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Abstract—In order to solve the problem of remote image 

data transmission in AI development platform based on image 
analysis, an Ethernet controller based on SGMII was developed. 
Based on the open source MAC, the AXI bus interface is designed 
according to the requirements. The adapter converter between 
MII and the SGMII is designed. It has been implemented on the 
Virtex Ultrascale+ hardware development platform. The 
accuracy and effectiveness of the data transmission of the 
Ethernet controller are verified by the transmission of ARP and 
UDP network packets. The results show that the designed 
Ethernet controller can achieve reliable transmission of data at 
100Mbps. 
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I. INTRODUCTION 

With the development of artificial intelligence (AI), more 
and more AI accelerators have emerged, such as the Loihi chip 
introduced by Intel Corporation, the MLU smart chip 
developed by Zhongke Cambrian, and the Thinker chip 
designed by the Institute of Microelectronics of Tsinghua 
University [1, 2]. To support the development of AI chips, an 
AI development platform based on image analysis as shown in 
Figure 1 is proposed. The platform uses LEON2 processor as 
the system processor, AXI bus as the system bus, DDR4 as the 
storage module, and PCIe as the short-distance transmission 
channel. Compared with other communication interfaces, 
Ethernet has a faster transmission rate, and the speed is up to 
100 Gbps; furthermore, Ethernet has a longer transmission 
distance and a wider transmission range as a widely used LAN 
technology[3].Therefore, Ethernet can bring high efficiency 
and reliability to the transmission of remote image data in the 
AI platform system. 

 
FIGURE I.  AI DEVELOPMENT PLATFORM STRUCTURE 

At present, most Ethernet design based on system-on-chip 
use Wishbone, AHB and other buses as system buses, such as 
the Ethernet IP core design implemented [4], and the 
dual-channel Ethernet media access control (MAC) [5]. As a 
new generation of system-on-chip bus developed by ARM, the 
AXI bus can further enhance the transmission performance of 

Ethernet and the AI platform. Xilinx's Virtex Ultrascale+ 
hardware development platform which supports SGMII was 
selected for this design. Compared with the parallel 
transmission interface, the SGMII protocol has stronger 
stability, and simplify the interface design [6]. In the design of 
Ethernet, many open source MAC simplify the design work, 
save the design cost, and most of the current open source MAC 
code is reliable. So this paper proposes an SGMII-based 
Ethernet design method using an open source MAC on an 
FPGA developed by Virtex Ultrascale+ hardware. 

II. OPEN SOURCE MAC 

In the design of the Ethernet controller, MAC is an 
indispensable part. This paper uses COBHAM's open source 
10/100 Mbps MAC as the design basis. Its address channel and 
data channel are both 32 bits. The overall structure is shown in 
Figure 2[7]. 

 
FIGURE II.  OPEN SOURCE MAC STRUCTURE 

The functions of each module in the figure are as follows: 

 Direct memory access (DMA) controller: The DMA 
controller includes transmitter DMA engine and receiver DMA 
engine; it provides direct access to the system storage for the 
Ethernet module without CPU scheduling. Therefore, it greatly 
improves the storage access efficiency and improves the 
overall performance of the system[8, 9]. 

 First In First Out (FIFO): The FIFO module includes a 
transmitter FIFO and a receiver FIFO; it provides a space for 
temporarily storing data between the DMA controller and the 
MAC protocol processing module, and solves problems such as 
data path congestion caused by inconsistent rates. 

 MAC protocol processing module: The MAC protocol 
processing module includes transmitter and receiver; the 
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transmitter provides functions such as encapsulation of a frame, 
and the receiver provides functions such as decapsulation of a 
frame. 

  Registers: The registers provide the setting function 
of the MAC. Before starting the transmitting and receiving 
operations, the MAC must be initialized through the registers. 

 Management data input/output (MDIO): The MDIO 
module provides the access logic of the physical (PHY) layer 
chip register through which the PHY can be set. 

 Media independent interface (MII): The MII is one of 
the Ethernet interface protocol developed by the IEEE802.3 
working group. It implements data transmission between MAC 
and PHY with 4-bits parallel data. 

This design uses Xilinx's Virtex Ultrascale+ hardware 
development platform as the hardware foundation of the AI 
development platform. In order to make the open source MAC 
meet the design requirements, it is necessary to carry out the 
following transformation designs, which are the key works of 
this paper: 

 The AI development platform selects the 64-bits AXI 
bus as the system bus. Therefore, this design will add the 
necessary AXI bus interfaces to the MAC.  

 The selected Virtex Ultrascale+ hardware development 
platform provides a PHY chip based on the SGMII protocol, 
and the MAC provides the MII protocol. Therefore, to realize 
the data transmission between the MAC and the PHY, it is 
necessary to adapt the MII and SGMII. 

III. ETHERNET DESIGN AND IMPLEMENTATION 

A. Ethernet Overall Structure Design 

According to the above analysis of the transformation 
design of the open source MAC, this paper proposes the overall 
structure diagram of the Ethernet controller as shown in Figure 
3. 

 
FIGURE III.  ETHERNET OVERALL STRUCTURE 

In the overall structure of the Ethernet controller, the DMA 
controller will act as the master device on the AXI bus, and the 
register module will act as the slave device on the AXI bus; in 
order to adapt the MII to the SGMII, this design selects the 
SGMII IP core provided by Xilinx for the Virtex Ultrascale+ 
hardware development platform and sets it accordingly. The 
selected SGMII IP core only provides Gigabit Media 
Independent Interface (GMII) on the MAC side. So this paper 
designed the converter between MII and GMII, to realize the 
data transmission between MAC and SGMII IP core. The other 
side of SGMII IP core directly connects with PHY chip to 
realize data interaction. 

B. Design and Implementation of AXI Bus Slave Interface 

The Ethernet registers are 32-bits, so the AXI bus always 
uses the lower 32 bits of the data and address to access the 
registers. According to the different access modes of the 
registers to the bus, this design divides the design of the AXI 
bus slave interface into reading timing design and writing 
timing design. 

The Ethernet AXI bus slave device interface reading timing 
design is shown in Figure 4. In the reading and writing timing 
design of the slave interface, the writing operation always takes 
precedence over the reading operation, and the writing 
operation can interrupt the reading operation, so the design of 
the reading timing is divided into no waiting and waiting. 

 
FIGURE IV.  ETHERNET AXI BUS SLAVE DEVICE INTERFACE 

READING TIMING DESIGN 

As shown in Figure 4, at time T0, the reading timing state 
machine (rstate) is in the idle state, at which time a reading 
operation request comes, ar_valid and ar_ready are set to 1 to 
indicate that the read channel handshake operation is started, 
and the address corresponding to the read data A is sent to the 
read address bus (raddr[31:0]). At time T1, since the register 
reading data ready signal (lr_ready) is kept high, r_valid and 
r_ready are set directly to indicate that the reading data channel 
handshake begins, the state machine enters the read data state, 
and the data A is sent to the read data bus (r_data[31:0]). At the 
same time, since only one 32-bits data is transmitted in this 
reading operation, the read last signal r_last is set to 1 to 
indicate that the current data is the last data of the current 
transfer. At time T2, the read operation is completed, and the 
state machine returns to the idle state. 

Different from the reading timing design in the case of no 
waiting, there is a case where the reading timing design has a 
writing operation request when the reading operation is 
performed. Therefore, the corresponding writing operation is 
completed first, and the reading operation state machine 
continues the read data state, the read address channel and the 
read data channel extend the corresponding clock cycle; until 
the writing operation enters the write response channel 
handshake phase, the reading operation will continue. 

Figure 5 shows the timing design of the AXI bus slave 
interface. At time T0, the state machine (wstate) is in the idle 
state. At this time, the writing operation request comes, 
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aw_valid and aw_ready are set to 1 to indicate that the write 
address channel starts the handshake operation, and the write 
data address is sent to the address bus (waddr[31:0]). At time 
T1, the state machine shifts to the write data state. Since the 
register write data ready signal lw_ready remains valid, 
w_valid and w_ready are directly set to 1 to indicate that the 
write data channel starts to handshake, and data A is transferred 
to the write data bus (w_data[31:0]). The current transmission 
only transmits a 32-bits word, so the last writing signal w_last 
is set to 1 to indicate that the current data is the last data. At 
time T2, the data transmission is completed, b_valid and 
b_ready are set to 1 to indicate the write response channel 
handshake start. At time T3, the write response channel has 
handshaked, and the data is successfully written. 

 
FIGURE V.  ETHERNET AXI BUS SLAVE DEVICE INTERFACE 

WRITING TIMING DESIGN 

C. Design and Implementation of AXI Bus Master Interface 

According to the characteristics of the MAC, this paper will 
design the master interface between the DMA controller and 
the AXI bus. The DMA controller accesses system storage in a 
descriptor-based manner. It can access a series of 
non-contiguous addresses, which not only improves device 
efficiency but also reduces storage device requirements. The 
DMA obtains the first address of the data and the 
corresponding control information through the descriptors. 

The DMA controller's access request to the bus is divided 
into TX and RX requests. The processing of the RX request of 
the master device interface always takes precedence over the 
processing of the TX request, but whether it is a TX or RX 
request both contain reading and writing access operations to 
the bus. The reading and writing accesses of the Ethernet AXI 
bus master interface are implemented by the same state 
machine. The states and descriptions of the state machine are 
shown in Table 1. 

TABLE I.  ETHERNET MASTER INTERFACE STATE MACHINE 
DESCRIPTION TABLE 

State name Status 
number 

Description

IDLE 0 Idle state, bus interface has 
no read or write request 

W 1 The first state of the write 
operation 

R_WAIT_RESP 2 The first state of the read 
operation, waiting for data 

from the slave 
R_WAIT_NEXT 3 Waiting for the last 

transmission from the 
device 

B 4 Write end state 

 
According to the characteristics of reading access, this 

design divides the AXI bus master reading operation timing 
design into no waiting and waiting. Taking the RX request as 
an example, the DMA controller's reading operation timing 
design for the AXI bus is shown in Figure 6. 

 
FIGURE VI.  ETHERNET AXI BUS MASTER INTERFACE READING 

TIMING DESIGN 

In order to comply with the access bandwidth of the DMA 
controller, the read address bus of AXI uses its lower 32 bits 
for address interaction, and the 64-bits read data bus of AXI 
sequentially transfers data to the 32-bits data bus of the DMA 
controller in accordance with the order in which the data 
arrives at the bus. 

Figure 6 shows the reading timing design without waiting. 
The transmitted data is two 32-bits data A1 and A2. At time T0, 
the state machine is in the idle state, rmsti.req is set to 1 to 
indicate that the request in the receive direction is coming, and 
the request is a reading bus request, so aximi.ar_valid and 
aximo.ar_ready are set, and read address channel starts 
handshake operation. At the same time, the bus is authorized to 
the RX channel of the DMA, and the address corresponding to 
the data A1 is sent to the address bus 
(aximo.ar_bits.addr[31:0]). At time T1, aximi.r_valid and 
aximo.r_ready are set to 1, the bus read data channel performs 
a handshake operation, and rmsto.ready is set to 1 to indicate 
that the RX channel data is ready. At the same time, the state 
machine is transferred to the read data state, and the data (A1) 
on the lower 32 bits of aximo.r_data[63:0] is sent to the RX 
data channel rmsto.data[31:0]. At time T2, aximi.r_last is set to 
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1 to indicate that the current data is the last data of this 
transmission. At time T3, the transmission ends and the 
transmission is successful, and the state machine switches back 
to the idle state. 

Different from the reading timing design without waiting, 
the bus reading operation on the RX channel has a request for a 
sudden withdrawal. Therefore, the address bus and the data bus 
must wait for the corresponding cycles, and the state machine 
enters the R_WAIT_NEXT state; until the RX channel resumes 
the bus reading operation request, the address bus and data bus 
continue to transmit until the transfer is completed. 

 
FIGURE VII.  ETHERNET AXI BUS MASTER DEVICE INTERFACE 

WRITING TIMING DESIGN 

Same as reading timing, the write address bus uses its lower 
32 bits for address interaction in the writing timing design. The 
64-bit write data bus determines whether the data from the 
DMA controller's 32-bits data bus channel is sent to the lower 
32 bits or the upper 32 bits according to the data address 2. 

Figure 7 shows the bus master device interface writing 
timing design on the RX channel. The data transferred is two 
32-bits data A1 and A2. At time T0, the state machine is in the 
idle state, at which time rmsti.req is set to 1 to indicate that the 
request in the receive direction is coming, and the request is a 
write bus request, so aximi.aw_valid and aximo.aw_ready are 
set, and the bus write address channel starts the handshake 
operation. The bus is granted to the RX channel of the DMA. 
The address corresponding to the data A1 is sent to the write 
address bus (aximo.aw_bits.addr[31:0]). At time T1, 
aximi.w_valid and aximo.w_ready set to 1 to indicate the bus 
write data channel for handshake operation, and rmsto.ready is 
set to 1 to indicate that the RX channel data is ready, the state 
machine is transferred to the write data state. At the same time, 
the data A1 on rmsti.data[31:0] is sent to the lower 32 bits of 
the 64-bits data bus aximi.w_data[63:0]. At time T2, 
aximi.w_last is set to 1 to indicate that the current data is the 
last data of the transmission, and the state machine is 
transferred to the end write operation state. At time T3, the 
current transfer is completed, aximi.b_valid and aximo.b_ready 
are set to 1 to indicate that the write response channel to start 
the handshake operation. At time T4, the write response 

channel handshake is completed indicating that the data has 
been successfully written. 

D. Design and Implementation of SGMII 

The implementation of the SGMII relies on serdes, 
high-speed transceiving and other functions in the physical 
coding sub-layer (PCS) [10]. In the usual design, the designer 
will use the high-speed transceiver resources of the 
development platform to achieve high-speed transceiver 
function. The high-speed transceiver IP in the Virtex 
Ultrascale+ hardware development platform does not provide 
an interface to the PHY. Therefore, based on the detailed 
understanding of the hardware development platform, the 
design uses the SGMII IP resource to implement the 
corresponding functions of the PCS. Since the SGMII IP core 
only provides the GMII on the MAC side, this design also 
implements the converter between the MII and the GMII, and 
finally realizes the adaptation of the MII to the SGMII.. 

1) SGMII IP core settings 
The settings of the SGMII IP core include mode, rate and 

its basic function selection. According to the design 
requirements, this paper selects the Gigabit SGMII IP core 
based on asynchronous LVDS, which supports 
10/100/1000Mbps. In addition, the design adds extended 
MDIO and auto-negotiation. 

The extended MDIO is an internal register group of the 
SGMII IP core. This register group implements several basic 
registers of the PHY, which facilitates the access of common 
registers and improves the working efficiency of the Ethernet. 

At present, most network devices use Gigabit Ethernet, but 
the Ethernet controller implemented in this design is 100Mbps. 
Therefore, to achieve communication between network devices 
at different rates, an auto-negotiation function is required. The 
auto-negotiation can coordinate the devices at both ends of the 
communication to a unified working mode and working speed 
through the detection of the fast pulse link, which saves the 
trouble of manual setting and improves the intelligence of the 
design. 

2) Design and implementation of converter between MII and 
GMII 

The difference between the MII interface and the GMII 
interface is the difference in data bit width. The data bandwidth 
defined by the MII protocol is 4 bits, and the data bandwidth 
defined by the GMII protocol is 8 bits. Therefore, the main 
work of the converter is the conversion of data width. This 
design utilizes the difference in the number of counter counts 
to achieve data bit width conversion at 10Mbps and 100Mbpss 
respectively. According to the different data transmission 
directions, the converter design is divided into TX and RX. The 
conversion timing design at 100Mbps is shown in Figure 8. 
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FIGURE VIII.  MII AND GMII CONVERSION TIMING DESIGN 

Figure 8(a) shows the conversion timing design in the TX 
direction. The transmitted data are two binary data a3a2a1a0 
and a7a6a5a4. At time T0, tx_en changes from 0 to 1 to 
indicate that the transmission is valid, the state machine (state) 
transitions from the idle state to the transition state, and the 
data a3a2a1a0 is sent from miio.txd[3:0] to txd_part[3:0]. The 
counter (count) counts from 0. At time T1, the counter’s value 
reaches 5, and the data a7a6a5a4 in miio.txd[3:0] is spliced 
together with the data a3a2a1a0 in txd_part[3:0] to 
gmiio.txd[7:0]. The two sets of 4-bits parallel data a3a2a1a0 
and a7a6a5a4 are successfully converted into 8-bits parallel 
data a7a6a5a4a3a2a1a0. At time T2, the counter is cleared, and 
the state machine returns to the idle state when the current 
transfer ends. 

Figure 8(b) shows the conversion timing design in the RX 
direction. The transmitted data is a binary data 
(a7a6a5a4a3a2a1a0). At time T0, the received data valid signal 
rx_dv is set to 1 to indicate that the data transfer is valid, the 
state machine enters the transition state from the idle state, the 
counter starts counting from 0, and the lower 4 bits of data 
gmiii.txd[7:0] (a3a2a1a0) are repeatedly transferred to the 
lower 4 bits and the upper 4 bits of rxd[7:0]. Then the lower 4 
bits data (a3a2a1a0) of rxd[7:0] are transferred to miii.rxd[3:0]. 
At time T1, the counter’s value reaches 5, the high 4-bits data 
(a7a6a5a4) of gmiii.txd[7:0] is repeatedly transferred to the 
lower 4 bits and the upper 4 bits of rxd[7:0], and the lower four 
bits of rxd[7:0] (a7a6a5a4) are dumped to miii.rxd[3:0]. At 
time T2, the conversion of the a7a6a5a4a3a2a1a0 from the 
GMII  to the MII is completed, the counter is cleared, and the 
state machine is turned back to idle when the RX transmission 
is completed. 

IV. TESTING RESULTS 

The Virtex Ultrascale+ hardware development platform is 
shown in Figure 9. The network port is connected to the PC 

network port through a network cable. In this paper, the test of 
the Ethernet controller is divided into two parts: functional 
testing and performance testing. 

 
FIGURE IX.  VIRTEX ULTRASCALE+ HARDWARE DEVELOPMENT 

PLATFORM 

A. Function Testing 

The purpose of functional testing is to verify whether the 
designed can successfully exchange data with other network 
devices. Therefore, according to the data transmission direction, 
this paper divides the functional testing into transmitting test 
and receiving test. Functional testing is accomplished using the 
transmission of ARP packets. 

In the transmitting test, the logic data analyzer in the 
Vivado is used to observe the relevant data signals, and the 
Wireshark is used to capture the ARP packet which sent to the 
target PC. The observed data is compared to the data in the 
acquired network packet. After comparative analysis, the data 
on the data path is consistent with the packet data obtained in 
Wireshark., and the information such as the MAC address in 
the ARP packet conforms to the transmission the MAC address 
and other information in the ARP packet are consistent with the 
transmission environment and ARP protocol transmission rules. 
Therefore, the designed Ethernet controller can transmit data 
correctly. 

In the receiving test, the logic data analyzer in the Vivado is 
also used to observe the relevant data signals, and the 
Wireshark is used to capture the ARP packet on the PC which 
sent to the Virtex Ultrascale+ hardware development platform. 
By comparing and analyzing, the data on the data path is 
exactly the same as the content of the data packet. Therefore, 
the designed Ethernet controller can receive data correctly. 

B. Performance Testing 

In order to verify the performance of the designed Ethernet 
controller, this paper uses the transmission of UDP data 
packets to test the actual transmission rate and packet loss rate. 
Set the length of the transmitted data packets to 1500 bytes. 
The test results are shown in Figure 10. 
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FIGURE X.  ETHERNET CONTROLLER PERFORMANCE TEST LINE 

CHART 

As shown in the line chart, the transmission error rate is 
always 0%, and the transmission rate will fluctuate to some 
extent when the number of transmitted UDP packets is 
different, but the basic transmission rate remains above and 
below 90Mbps. The rate obtained by the test is within a 
reasonable range, so the designed Ethernet controller 
performance meets the design expectations. 

V. SUMMARY 

This design uses the open source 10/100Mbps MAC on 
Xilinx's new Virtex Ultrascale+ hardware development 
platform to complete the interface design between Ethernet and 
AXI bus, and realizes the adaptation between MII of MAC and 
SGMII of PHY, and finally realizes the overall function of the 
Ethernet controller. It is verified that the data can be stably and 
correctly transmitted at a hundred-megabit rate through 
Ethernet controller. More importantly, the design of the 
Ethernet controller as the basis provides strong support for the 
implementation of the AI development platform. However, this 
design also has certain shortcomings. The use of the IP core 
provided by Xilinx has limited the reusability of the design. 
Therefore, in the future research, the related functions of the 
SGMII IP core should be further independently designed to 
improve the reusability of the design. 
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