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ABSTRACT
In the present paper, we first consider a generalization of the standard two-sided power distribution so-called the transmuted
two-sided distribution, and then extend proposed idea to generalized two-sided class of distributions, introduced by Korkmaz
and Genç [1]. Some statistical and reliability properties including explicit expressions for quantiles, hazard rate function, order
statistics, and maximum likelihood estimation are obtained in general setting. Generalized transmuted two-sided exponential
distribution is considered as a especial case and denoted with the name TTSG−G. A simulation study is presented to investigate
the bias andmean square error of themaximum likelihood estimators.We use a real data set and obtain themaximum likelihood
and parametric bootstrap estimator of the parameters of TTSG − G distribution. Finally, the superiority of the new model to
some common statistical distributions is shown through the different criteria of selectionmodel including log-likelihood values,
Akaike information criterion, and Kolmogorov–Smirnov test statistic values.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The statistical distribution theory has been widely explored by researchers in recent years. Given the fact that the data from our surrounding
environment follow various statistical models, it is necessary to extract and develop appropriate high-quality models. One of the most
important models in the statistical theory is the change point models. In the distribution theory, the change point distributions are used in
the different branch of sciences such as economic, engineering, agriculture, and so on. Van Dorp and Kotz [2] introduced a family of the
change point distributions so-called two-sided power (TSP) distribution with the probability density function (pdf),

f (x; 𝛼, 𝛽) =
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⎩
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(
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(2)

where 0 ≤ 𝛽 ≤ 1 and 𝛼 > 0. The parameter 𝛽 is the location parameter called “turning point” and 𝛼 is the shape parameter that control the
shape of distribution on the left and right of 𝛽.
The TSP distribution for 𝛼 > 3 can be used for modeling unimodal phenomena on a bounded domain when a peak in data is observed. Van
Dorp and Kotz [3] introduced an extension of the three-parameter triangular distribution utilized in risk analysis. Their model includes the
TSP distribution as a special case. VanDorp andKotz [4] considered a family of continuous distributions on a bounded interval generated by
convolutions of theTSP distributions. In recent years, a number of researchers have studied some generalization of theTSP distribution such
as Nadarajah [5], Oruç and Bairamov [6], Vicari et al. [7], Herrerías-Velasco et al. [8], and Soltani and Homei [9]. Korkmaz and Genç [10]
proposed a new generalization of Weibull distribution by making use of a transformation of the standard TSP distribution. Also, Korkmaz
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and Genç [11] considered the log transformation of the TSP distribution instead of uniform distribution and introduced a generalization
of the exponential distribution. Korkmaz and Genç [1] extended the idea of two-sidedness to other ordinary distributions like normal and
introduced the two-sided generalized normal distribution.

One of the interesting methods for constructing new distributions is the transmutation map approach. Recently, some new distributions
have been generalized based on the transmutation method. The transmuted distribution based on the G (x) is defined as

H (x) = (1 + 𝜆)G (x) − 𝜆 [G (x)]2 , |𝜆| ≤ 1, (3)

where G (x) is the cdf of the parent distribution.

Aryal and Tsokos [12] generated a flexible family of probability distributions taking extreme value distribution as the base value distribution
by using the quadratic rank transmutation map (QRTM). Aryal and Tsokos [13] generalized the two-parameter Weibull distribution using
the QRTM. Aryal [14] introduced a generalization of the log-logistic distribution so-called the transmuted log-logistic distribution. Abd El
Hady [15] introduced a new generalization of the two-parameter Weibull distribution by using the QRTM. This new distribution is named
exponentiated transmutedWeibull (ETW) distribution. Elgarhy and Shawki [16] introduced a new generalized version of the quasi Lindley
distribution which is called the transmuted generalized quasi Lindley (TGQL) distribution.

The transmutation method, as an important method for developing statistical distributions, hasn’t been used for the change point distribu-
tions, yet. The main motivation of the present paper is to apply the transmutation technique for increasing the flexibility and usefulness of
the TSP distribution and generalized TSP class of distributions.

This paper organized as follows. In Section 2, we introduce a new distribution so-called transmuted two-sided distribution. In Section 3, we
propose a generalization of the transmuted two-sided distribution and consider the hazard function, quantiles, and order statistics of this
distribution.We consider the exponential distribution as a parent distribution and introduce transmuted two-sided generalized exponential
(TSGE) distribution, in Section 4. In this section, we plot the shape of density function and hazard function. In Section 5, the estimation of
parameters of the generalized transmuted two-sided distribution are obtained by using twomethodsmaximum likelihood estimation (MLE)
and bootstrap estimation. Also, we study the performance of MLEs of parameters of the transmuted TSGE distribution via a simulation
study. In Section 6, the superiority of new model to some competitor statistical models is shown through the different criteria of selection
model. Finally, the paper is concluded in Section 7.

2. TRANSMUTED TWO-SIDED DISTRIBUTION

In this section, we introduce the transmuted two-sided distribution and then we consider its shape for different values of parameters. The
main motivation for introducing this new family is to provide the more flexibility for the TSP distribution by compounding two-sided
distributions family and transmutation map approach.

Let the random variable X1 have a beta distribution with pdf,

fX1
(x) = ax𝛼−1, 0 < x < 1, 𝛼 > 0.

Assume that X be a random variable associated with the truncated X1 on the right at 𝛽, as

X
d= X1|0 < X1 ≤ 𝛽,

where
d= denotes identically distributed. The cdf of the random variable X is given by

FX (x) =
(
a
𝛽

)𝛼
, 0 < x ≤ 𝛽, 𝛼 > 0. (4)

Using Eqs. (3) and (4) the pdf of the transmuted truncated beta distribution is given by

h (x) = (1 + 𝜆) fX (x) − 2𝜆fX (x) FX (x)

= (1 + 𝜆) 𝛼𝛽

(
x
𝛽

)𝛼−1

− 2𝜆𝛼𝛽

(
x
𝛽

)2𝛼−1

, 0 < x ≤ 𝛽. (5)

Now, suppose that Z be a random variable with the density function h (x). By defining

Y = 1 − 1 − 𝛽
𝛽 Z,
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the pd f of Y is given by

hY
(
y
)
= 𝛼

1 − 𝛽

(
(1 + 𝜆)

(
1 − y
1 − 𝛽

)𝛼−1

− 2𝜆
(
1 − y
1 − 𝛽

)2𝛼−1)
, 𝛽 ≤ y < 1. (6)

According to relations Eqs. (5) and (6), a new distribution is defined by

f (x; 𝛼, 𝛽, 𝜆) = {𝛽h (x) , 0 < x ≤ 𝛽,
(1 − 𝛽) hY (x) , 𝛽 ≤ x < 1. (7)

So, based on Eq. (7), we have the following definition.

Definition 2.1. A random variable X is said to be transmuted two-sided distribution if its pdf is given by
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(8)

and its cdf is given by

F (x; 𝛼, 𝛽, 𝜆) =
⎧
⎪
⎨
⎪
⎩
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(
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(
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(
1 − x
1 − 𝛽
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− 𝜆

(
1 − x
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)2𝛼)
, 𝛽 ≤ x < 1,

(9)

where, 𝛼 is a shape parameter, 𝛽 is a scale parameter, and 𝜆 is a transmuted parameter.
We denote the transmuted two-sided distribution by TTS (𝛼, 𝛽, 𝜆).
Remark 2.1. If 𝜆 = 0, we have the pdf and cdf of TSP distribution in Eqs. (1) and (2), respectively.

2.1. Density Shape of the TTS Distribution

Here, we consider a discussion about the shape of the proposed density function. In the end points of the support, the behaviour of the pdf
Eq. (8) is given as follows:

lim
x→0,1

f (x; 𝛼, 𝛽, 𝜆) =
⎧
⎨
⎩

∞, 𝛼 < 1,
1 + 𝜆, 𝛼 = 1,
0, 𝛼 > 1.

The derivative f ′ (x; 𝛼, 𝛽, 𝜆) is

f ′ (x; 𝛼, 𝛽, 𝜆) =
⎧⎪
⎨⎪
⎩

𝛼𝛽
x2

(
x
𝛽

)𝛼
[(−4𝛼 + 2) 𝜆

(
x
𝛽

)𝛼
+ (1 + 𝜆) (𝛼 − 1)] , 0 < x ≤ 𝛽,

𝛼 (𝛽 − 1)
(x − 1)2

(
1 − x
1 − 𝛽

)𝛼
[(−4𝛼 + 2) 𝜆

(
1 − x
1 − 𝛽

)𝛼
+ (1 + 𝜆) (𝛼 − 1)] , 𝛽 ≤ x < 1.

The right- and left-hand limits of f ′ at x = 𝛽 are given by

lim
x→𝛽+

f ′ (x; 𝛼, 𝛽, 𝜆) = 𝛼2 (1 − 3𝜆) + 𝛼 (𝜆 − 1)
𝛽 ,

lim
x→𝛽−

f ′ (x; 𝛼, 𝛽, 𝜆) = 𝛼2 (1 − 3𝜆) + 𝛼 (𝜆 − 1)
𝛽 − 1

.

These limits are different. So, f ′ (𝛽) does not exist and f has a corner at x = 𝛽.

When 𝛼 > 1, 𝜆 > 0, and 0 < x ≤ 𝛽, if f ′ (x) = 0 then x1 = 𝛽
( (1+𝜆)(𝛼−1)

(4𝛼−2)𝜆

)1/𝛼
and when 𝛼 > 1, 𝜆 > 0, and 𝛽 ≤ x < 1, if f ′ (x) = 0 then

x2 = 1+ (𝛽 − 1)
( (1+𝜆)(𝛼−1)

(4𝛼−2)𝜆

)1/𝛼
. So, when 𝛼 > 1 and 𝜆 > 0, the maximum of f occurs at points x1 and x2. It implies when 𝛼 > 1 and 𝜆 > 0,

f is a bimodal pdf.Pdf_Folio:3
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When 𝛼 ≥ 1, 𝜆 ≤ 0, and 0 < x ≤ 𝛽, we have f ′ (x) > 0 and when 𝛼 ≥ 1, 𝜆 ≤ 0, and 𝛽 ≤ x < 1, we have f ′ (x) < 0. So, for 𝛼 ≥ 1, 𝜆 ≤ 0, f is
a unimodal pdf. The density shapes of the TTS distribution for different choices of the parameters are plotted in Fig. 1.
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Figure 1 The graphs of the densities of the distribution.

3. TRANSMUTED TWO-SIDED GENERALIZED-G FAMILY OF THE DISTRIBUTIONS

Consider a continuous random variable with cdf G
(
x; 𝜉

)
and pdf g

(
x; 𝜉

)
. Using Definition 2.1, we define a generalization of the transmuted

two-sided distribution as follows:

Definition 3.1. A random variable X is said to be transmuted two-sided generalized-G (TSG-G) distribution if its pdf is given by

f
(
x; 𝛼, 𝛽, 𝜆, 𝜉

)
=

⎧⎪⎪
⎨
⎪⎪
⎩
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(
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𝛽

)𝛼−1
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(
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)
𝛽

)2𝛼−1⎞⎟⎟⎠ , −∞ < x ≤ G−1
(x;𝜉) (𝛽) ,

𝛼g
(
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) ⎛⎜⎜⎝(1 + 𝜆)
(
1 − G

(
x; 𝜉

)
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(
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(
x; 𝜉

)
1 − 𝛽

)2𝛼−1⎞⎟⎟⎠ , G−1
(x;𝜉) (𝛽) ≤ x < ∞,

and its cdf is given by

F
(
x; 𝛼, 𝛽, 𝜆, 𝜉

)
=

⎧⎪⎪
⎨
⎪⎪
⎩
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(
G
(
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(
G
(
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(x;𝜉) (𝛽) ,

1 − (1 − 𝛽)
⎛⎜⎜⎝(1 + 𝜆)

(
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(
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)
1 − 𝛽

)𝛼

− 𝜆
(
1 − G

(
x; 𝜉

)
1 − 𝛽

)2𝛼⎞⎟⎟⎠ , G−1
(x;𝜉) (𝛽) ≤ x < ∞,

where, −∞ < x < ∞, 𝜉 is a parameter vector in the cdf G
(
x; 𝜉

)
and G−1

(x;𝜉) (.) is its inverse.

We denote transmuted TSG-G family of distributions by TTSG − G
(
𝛼, 𝛽, 𝜆, 𝜉

)
.
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Remark 3.1. If 𝜆 = 0, we have the pdf and cdf of the TSG-G family introduced by Korkmaz and Genç [1]. If 𝛼 = 1, 𝛽 = 1, and 𝜆 = 0, we
have the pdf of the base distribution.

In the next subsections, we study hazard function, random variate generation, order statistics and relative entropy of the TTSG − G
distribution.

3.1. Hazard Function

The hazard rate is a fundamental tools in reliability modelling for evaluation the ageing process. Knowing the shape of the hazard rate is
important in reliability theory, risk analysis, and other disciplines. The concepts of increasing, decreasing, bathtub-shaped (first decreasing
and then increasing) and upside-down bathtub-shaped (first increasing and then decreasing) hazard rate functions are very useful in relia-
bility analysis. The lifetime distributions with these ageing properties are designated as the increasing failure rate (IFR), decreasing failure
rate (DFR), bathtub-shape (BUT), and upside-down bathtub-shaped (UBT) distributions, respectively. The hazard function of the TTSG-G
distribution is given by

r (x) = f (x)
1 − F (x)

=

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

𝛼g
(
x; 𝜉

)(
(1 + 𝜆)

(
G(x;𝜉)
𝛽

)𝛼−1
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(
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𝛽

)2𝛼−1)
1−𝛽

(
(1 + 𝜆)

(
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𝛽

)𝛼
−𝜆

(
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𝛽

)2𝛼) , −∞ < x ≤ G−1
(x;𝜉) (𝛽) ,

𝛼g
(
x; 𝜉

)(
(1 + 𝜆)

(
1−G(x;𝜉)

1−𝛽

)𝛼−1
− 2𝜆

(
1−G(x;𝜉)

1−𝛽

)2𝛼−1)
(1 − 𝛽)

(
(1 + 𝜆)

(
1−G(x;𝜉)

1−𝛽

)𝛼
−𝜆

(
1−G(x;𝜉)

1−𝛽

)2𝛼) , G−1
(x;𝜉) (𝛽) ≤ x < ∞.

3.2. Random Variate Generation

For generating random variables from the TTSG−G distribution, we use the inverse transformation method. The quantile of order q of the
TTSG − G distribution is

xq = F−1 (q; 𝛼, 𝛽, 𝜆, 𝜉) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

G−1
(x;𝜉)

⎡⎢⎢⎢⎢
⎣

𝛽
⎛⎜⎜⎜⎝
1+𝜆−√(1 + 𝜆)2− 4𝜆q

𝛽
2𝜆

⎞⎟⎟⎟⎠
1
𝛼 ⎤⎥⎥⎥⎥
⎦

, 0 < q ≤ 𝛽,

G−1
(x;𝜉)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − (1 − 𝛽)

⎛⎜⎜⎜⎜⎝
1+𝜆−√(1 + 𝜆)2− 4𝜆(1−q)

1−𝛽

2𝜆

⎞⎟⎟⎟⎟⎠

1
𝛼 ⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝛽 ≤ q < 1.

Let U be a random variable generated from a uniform distribution on (0, 1), then

X =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

G−1
(x;𝜉)

⎡⎢⎢⎢⎢
⎣

𝛽
⎛⎜⎜⎜⎝
1+𝜆−√(1 + 𝜆)2− 4𝜆U

𝛽
2𝜆

⎞⎟⎟⎟⎠
1
𝛼 ⎤⎥⎥⎥⎥
⎦

, 0 < U ≤ 𝛽,

G−1
(x;𝜉)

⎡⎢⎢⎢⎢
⎣

1 − (1 − 𝛽)
⎛⎜⎜⎜⎝
1+𝜆−√(1 + 𝜆)2− 4𝜆(1−U)

1−𝛽
2𝜆

⎞⎟⎟⎟⎠
1
𝛼 ⎤⎥⎥⎥⎥
⎦

, 𝛽 ≤ U < 1,

is a random variable generated from the TTSG − G distribution by the probability integral transform.

3.3. Order Statistics

Order statistics play a vital role in the theory of probability and statistics. Let X1,X2, … ,Xn be a random sample from the TTSG-G distribu-
tion. Let Xi∶n denote the ith order statistics. Then the pdf of Xi∶n is given by
Pdf_Folio:5
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fi∶n (x) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

n−i

∑
t1=0

i−1+t1
∑
t2=0

(
n − i
t1

)(
i − 1 + t1

t2

)
(−1)t1 (−𝜆)i−1+t1−t2 (1 + 𝜆)t2 𝛽i−1+t1

× g
(
x; 𝜉

) ⎛⎜⎜⎝(1 + 𝜆)
(
G
(
x; 𝜉

)
𝛽

)𝛼(2i+2t1−t2−1)−1

− 2𝜆
(
G
(
x; 𝜉

)
𝛽

)𝛼(2i+2t1−t2)−1⎞⎟⎟⎠ , x ≤ G−1
(x,;𝜉) (𝛽) ,

i−1

∑
t1=0

n−t1−1

∑
t2=0

(
i − 1
t1

)(
n − t1 − 1
t2

)
(−1)i−1−t1 (−𝜆)n−t1−t2−1 (1 + 𝜆)t2 (1 − 𝛽)n−t1−1

× g
(
x; 𝜉

) ⎛⎜⎜⎝(1 + 𝜆)
(
1 − G

(
x; 𝜉

)
1 − 𝛽

)𝛼(2n−2t1−t2−1)−1

− 2𝜆
(
1 − G

(
x; 𝜉

)
1 − 𝛽

)𝛼(2n−2t1−t2)−1⎞⎟⎟⎠ , G−1
(x;𝜉) (𝛽) ≤ x,

where A=

3.4. Kullback Leibler Divergence

The Kullback–Leibler divergence (or relative entropy) is an informational measure for comparing the similarity between two pdfs. The
Kullback–Leibler divergence between the proposed distribution TTSG−G and the TSG−G distribution, introduced by Korkmaz and Genç
[1], is obtained as

Kl
(
fTTSG−G|| fTSG−G

)
= ∫

∞

−∞
fTTSG−G (x) log

fTTSG−G(x)
fTSG−G(x)

dx

= ∫
1

0
(1 + 𝜆 − 2𝜆u) log(1 + 𝜆 − 2𝜆u)du

= − (1 − 𝜆)2 log (1 − 𝜆) + (1 + 𝜆)2 log (1 + 𝜆) − 2𝜆
4𝜆 . (10)

On the other hand, if U be a uniform random variable on (0, 1) then the corresponding transmuted distribution is given as

fU (u) = 1 + 𝜆 − 2𝜆u, 0 < u < 1.

The Shannon entropy of transmuted uniform distribution is computed by

H (U) = − ∫
1

0
fU(u) log fU(u)du

= − ∫
1

0
(1 + 𝜆 − 2𝜆u) log(1 + 𝜆 − 2𝜆u)du

= −− (1 − 𝜆)2 log (1 − 𝜆) + (1 + 𝜆)2 log (1 + 𝜆) − 2𝜆
4𝜆 . (11)

From the relations, Eqs. (10) and (11) we see that the Kullback–Leibler divergence between the TTSG-G and the TSG-G distributions is
equal to −H (U). So, this informational measure is free of the parent distribution G.

4. TRANSMUTED TSGE DISTRIBUTION

The TTSG-G distribution is specialized by taking G as the well-known distribution. We suppose that the base distribution G has an expo-
nential distribution with cdf and inverse cdf function G (x; 𝜃) = 1 − e−

x
𝜃 , x > 0, 𝜃 > 0 and G−1 (x; 𝜃) = −𝜃 log (1 − x), respectively.

Pdf_Folio:6
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The pdf of the parent distribution is g (x; 𝜃) = 1
𝜃 e

− x
𝜃 . By considering this distribution, the pdf of the TTSG-G distribution can be given as

f (x; 𝛼, 𝛽, 𝜆, 𝜃) =

⎧
⎪⎪
⎨
⎪⎪
⎩

𝛼 1𝜃 e
− x
𝜃
⎛⎜⎜⎝(1 + 𝜆)

(
1 − e−

x
𝜃

𝛽

)𝛼−1

− 2𝜆
(
1 − e−

x
𝜃

𝛽

)2𝛼−1⎞⎟⎟⎠ , 0 < x ≤ −𝜃 log (1 − 𝛽) ,

𝛼 1𝜃 e
− x
𝜃
⎛⎜⎜⎝(1 + 𝜆)

(
e−

x
𝜃

1 − 𝛽

)𝛼−1

− 2𝜆
(

e−
x
𝜃

1 − 𝛽

)2𝛼−1⎞⎟⎟⎠ , −𝜃 log (1 − 𝛽) ≤ x < ∞,

and its cdf is given by

F (x; 𝛼, 𝛽, 𝜆, 𝜃) =

⎧
⎪⎪
⎨
⎪⎪
⎩

𝛽
⎛⎜⎜⎝(1 + 𝜆)

(
1 − e−

x
𝜃

𝛽

)𝛼

− 𝜆
(
1 − e−

x
𝜃

𝛽

)2𝛼⎞⎟⎟⎠ , 0 < x ≤ −𝜃 log (1 − 𝛽) ,

1 − (1 − 𝛽)
⎛⎜⎜⎝(1 + 𝜆)

(
e−

x
𝜃

1 − 𝛽

)𝛼

− 𝜆
(

e−
x
𝜃

1 − 𝛽

)2𝛼⎞⎟⎟⎠ , −𝜃 log (1 − 𝛽) ≤ x < ∞.

We call this distribution the transmuted TSGE distribution and denote by TTSG − E (𝛼, 𝛽, 𝜆, 𝜃).
Remark 3.1. If 𝜆 = 0, we have the pdf and cdf of the TSGE distribution introduced by Korkmaz and Genç [11]. If 𝛼 = 1, 𝛽 = 1 and 𝜆 = 0,
we have the pdf of the base distribution.

4.1. Density Shape of the TTSG— E Distribution

In the end points of the support, the behaviour of the pdf of the TTSG − E distribution is given as follows:

lim
x→0

f (x; 𝛼, 𝛽, 𝜆, 𝜃) =
⎧⎪
⎨⎪
⎩

∞, 𝛼 < 1,
1 + 𝜆
𝜃 , 𝛼 = 1, lim

x→∞
f (x; 𝛼, 𝛽, 𝜆, 𝜃) = 0, ∀𝛼 > 0.

0, 𝛼 > 1,

The derivative f ′ (x; 𝛼, 𝛽, 𝜆, 𝜃) is

f ′ (x; 𝛼, 𝛽, 𝜆, 𝜃) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

𝛼
(
1 − e−

x
𝜃
)𝛼−2

e−
x
𝜃

𝜃2𝛽𝛼−1 [
(
2𝜆 − 4𝜆𝛼e−

x
𝜃
)(

1 − e−
x
𝜃

𝛽

)
+[(1 + 𝜆)

(
𝛼e−

x
𝜃 − 1

)
] , 0 < x ≤ −𝜃 log (1 − 𝛽) ,

𝛼2
(
e−

x
𝜃
)𝛼

𝜃2(1 − 𝛽)𝛼−1 [4𝜆
(

e−
x
𝜃

1 − 𝛽

)𝛼

− 𝜆 − 1] , −𝜃 log (1 − 𝛽) ≤ x < ∞.

The right- and left-hand limits of f ′ at x = −𝜃 log (1 − 𝛽) are given by

lim
x→−𝜃 log (1−𝛽)+

f ′ (x; 𝛼, 𝛽, 𝜆, 𝜃) = 𝛼 (1 − 𝛽)
𝜃2𝛽 (𝛼 (𝛽 − 1) (3𝜆 − 1) + 𝜆 − 1) ,

lim
x→−𝜃 log (1−𝛽)−

f ′ (x; 𝛼, 𝛽, 𝜆, 𝜃) = 𝛼2 (1 − 𝛽) (3𝜆 − 1)
𝜃2 .

These limits are not equal. So, f ′
(
−𝜃 log (1 − 𝛽)

)
does not exit and the TTSG−E distribution has a corner at x = −𝜃 log (1 − 𝛽). The shape

of the TTSG − E distribution for different values of the parameters are plotted in Figs. 2 and 3. Figures 2 and 3 indicate that for 𝛼 > 1 and
𝜆 > 0, the TTSG− E distribution is a bimodal distribution and for 𝛼 ≥ 1 and 𝜆 ≤ 0, the TTSG− E distribution is a unimodal distribution.

In the next section, we consider the hazard shape of the TTSG − E distribution.Pdf_Folio:7
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Figure 2 The graphs of the densities of the TTSG E distribution with 0 ≤ 𝜆 ≤ 1.

4.2. Hazard Function of the TTSG— E Distribution

The hazard function of the TTSG − E distribution is

r (x) = f (x; 𝛼, 𝛽, 𝜆, 𝜃)
1 − F (x; 𝛼, 𝛽, 𝜆, 𝜃)

=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝛼 1
𝜃 e

− x
𝜃
⎛⎜⎜⎝(1 + 𝜆)

(
1−e

−
x
𝜃

𝛽

)𝛼−1

− 2𝜆
(

1−e
−
x
𝜃

𝛽

)2𝛼−1⎞⎟⎟⎠
1−𝛽

⎛⎜⎜⎝(1 + 𝜆)
(

1−e
−
x
𝜃

𝛽

)𝛼

−𝜆
(

1−e
−
x
𝜃

𝛽

)2𝛼⎞⎟⎟⎠
, 0 < x ≤ −𝜃 log (1 − 𝛽) ,

𝛼 1
𝜃 e

− x
𝜃
⎛⎜⎜⎝(1 + 𝜆)

(
e
−
x
𝜃

1−𝛽

)𝛼−1

− 2𝜆
(

e
−
x
𝜃

1−𝛽

)2𝛼−1⎞⎟⎟⎠
(1 − 𝛽)

⎛⎜⎜⎝(1 + 𝜆)
(

e
−
x
𝜃

1−𝛽

)𝛼

−𝜆
(

e
−
x
𝜃

1−𝛽

)2𝛼⎞⎟⎟⎠
, −𝜃 log (1 − 𝛽) ≤ x < ∞.

Because of complicated form of the hazard function, we couldn’t explore this function analytically. We only consider the end points of the
support. The behaviour of the hazard function in the end points is given as follows:

lim
x→0

r (x) =
⎧⎪
⎨⎪
⎩

∞, 𝛼 < 1,
1 + 𝜆
𝜃 , 𝛼 = 1, lim

x→∞
r (x) = 𝛼

𝜃 , ∀𝛼 > 0.

0, 𝛼 > 1,

Some shapes of the hazard function for the selected values of parameters is given in Figs. 4 and 5. Figures 4 and 5 show that the hazard rate
function of the TTSG − E distribution can be IFR, DFR, BUT, and UBT.
Pdf_Folio:8
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Figure 3 The graphs of the densities of the TTSG E distribution with −1 ≤ 𝜆 ≤ 0.

5. ESTIMATION OF THE PARAMETERS OF THE TTSG—G DISTRIBUTION

In this section, we obtain the estimation of parameters the TTSG − G distribution by using two methods: MLE and bootstrap estimation.
Also, a simulation study is conducted for MLEs of parameters of the TTSG − E distribution.

5.1. Maximum Likelihood Estimation

Let X1,X2, … ,Xn be a random sample of size n from the TTSG − G distribution and X1∶n ≤ X2∶n ≤ … ≤ Xn∶n denote the corresponding
order statistics. The log-likelihood function is given by

ℓ
(
𝛼, 𝛽, 𝜆, 𝜉

)
= n log𝛼 +

n

∑
i=1

log
(
g
(
xi; 𝜉

))
+ log {

r

∏
i=1

⎛⎜⎜⎝(1 + 𝜆)
(
G
(
xi∶n; 𝜉

)
𝛽

)𝛼−1

− 2𝜆
(
G
(
xi∶n; 𝜉

)
𝛽

)2𝛼−1⎞⎟⎟⎠
×

n

∏
i=r+1

⎛⎜⎜⎝(1 + 𝜆)
(
1 − G

(
xi∶n; 𝜉

)
1 − 𝛽

)𝛼−1

− 2𝜆
(
1 − G

(
xi∶n; 𝜉

)
1 − 𝛽

)2𝛼−1⎞⎟⎟⎠} ,
where xr∶n ≤ G−1

(x;𝜉) (𝛽) < xr+1∶n for r = 1, 2, … , n and X0∶n = −∞, Xn+1∶n = ∞.

Pdf_Folio:9
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For estimating the parameters, we obtain the partial derivatives of the log-likelihood function with respect to the parameters. At the corner
point 𝛽, the log-likelihood function for the TTSG−G distribution is not differentiable and we can not find the estimate of 𝛽 in a regular
way. According to Van Dorp and Kotz [2], we can find theMLE of parameters. We first consider theMLEs of 𝛼 and 𝛽 when the parameters
𝜆 and 𝜉 are known. Without loss of generality, we assume that 𝜆 = 0. So, the log-likelihood function will be
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Figure 4 The graphs of the hazard function of the TTSG E distribution with 0 ≤ 𝜆 ≤ 1.

ℓ
(
𝛼, 𝛽, 𝜆, 𝜉

)
= n log𝛼 +

n

∑
i=1

log
(
g(xi); 𝜉

)
+ log {

r

∏
i=1

(
G(xi∶n; 𝜉)

𝛽

)𝛼−1 n

∏
i=r+1

(
1 − G(xi∶n; 𝜉)

1 − 𝛽

)𝛼−1

}

= n log𝛼 +
n

∑
i=1

log
(
g(xi; 𝜉)

)
+ (𝛼 − 1) log {

∏r
i=1 G

(
xi∶n; 𝜉

)
∏n

i=r+1

(
1 − G

(
xi∶n; 𝜉

))
𝛽r (1 − 𝛽)n−r } .

According to Van Dorp and Kotz [2] and Korkmaz and Genç [1], theMLEs of 𝛼 and 𝛽 are as follows:

�̂� = − n
logM

(
̂r, 𝜉
) , ̂𝛽 = G

(
x ̂r∶n; 𝜉

)
,

where ̂r = argmaxM
(
r, 𝜉

)
, r ∈ {1, 2, … , n} withM

(
r, 𝜉

)
=∏r−1

i=1
G(xi∶n;𝜉)
G(xr∶n;𝜉)

∏n
r+1

1−G(xi∶n;𝜉)
1−G(xr∶n;𝜉)

.

By taking the derivative of the log-likelihood function with respect to parameter vector 𝜉 and parameter 𝜆, theMLEs of parameters 𝜉 and
𝜆 are obtained by equating it to zero. These derivatives are given as

𝜕ℓ
(
𝛼, 𝛽, 𝜆, 𝜉

)
𝜕𝜆 =

̂r
∑
i=1

(
G(xi∶n;𝜉)

𝛽

)𝛼−1

− 2
(

G(xi∶n;𝜉)
𝛽

)2𝛼−1

(1+𝜆)
(

G(xi∶n;𝜉)
𝛽

)𝛼−1

− 2𝜆
(

G(xi∶n;𝜉)
𝛽

)2𝛼−1

+
n

∑
i= ̂r+1

(
1−G(xi∶n;𝜉)

1−𝛽

)𝛼−1

− 2
(

1−G(xi∶n;𝜉)
1−𝛽

)2𝛼−1

(1+𝜆)
(

1−G(xi∶n;𝜉)
1−𝛽

)𝛼−1

− 2𝜆
(

1−G(xi∶n;𝜉)
1−𝛽

)2𝛼−1 ,
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Figure 5 The graphs of the hazard function of the TTSG − E distribution with −1 ≤ 𝜆 ≤ 0.

𝜕ℓ
(
𝛼, 𝛽, 𝜆, 𝜉

)
𝜕𝜉k

=
n

∑
i=1

g′(xi∶n; 𝜉)
g(xi∶n; 𝜉)

+
̂r

∑
i=1

G′(xi∶n; 𝜉)
𝛽 .

(1+𝜆)(𝛼− 1)
(

G(xi∶n;𝜉)
𝛽

)𝛼−2

− 2𝜆(2𝛼− 1)
(

G(xi∶n;𝜉)
𝛽

)2𝛼−2

(1+𝜆)
(

G(xi∶n;𝜉)
𝛽

)𝛼−1

− 2𝜆
(

G(xi∶n;𝜉)
𝛽

)2𝛼−1

+
n

∑
i= ̂r+1

−G′(xi∶n; 𝜉)
1 − 𝛽 .

(1+𝜆)(𝛼− 1)
(

1−G(xi∶n;𝜉)
1−𝛽

)𝛼−2

− 2𝜆(2𝛼− 1)
(

1−G(xi∶n;𝜉)
1−𝛽

)2𝛼−2

(1+𝜆)
(

1−G(xi∶n;𝜉)
1−𝛽

)𝛼−1

− 2𝜆
(

1−G(xi∶n;𝜉)
1−𝛽

)2𝛼−1 ,

where g′
(
t; 𝜉

)
= 𝜕g(t;𝜉)

𝜕𝜉k
and G′ (t; 𝜉)= 𝜕G(t;𝜉)

𝜕𝜉k
.

However, these equations are nonlinear and there are no explicit solutions. Thus, they have to be solved numerically. So, the optim package
is used for estimating the parameters in R software.

5.2. Bootstrap Estimation

The parameters of the fitted distribution can be estimated by parametric (resampling from the fitted distribution) bootstrap resampling (see
Efron and Tibshirani [17]). The parametric bootstrap procedure is described as follows:

Parametric bootstrap procedure:
1. Estimate 𝜃 (vector of unknown parameters), say ̂𝜃, by using theMLE procedure based on a random sample.
2. Generate a bootstrap sample {X∗1 , … ,X∗m} using ̂𝜃 and obtain the bootstrap estimate of 𝜃, say 𝜃∗, from the bootstrap sample based on

theMLE procedure.
3. Repeat Step 2 NBOOT times.
4. Order 𝜃∗1, … , 𝜃∗NBOOT as 𝜃∗(1), … , 𝜃∗(NBOOT). Then obtain 𝛾-quantiles and 100 (1 − 𝛼)% confidence intervals (CIs) of parameters.

In case of the TTSG − G distribution, the parametric bootstrap estimators (PBs) of 𝛼, 𝛽, 𝜆, and 𝜉, say �̂�PB, ̂𝛽PB, ̂𝜆PB, and ̂𝜉PB, respectively.Pdf_Folio:11

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

β = 0.5 , λ = − 0.6 , θ = 0.5

x

ha
za

rd
 fu

nc
tio

n

α = 0.5
α = 1
α = 2

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6
7

β = 0.5 , λ = − 0.6 , α = 2

x

ha
za

rd
 fu

nc
tio

n

θ = 0.5

θ = 1

θ = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

3.
0

β = 0.5 , α = 0.5 , θ = 0.5

x

ha
za

rd
 fu

nc
tio

n

λ = 0

λ = −0.4

λ = −0.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
2

4
6

β = 0.5 , α = 2 , θ = 0.5

x

ha
za

rd
 fu

nc
tio

n

λ = 0

λ = −0.4

λ = −0.8

O. Kharazmi and M. Zargar / Journal of Statistical Theory and Applications 18(2) 87–102 97



5.3. Simulation

Here, we assess the performance of theMLEs of the parameters with respect to sample size n for the TTSG−E distribution. The assessment
of performance is based on a simulation study by using the Monte Carlo method. Let �̂�, ̂𝛽, ̂𝜆, and ̂𝜃 be theMLEs of the parameters 𝛼, 𝛽, 𝜆,
and 𝜃, respectively.We calculate the mean square error (MSE) and bias of theMLEs of the parameters, 𝛼, 𝛽, 𝜆 and 𝜃 based on the simulation
results of 3000 independence replications. results are summarised in Table 1 for different values of, n, 𝛼, 𝛽, 𝜆 and 𝜃. From Table 1 the results
verify thatMSE of theMLEs of the parameters decrease with respect to sample size n for all parameters. So, we can see theMLEs of 𝛼, 𝛽, 𝜆,
and 𝜃 are consistent estimators.

Table 1 MSE and bias (values in parentheses) of the MLEs of the parameters 𝛼, 𝛽, 𝜆, and 𝜃.

 𝛼 = 0.5   𝛽 = 0.3   𝜆 = 0.5   𝜃 = 0.5 
 n  30 0.0274 (0.0316) 0.0165 (0.0099) 0.0855 (0.0481) 0.0272 (0.0229)

50 0.0153 (0.0269) 0.0092 (0.0034) 0.0721 (0.0502) 0.0141 (0.0147)
100 0.0081 (0.0174) 0.0045 (0.0030) 0.0514 (0.0451) 0.0063 (0.0071)
200 0.0035 (0.0098) 0.0020 (0.0018) 0.0243 (0.0245) 0.0033 (0.0046)

 𝛼 = 0.5   𝛽 = 0.3   𝜆 = 0.5  𝜃 = 1.5 
 n  30 0.0286 (0.0357) 0.0181 (0.0093) 0.0870 (0.0552) 0.2462 (0.0742)

50 0.0156 (0.0294) 0.0097 (0.0057) 0.0720 (0.0552) 0.1245 (0.0412)
100 0.0079 (0.0202) 0.0042 (0.0011) 0.0484 (0.0470) 0.0632 (0.0352)
200 0.0035 (0.0097) 0.0019 (−0.0007) 0.0264 (0.0299) 0.0285 (0.0138)

 𝛼 = 2   𝛽 = 0.3   𝜆 = 0.75  𝜃 = 0.5 
 n  30 32.5268 (0.6036) 0.0291 (0.0479) 0.0914 (−0.0422) 2.9212 (0.1673)

50 13.0018 (0.3243) 0.0167 (0.0174) 0.0449 (0.0192) 1.1566 (0.0768)
100 0.1474 (0.0976) 0.0063 (0.0019) 0.0236 (0.0454) 0.0132 (0.0142)
200 0.0412 (0.0524) 0.0022 (−0.0016) 0.0138 (0.0327) 0.0025 (0.0072)

𝛼 = 2  𝛽 = 0.3  𝜆 = 0.75  𝜃 = 1.5 
 n  30 13.8834 (0.5349) 0.0291 (0.0320) 0.0946 (−0.0477) 16.7689 (0.4470)

50 26.9195 (0.4725) 0.0174 (0.0109) 0.0460 (0.0255) 12.5857 (0.3298)
100 2.0210 (0.1251) 0.0067 (−0.0021) 0.0249 (0.0396) 1.5966 (0.0752)
200 0.0467 (0.0624) 0.0023 (−0.0025) 0.0150 (0.0388) 0.0256 (0.0241)

𝛼 = 0.5  𝛽 = 0.3  𝜆 = −0.5  𝜃 = 0.5 
 n  30 16.0098 (0.6477) 0.0589 (0.0013) 0.8003 (0.8346) 3.5771 (0.2223)

50 0.5018 (0.2976) 0.0619 (0.0477) 0.7082 (0.7889) 0.2463 (0.0554)
100 0.2836 (0.2171) 0.0600 (0.0730) 0.4518 (0.6418) 0.1114 (0.0304)
200 0.0460 (0.1789) 0.0595 (0.0878) 0.3221 (0.5549) 0.0172 (0.0254)

𝛼 = 0.5  𝛽 = 0.3  𝜆 = −0.5  𝜃 = 1.5 
 n  30 5.7339 (0.5136) 0.0664 (0.0481) 0.8871 (0.8801) 13.4951 (0.4215)

50 2.1495 (0.3433) 0.0707 (0.0714) 0.6986 (0.7841) 8.0247 (0.2459)
100 0.0741 (0.2105) 0.0666 (0.0826) 0.4685 (0.6529) 0.2054 (0.0803)
200 0.0449 (0.1787) 0.0615 (0.0871) 0.3225 (0.5558) 0.1457 (0.0802)

𝛼 = 2  𝛽 = 0.3  𝜆 = −0.75  𝜃 = 0.5 
 n  30 83.3071 (3.0259) 0.0518 (0.0820) 0.8762 (0.8905) 1.5715 (0.1644)

50 24.7184 (1.9937) 0.0413 (0.0725) 0.9042 (0.9040) 0.4906 (0.0413)
100 4.6772 (1.5489) 0.0344 (0.0633) 0.9048 (0.9032) 0.0876 (0.0049)
200 2.0712 (1.3450) 0.0255 (0.0435) 0.7545 (0.8364) 0.0120 (−0.0076)

MLE, maximum likelihood estimation; MSE, mean square error.

6. APPLICATION OF THE TTSG— E DISTRIBUTION

To investigate the advantage of the proposed distribution, we consider a real data set provided by Bjerkedal [18]. This real data set consists of
survival times of 72 guinea pigs injected with different amount of tubercle. This species of guinea pigs are known to have high susceptibility
of human tuberculosis, which is one of the reasons for choosing. We consider only the study in which animals in a single cage are under the
same regimen. The data represents the survival times of guinea pigs in days. The data are given below:Pdf_Folio:12
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12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 85
87 91 95 96 98 99 109 110 121 127 129 131 143 146 146 175 175 211 233 258 258 263 297 341 341 376.

6.1. Bootstrap Inference for Parameters of the TTSG— E Distribution

In this section, we obtain point and %95 CI estimation of parameters of the TTSG − E distribution by parametric bootstrap method for
the real data set. We provide results of bootstrap estimation based on 10,000 bootstrap replicates in Table 2. It is interesting to look at the
joint distribution of the bootstrapped values in a scatter plot in order to understand the potential structural correlation between parameters
(see Fig. 6).

Table 2 Parametric bootstrap point and interval estimation of the parameters 𝛼, 𝛽, 𝜆, and 𝜃.

Point estimation CI

𝛼 2.223 (1.354, 4.117)

𝛽 0.298 (0.157, 0.505)

𝜆 −0.307 (−0.846, 0.734)

𝜃 161.075 (111.722, 268.019)

CI, confidence interval.
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Figure 6 Parametric bootstrapped values of parameters of the TTSG—E distribution
for the real data.

6.2. MLE Inference and Comparing with Other Models

We fit the proposed distribution to the real data set byMLEmethod and compare the results with the gamma, Weibull, TSGE, generalized
exponential (GE), and weighted exponential (WE) distributions with respective densities

fgamma (x) =
1

Γ (𝛼)𝜆
𝛼x𝛼−1e−𝜆x, x > 0

fWeibull (x) =
𝛽
𝜆𝛽 x

𝛽−1e−
( x
𝜆
)𝛽
, x > 0

Pdf_Folio:13
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Figure 7 Histogram and fitted density plots, the plots of empirical and fitted cdfs, P − P plots and Q − Q plots
for the real data set.

fTSGE (x) =

⎧⎪⎪
⎨
⎪⎪
⎩

𝛼 1𝜃 e
− x
𝜃

(
1 − e

−x
𝜃

𝛽

)𝛼−1

, 0 < x ≤ −𝜃 log (1 − 𝛽) ,

𝛼 1𝜃 e
− x
𝜃

(
e
−x
𝜃

1 − 𝛽

)𝛼−1

, −𝜃 log (1 − 𝛽) ≤ x < ∞,

fGE (x) = 𝛼𝜆e−𝜆x
(
1 − e−𝜆x

)𝛼−1 , x > 0

fWE (x) =
𝛼 + 1
𝛼 𝜆e−𝜆x

(
1 − e−𝛼𝜆x

)
, x > 0.

For each model, Table 3 includes theMLE’s of parameters, Kolmogorov–Smirnov (K − S) distance between the empirical distribution and
the fitted model, its corresponding p-value, log-likelihood, and Akaike information criterion (AIC) for the real data set. We fit the TTSG−E
distribution to the real data set and compare it with the mentioned distributions. The selection criterion is that the lowest AIC and K − S
statistic corresponding to the best fitted model. The TTSG − E distribution provides the best fit for the data set as it has lower AIC and
K − S statistic than the other competitor models. The histogram of data set, fitted pdf of the TTSG − E distribution and fitted pdfs of other
competitor distributions for the real data set are plotted in Fig. 7. Also, the plots of empirical and fitted cdfs functions, P−P plots andQ−Q
plots for the TTSG − E and other fitted distributions are displayed in Fig. 7. These plots also support the results in Table 3. The asymptotic
covariance matrix ofMLEs for TTSG − Emodel parameters which is the inverse of the Fisher information matrix, is given by

⎛⎜⎜⎜⎝
0.15826 0.00006 0.08247 0.00072
0.00006 0.00011 0.00005 −0.00013
0.08247 0.00005 0.07136 0.00007
0.00072 −0.00013 0.00007 0.08243

⎞⎟⎟⎟⎠
and the 95% two-sided asymptotic CIs for 𝛼, 𝛽, 𝜆, and 𝜃 are given by 1.950± 0.7797, 0.303± 0.0205,−0.423± 0.5236, and 160.67± 0.5627,
respectively.Pdf_Folio:14
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Table 3 The MLEs of parameters for real data set.

Model Estimation Log-likelihood AIC K− S statistic p-value

TTSG− E
(
�̂�, ̂𝛽, �̂�, ̂𝜃

)
= (1.950,0.303,−0.423,160.67) −388.063 784.127 0.097 0.508

gamma
(
�̂�, �̂�

)
= (2.812,0.020) −394.247 792.495 0.138 0.127

Weibull
(

̂𝛽, �̂�
)
= (1.392,110.529) −397.147 798.295 0.146 0.091

TSGE
(
�̂�, ̂𝛽, ̂𝜃

)
= (2.561, 0.270,177.911) −389.549 785.099 0.130 0.171

WE
(
�̂�, �̂�

)
= (1.626,0.0138) −393.568 791.138 0.117 0.274

GE
(
�̂�, �̂�

)
= (2.476, 0.017) −393.110 790.220 0.133 0.159

AIC, Akaike information criterion; GE, generalized exponential; K – S, Kolmogorov – Smirnov; MLE, maximum likelihood estimation; TSGE, two-sided
generalized exponential, WE, weighted exponential.

6.3. Likelihood Ratio Test

We use the likelihood ratio test (LRT) for testing the null hypothesis that the TSGE distribution, proposed by Korkmaz and Genç [11], is
equally close to the pig data against the alternative hypothesis that the TTSG − E distribution is closer. That is, we wish to test

{H0 ∶ X ∼ TTSG − E (𝛼, 𝛽, 0, 𝜃) ≡ TSGE (𝛼, 𝛽, 𝜃)
H1 ∶ X ∼ TTSG − E (𝛼, 𝛽, 𝜆, 𝜃) ,

and equivalently, by considering the estimated value of the parameter 𝜆 in Table 3 we should test a one-tailed test as

{H0 ∶ 𝜆 = 0
H1 ∶ 𝜆 < 0.

According to the LRT, the test statistic is given by

Λ (x) =
supH0

ℓ (𝛼, 𝛽, 𝜆, 𝜃)
supH1

ℓ (𝛼, 𝛽, 𝜆, 𝜃) =
ℓ
(
�̂�0, ̂𝛽0, 0, ̂𝜃0

)
ℓ
(
�̂�, ̂𝛽, ̂𝜆, ̂𝜃

) ,

where ℓ (𝛼, 𝛽, 𝜆, 𝜃) is the log-likelihood function of TTSG − E distribution. Based on Table 3, −2 log Λ (x) = 2.972. Since −2 log Λ (x)
is distributed asymptotically chi-squared distribution with 1 degrees of freedom, we can conclude that the null hypothesis is rejected in
significance level 𝛼 = 0.1. Also, the p-value is 0.085.

7. CONCLUDING REMARKS

In this paper, we propose a new family of distributions that is a compounding of two-sided distributions family and transmuted technique.
The proposed model generalizes TSP distribution and generalized two-sided family of distributions and contains these distributions as its
submodels. Some reliability and statistical properties of the proposed family of distribution are discussed through the paper. Estimation
and inference procedure for distribution parameters are investigated by two well-known maximum likelihood and bootstrap methods in
general setting. The TTSG − E distribution considered as a special case of this family. One of the advantage of this new distribution is that
it can be fitted to the data sets with one or two modes. Data analysis shows that the TTSG− E distribution provides the best fit and the best
performance. The proposed distribution may be a better alternative than the other well-known distributions commonly used in literature
for fitting statistical data.
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