition 2.1. A random variable X is said to be smaller than Y in the MVF, denoted by X ≤mvf Y, if E (v (X)) ≤ E (v (Y)) such that the
expectations exist.

It is worth pointing out that theMVF order is not a stochastic order in a strict sense, since it does not satisfy the antisymmetric property, that
is, X =mvf Y does not imply X =st Y. Note that from Corollary 2.2 of Toomaj and Doostparast [15] we have that X ≤st Y implies X ≤mvf Y.
Therefore, X ≤mvf Y can be seen as a necessary condition for X ≤st Y. Also, we show that X ≤mvf Y can be seen as a necessary condition for
X ≤icx Y as well. First, consider the following proposition.

Proposition 2.3. Let X be an absolutely continuous nonnegative random variable with  (X) < +∞. Then, we have

 (X) = E [g (X)] , (9)

where

g (x) = ∫
x

0
Λ (t) dt, x ≥ 0. (10)

Proof. From (1) and Fubini’s theorem, we obtain

 (X) = ∫
∞

0
[∫

∞

t
f (x) dx]Λ (t) dt = ∫

∞

0
f (x) [∫

x

0
Λ (t) dt] dx,

which immediately follows (9) by using (10).

The next proposition shows that the increasing convex order implies the CRE order.

Proposition 2.4. If X and Y are nonnegative random variables such that X ≤icx Y, then it holds that g (X) ≤icx g (Y) , where the function g (⋅)
is defined in Eq. (10). In particular, X ≤icx Y implies  (X) ≤  (Y) .
Proof . Since the function g (⋅) is an increasing convex function, it follows by Theorem 4.A.8. of Shaked and Shantikumar [19] that g (X) ≤icx
g (Y). In particular, recalling the definition of increasing convexorder, we have  (X) ≤  (Y).Pdf_Folio:125



126 A. Toomaj and A. Shirvani / Journal of Statistical Theory and Applications 18(2) 123–128

Proposition 2.5. Let X and Y be two nonnegative random variables with cdfs F and G, respectively. If X ≤icx Y, then X ≤mvf Y.
Proof. From Eq. (4), it is sufficient to prove that  (X) + E (X) ≤  (X) + E (X) . First, the condition X ≤icx Y, implies E (X) ≤ E (Y) due to
relation 4.A.2 of Shaked and Shanthikumar [19]. Also, Proposition 2.4 yields  (X) ≤  (Y) and hence the desired result follows.

Proposition 2.6. Let X and Y be two nonnegative random variables with cdfs F and G, respectively. Then

i. If X ≤cx Y, then X ≥mvf Y.
ii. If ZF ≤cx ZG, then X ≤mvf Y.

Proof. It is known that X ≤cx Y implies 𝜇 = E (X) = E (Y) . Now, since 𝜓 (v) is a decreasing function of v, hence the proof of (i) can be
obtained from Lemma 2.3 of Navarro and Rychlik [20], expression Eq. (5) and the definition of usual stochastic order. The proof of (ii) is
an immediate consequence of Eq. (5) and the definition of the convex order.

Proposition 2.7. Let X1∶n and Y1∶n be two lifetimes of series systems with i.i.d. components having the common cdfs F and G, respectively. If
X ≤mvf Y, then X1∶n ≤mvf Y1∶n.
Proof. Since X ≤mvf Y, from, we have

E (v (X)) − E (v (Y)) = ∫
1

0
𝜓 (u)

(
F
−1

(u) − G
−1

(u)
)
du ≤ 0. (11)

On the other hand, we have

E (v (X1∶n)) − E (v (Y1∶n)) = n ∫
1

0
un−1𝜓 (u)

(
F
−1

(u) − G
−1

(u)
)
du,

≤ n ∫
1

0
𝜓 (u)

(
F
−1

(u) − G
−1

(u)
)
du ≤ 0. (12)

The first inequality is obtained by noting that un−1 ≤ 1, 0 < u < 1, while the second inequality is obtained from Eq. (11).

Example 2.1.

Let us consider a Weibull distribution with survival function

F (x) = e−(𝜆x)𝛼 , x > 0,

where 𝛼 > 0, and 𝜆 > 0 are scale and shape parameters, respectively. It is easy to verify that (see Baratpour [5]), E (X) = 1
𝜆Γ

(
1+ 1

𝛼
)
and

 (X)= 1
𝛼𝜆Γ

(
1+ 1

𝛼
)
and hence we have

E (v (X)) = 𝛼 + 1
𝛼𝜆 Γ

(
1 + 1

𝛼
)
.

It is not hard to verify that

E (v (X1∶n)) =
𝛼 + 1

n
1
𝛼 𝛼𝜆

Γ
(
1 + 1

𝛼
)
.

On the other hand, we have E (X1∶n)= 1

n
1
𝛼 𝜆

Γ(1+ 1
𝛼
)
and thus

E (v (X1∶n))
E (X1∶n)

= 𝛼 + 1
𝛼 .

Therefore, it shows that in the Weibull family this ratio is constant for all n.

In the next theorem, we show that, in all distributions, only in Weibull distribution the ratio E(v(X1∶n))
E(X1∶n)

is constant analogue Theorem 2.1
of Baratpour [5]. First, we recall the following lemma due to Müntz-Szász Theorem (see Kamps [21]) which is used in the proofs of this
paper. Recently, many authors applied the Müntz-Szász Theorem giving characterization results by recurrence relations for moments of
order statistics; see for example Khan and Zia [22].Pdf_Folio:126
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Lemma 2.2. For any increasing sequence of positive integers {nj, j ≥ 1} , the sequence of polynomials {xnj } is complete on L (0, 1), if and only if,

+∞
∑
j=1

n−1
j = +∞, 0 < n1 < n2 < ⋯ .

Theorem 2.1. Let X1,⋯ ,Xn be n iid absolutely continuous nonnegative random variables with the common pdf f and cdf F. Then F belong
to Weibull family, if and only if

E (v (X1∶n))
E [X1∶n]

= k, k > 1, (13)

for all n = nj, j ≥ 1, such that
+∞
∑
j=1

n−1
j = +∞.

Proof. The necessity is trivial. Hence it remains to prove the sufficiency part. Since E (v (X1∶n)) =  (X1∶n)+ E (X1∶n) , hence it is sufficient
to prove that (X1∶n)

E[X1∶n]
= c, where c = k − 1, k > 1. Therefore, Theorem 2.1 of Baratpour [5] completes the proof.

In the next theorems, we characterize the distributions based on the MVF of the first-order statistics.

Proposition 2.8. Let X and Y be two nonnegative random variables with pdfs f (x) and g (x) and absolutely continuous cdfs F (x) and G (x) ,
respectively. Then F and G belong to the same family of distributions if and only if

E (v (X1∶n)) = E (v (Y1∶n)) ,

for n = nj, j ≥ 1 such that
∞
∑
j=1

n−1
j is infinite.

Proof .The necessity is trivial and hence it remains to prove the sufficiency part. By using the probability integral transformationU = F (X) ,
we have

E (v (X1∶n)) = n ∫
1

0
F
−1

(u) un−1𝜓 (u) du.

For E (v (Y1∶n)) can be obtain in a similar way. Since E (v (X1∶n)) = E (v (Y1∶n)) , we obtain

∫
1

0
un−1𝜓 (u) [F

−1
(u) − G

−1
(u)] du = 0. (14)

If Eq. (14) holds for n = nj, j ≥ 1, such that
∞
∑
j=1

n−1
j = ∞, then from Lemma 2.2 we can conclude that F

−1
(u) = G

−1
(u) , 0 < v < 1, and

this completes the proof.

Proposition 2.9. Let X and Y be two nonnegative random variables with pdfs f (x) and g (x) and absolutely continuous cdfs F (x) and G (x) ,
respectively. Then F and G belong to the same family of distributions, but for a change in location, if and only if

E (v (X1∶n))
E [X] = E (v (Y1∶n))

E [Y] , (15)

for n = nj, j ≥ 1 such that
∞
∑
j=1

n−1
j is infinite.

Proof .The necessity is trivial and hence it remains to prove the sufficiency part. By using Eq. (4) it is sufficient to prove that (X1∶n)
E[X]

= (Y1∶n)
E[Y]

.
We have

 (X1∶n)
E [X] =

∫
1

0
un𝜓 (u) /f

(
F
−1

(u)
)
du

∫
1

0
F
−1

(u) du
.

Pdf_Folio:127
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If Eq. (15) holds, then we get

∫
1

0
un𝜓 (u) /f

(
F
−1

(u)
)
du

∫
1

0
F
−1

(u) du
=

∫
1

0
un𝜓 (u) /g

(
G
−1

(u)
)
du

∫
1

0
G
−1

(u) du
. (16)

Let us suppose that c = ∫
1

0
G
−1

(u) du/ ∫
1

0
F
−1

(u) du, then Eq. (16) can be expressed as

∫
1

0
un𝜓 (u)

⎛⎜⎜⎜⎝
1

f
(
F
−1

(u)
) − 1

cg
(
G
−1

(u)
)⎞⎟⎟⎟⎠ du = 0. (17)

If Eq. (17) holds for n = nj, j ≥ 1, such that
∞
∑
j=1

n−1
j = ∞, then from Lemma 2.2 we can conclude that f

(
F
−1

(u)
)
= cg

(
G
−1

(u)
)
, 0 <

v < 1, and hence it follows that F−1
(u) = G

−1
(u)+ d. Since X and Y have a common support [0, +∞] , we can conclude that d = 0, which

means that F and G belong to the same family of distributions, but for a change in scale.

3. CONCLUSIONS

Some new properties of theMVF are investigated. It is explored that under what conditions theMVF of the first-order statistics can uniquely
determines the parent distribution. It is shown that theWeibull family is characterized through ratio of the MVF of the first-order statistics
to its expectation.
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