
Design method of Ethernet based on SGMII

Xi Hu1 and Weigong Zhang 1,*
1College of Information Engineering, Capital Normal University, China

*Corresponding author

Abstract—In order to solve the problem of remote image

data transmission in AI development platform based on image
analysis, an Ethernet controller based on SGMII was developed.
Based on the open source MAC, the AXI bus interface is designed
according to the requirements. The adapter converter between
MII and the SGMII is designed. It has been implemented on the
Virtex Ultrascale+ hardware development platform. The
accuracy and effectiveness of the data transmission of the
Ethernet controller are verified by the transmission of ARP and
UDP network packets. The results show that the designed
Ethernet controller can achieve reliable transmission of data at
100Mbps.

Keywords—AI; AXI Bus; FPGA; Ethernet; SGMII

I. INTRODUCTION

With the development of artificial intelligence (AI), more
and more AI accelerators have emerged, such as the Loihi chip
introduced by Intel Corporation, the MLU smart chip
developed by Zhongke Cambrian, and the Thinker chip
designed by the Institute of Microelectronics of Tsinghua
University [1, 2]. To support the development of AI chips, an
AI development platform based on image analysis as shown in
Figure 1 is proposed. The platform uses LEON2 processor as
the system processor, AXI bus as the system bus, DDR4 as the
storage module, and PCIe as the short-distance transmission
channel. Compared with other communication interfaces,
Ethernet has a faster transmission rate, and the speed is up to
100 Gbps; furthermore, Ethernet has a longer transmission
distance and a wider transmission range as a widely used LAN
technology[3].Therefore, Ethernet can bring high efficiency
and reliability to the transmission of remote image data in the
AI platform system.

FIGURE I. AI DEVELOPMENT PLATFORM STRUCTURE

At present, most Ethernet design based on system-on-chip
use Wishbone, AHB and other buses as system buses, such as
the Ethernet IP core design implemented [4], and the
dual-channel Ethernet media access control (MAC) [5]. As a
new generation of system-on-chip bus developed by ARM, the
AXI bus can further enhance the transmission performance of

Ethernet and the AI platform. Xilinx's Virtex Ultrascale+
hardware development platform which supports SGMII was
selected for this design. Compared with the parallel
transmission interface, the SGMII protocol has stronger
stability, and simplify the interface design [6]. In the design of
Ethernet, many open source MAC simplify the design work,
save the design cost, and most of the current open source MAC
code is reliable. So this paper proposes an SGMII-based
Ethernet design method using an open source MAC on an
FPGA developed by Virtex Ultrascale+ hardware.

II. OPEN SOURCE MAC

In the design of the Ethernet controller, MAC is an
indispensable part. This paper uses COBHAM's open source
10/100 Mbps MAC as the design basis. Its address channel and
data channel are both 32 bits. The overall structure is shown in
Figure 2[7].

FIGURE II. OPEN SOURCE MAC STRUCTURE

The functions of each module in the figure are as follows:

 Direct memory access (DMA) controller: The DMA
controller includes transmitter DMA engine and receiver DMA
engine; it provides direct access to the system storage for the
Ethernet module without CPU scheduling. Therefore, it greatly
improves the storage access efficiency and improves the
overall performance of the system[8, 9].

 First In First Out (FIFO): The FIFO module includes a
transmitter FIFO and a receiver FIFO; it provides a space for
temporarily storing data between the DMA controller and the
MAC protocol processing module, and solves problems such as
data path congestion caused by inconsistent rates.

 MAC protocol processing module: The MAC protocol
processing module includes transmitter and receiver; the

Advances in Computer Science Research, volume 89

2019 International Conference on Wireless Communication, Network and Multimedia Engineering (WCNME 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 57

transmitter provides functions such as encapsulation of a frame,
and the receiver provides functions such as decapsulation of a
frame.

 Registers: The registers provide the setting function
of the MAC. Before starting the transmitting and receiving
operations, the MAC must be initialized through the registers.

 Management data input/output (MDIO): The MDIO
module provides the access logic of the physical (PHY) layer
chip register through which the PHY can be set.

 Media independent interface (MII): The MII is one of
the Ethernet interface protocol developed by the IEEE802.3
working group. It implements data transmission between MAC
and PHY with 4-bits parallel data.

This design uses Xilinx's Virtex Ultrascale+ hardware
development platform as the hardware foundation of the AI
development platform. In order to make the open source MAC
meet the design requirements, it is necessary to carry out the
following transformation designs, which are the key works of
this paper:

 The AI development platform selects the 64-bits AXI
bus as the system bus. Therefore, this design will add the
necessary AXI bus interfaces to the MAC.

 The selected Virtex Ultrascale+ hardware development
platform provides a PHY chip based on the SGMII protocol,
and the MAC provides the MII protocol. Therefore, to realize
the data transmission between the MAC and the PHY, it is
necessary to adapt the MII and SGMII.

III. ETHERNET DESIGN AND IMPLEMENTATION

A. Ethernet Overall Structure Design

According to the above analysis of the transformation
design of the open source MAC, this paper proposes the overall
structure diagram of the Ethernet controller as shown in Figure
3.

FIGURE III. ETHERNET OVERALL STRUCTURE

In the overall structure of the Ethernet controller, the DMA
controller will act as the master device on the AXI bus, and the
register module will act as the slave device on the AXI bus; in
order to adapt the MII to the SGMII, this design selects the
SGMII IP core provided by Xilinx for the Virtex Ultrascale+
hardware development platform and sets it accordingly. The
selected SGMII IP core only provides Gigabit Media
Independent Interface (GMII) on the MAC side. So this paper
designed the converter between MII and GMII, to realize the
data transmission between MAC and SGMII IP core. The other
side of SGMII IP core directly connects with PHY chip to
realize data interaction.

B. Design and Implementation of AXI Bus Slave Interface

The Ethernet registers are 32-bits, so the AXI bus always
uses the lower 32 bits of the data and address to access the
registers. According to the different access modes of the
registers to the bus, this design divides the design of the AXI
bus slave interface into reading timing design and writing
timing design.

The Ethernet AXI bus slave device interface reading timing
design is shown in Figure 4. In the reading and writing timing
design of the slave interface, the writing operation always takes
precedence over the reading operation, and the writing
operation can interrupt the reading operation, so the design of
the reading timing is divided into no waiting and waiting.

FIGURE IV. ETHERNET AXI BUS SLAVE DEVICE INTERFACE

READING TIMING DESIGN

As shown in Figure 4, at time T0, the reading timing state
machine (rstate) is in the idle state, at which time a reading
operation request comes, ar_valid and ar_ready are set to 1 to
indicate that the read channel handshake operation is started,
and the address corresponding to the read data A is sent to the
read address bus (raddr[31:0]). At time T1, since the register
reading data ready signal (lr_ready) is kept high, r_valid and
r_ready are set directly to indicate that the reading data channel
handshake begins, the state machine enters the read data state,
and the data A is sent to the read data bus (r_data[31:0]). At the
same time, since only one 32-bits data is transmitted in this
reading operation, the read last signal r_last is set to 1 to
indicate that the current data is the last data of the current
transfer. At time T2, the read operation is completed, and the
state machine returns to the idle state.

Different from the reading timing design in the case of no
waiting, there is a case where the reading timing design has a
writing operation request when the reading operation is
performed. Therefore, the corresponding writing operation is
completed first, and the reading operation state machine
continues the read data state, the read address channel and the
read data channel extend the corresponding clock cycle; until
the writing operation enters the write response channel
handshake phase, the reading operation will continue.

Figure 5 shows the timing design of the AXI bus slave
interface. At time T0, the state machine (wstate) is in the idle
state. At this time, the writing operation request comes,

Advances in Computer Science Research, volume 89

58

aw_valid and aw_ready are set to 1 to indicate that the write
address channel starts the handshake operation, and the write
data address is sent to the address bus (waddr[31:0]). At time
T1, the state machine shifts to the write data state. Since the
register write data ready signal lw_ready remains valid,
w_valid and w_ready are directly set to 1 to indicate that the
write data channel starts to handshake, and data A is transferred
to the write data bus (w_data[31:0]). The current transmission
only transmits a 32-bits word, so the last writing signal w_last
is set to 1 to indicate that the current data is the last data. At
time T2, the data transmission is completed, b_valid and
b_ready are set to 1 to indicate the write response channel
handshake start. At time T3, the write response channel has
handshaked, and the data is successfully written.

FIGURE V. ETHERNET AXI BUS SLAVE DEVICE INTERFACE

WRITING TIMING DESIGN

C. Design and Implementation of AXI Bus Master Interface

According to the characteristics of the MAC, this paper will
design the master interface between the DMA controller and
the AXI bus. The DMA controller accesses system storage in a
descriptor-based manner. It can access a series of
non-contiguous addresses, which not only improves device
efficiency but also reduces storage device requirements. The
DMA obtains the first address of the data and the
corresponding control information through the descriptors.

The DMA controller's access request to the bus is divided
into TX and RX requests. The processing of the RX request of
the master device interface always takes precedence over the
processing of the TX request, but whether it is a TX or RX
request both contain reading and writing access operations to
the bus. The reading and writing accesses of the Ethernet AXI
bus master interface are implemented by the same state
machine. The states and descriptions of the state machine are
shown in Table 1.

TABLE I. ETHERNET MASTER INTERFACE STATE MACHINE
DESCRIPTION TABLE

State name Status
number

Description

IDLE 0 Idle state, bus interface has
no read or write request

W 1 The first state of the write
operation

R_WAIT_RESP 2 The first state of the read
operation, waiting for data

from the slave
R_WAIT_NEXT 3 Waiting for the last

transmission from the
device

B 4 Write end state

According to the characteristics of reading access, this

design divides the AXI bus master reading operation timing
design into no waiting and waiting. Taking the RX request as
an example, the DMA controller's reading operation timing
design for the AXI bus is shown in Figure 6.

FIGURE VI. ETHERNET AXI BUS MASTER INTERFACE READING

TIMING DESIGN

In order to comply with the access bandwidth of the DMA
controller, the read address bus of AXI uses its lower 32 bits
for address interaction, and the 64-bits read data bus of AXI
sequentially transfers data to the 32-bits data bus of the DMA
controller in accordance with the order in which the data
arrives at the bus.

Figure 6 shows the reading timing design without waiting.
The transmitted data is two 32-bits data A1 and A2. At time T0,
the state machine is in the idle state, rmsti.req is set to 1 to
indicate that the request in the receive direction is coming, and
the request is a reading bus request, so aximi.ar_valid and
aximo.ar_ready are set, and read address channel starts
handshake operation. At the same time, the bus is authorized to
the RX channel of the DMA, and the address corresponding to
the data A1 is sent to the address bus
(aximo.ar_bits.addr[31:0]). At time T1, aximi.r_valid and
aximo.r_ready are set to 1, the bus read data channel performs
a handshake operation, and rmsto.ready is set to 1 to indicate
that the RX channel data is ready. At the same time, the state
machine is transferred to the read data state, and the data (A1)
on the lower 32 bits of aximo.r_data[63:0] is sent to the RX
data channel rmsto.data[31:0]. At time T2, aximi.r_last is set to

Advances in Computer Science Research, volume 89

59

1 to indicate that the current data is the last data of this
transmission. At time T3, the transmission ends and the
transmission is successful, and the state machine switches back
to the idle state.

Different from the reading timing design without waiting,
the bus reading operation on the RX channel has a request for a
sudden withdrawal. Therefore, the address bus and the data bus
must wait for the corresponding cycles, and the state machine
enters the R_WAIT_NEXT state; until the RX channel resumes
the bus reading operation request, the address bus and data bus
continue to transmit until the transfer is completed.

FIGURE VII. ETHERNET AXI BUS MASTER DEVICE INTERFACE

WRITING TIMING DESIGN

Same as reading timing, the write address bus uses its lower
32 bits for address interaction in the writing timing design. The
64-bit write data bus determines whether the data from the
DMA controller's 32-bits data bus channel is sent to the lower
32 bits or the upper 32 bits according to the data address 2.

Figure 7 shows the bus master device interface writing
timing design on the RX channel. The data transferred is two
32-bits data A1 and A2. At time T0, the state machine is in the
idle state, at which time rmsti.req is set to 1 to indicate that the
request in the receive direction is coming, and the request is a
write bus request, so aximi.aw_valid and aximo.aw_ready are
set, and the bus write address channel starts the handshake
operation. The bus is granted to the RX channel of the DMA.
The address corresponding to the data A1 is sent to the write
address bus (aximo.aw_bits.addr[31:0]). At time T1,
aximi.w_valid and aximo.w_ready set to 1 to indicate the bus
write data channel for handshake operation, and rmsto.ready is
set to 1 to indicate that the RX channel data is ready, the state
machine is transferred to the write data state. At the same time,
the data A1 on rmsti.data[31:0] is sent to the lower 32 bits of
the 64-bits data bus aximi.w_data[63:0]. At time T2,
aximi.w_last is set to 1 to indicate that the current data is the
last data of the transmission, and the state machine is
transferred to the end write operation state. At time T3, the
current transfer is completed, aximi.b_valid and aximo.b_ready
are set to 1 to indicate that the write response channel to start
the handshake operation. At time T4, the write response

channel handshake is completed indicating that the data has
been successfully written.

D. Design and Implementation of SGMII

The implementation of the SGMII relies on serdes,
high-speed transceiving and other functions in the physical
coding sub-layer (PCS) [10]. In the usual design, the designer
will use the high-speed transceiver resources of the
development platform to achieve high-speed transceiver
function. The high-speed transceiver IP in the Virtex
Ultrascale+ hardware development platform does not provide
an interface to the PHY. Therefore, based on the detailed
understanding of the hardware development platform, the
design uses the SGMII IP resource to implement the
corresponding functions of the PCS. Since the SGMII IP core
only provides the GMII on the MAC side, this design also
implements the converter between the MII and the GMII, and
finally realizes the adaptation of the MII to the SGMII..

1) SGMII IP core settings
The settings of the SGMII IP core include mode, rate and

its basic function selection. According to the design
requirements, this paper selects the Gigabit SGMII IP core
based on asynchronous LVDS, which supports
10/100/1000Mbps. In addition, the design adds extended
MDIO and auto-negotiation.

The extended MDIO is an internal register group of the
SGMII IP core. This register group implements several basic
registers of the PHY, which facilitates the access of common
registers and improves the working efficiency of the Ethernet.

At present, most network devices use Gigabit Ethernet, but
the Ethernet controller implemented in this design is 100Mbps.
Therefore, to achieve communication between network devices
at different rates, an auto-negotiation function is required. The
auto-negotiation can coordinate the devices at both ends of the
communication to a unified working mode and working speed
through the detection of the fast pulse link, which saves the
trouble of manual setting and improves the intelligence of the
design.

2) Design and implementation of converter between MII and
GMII

The difference between the MII interface and the GMII
interface is the difference in data bit width. The data bandwidth
defined by the MII protocol is 4 bits, and the data bandwidth
defined by the GMII protocol is 8 bits. Therefore, the main
work of the converter is the conversion of data width. This
design utilizes the difference in the number of counter counts
to achieve data bit width conversion at 10Mbps and 100Mbpss
respectively. According to the different data transmission
directions, the converter design is divided into TX and RX. The
conversion timing design at 100Mbps is shown in Figure 8.

Advances in Computer Science Research, volume 89

60

FIGURE VIII. MII AND GMII CONVERSION TIMING DESIGN

Figure 8(a) shows the conversion timing design in the TX
direction. The transmitted data are two binary data a3a2a1a0
and a7a6a5a4. At time T0, tx_en changes from 0 to 1 to
indicate that the transmission is valid, the state machine (state)
transitions from the idle state to the transition state, and the
data a3a2a1a0 is sent from miio.txd[3:0] to txd_part[3:0]. The
counter (count) counts from 0. At time T1, the counter’s value
reaches 5, and the data a7a6a5a4 in miio.txd[3:0] is spliced
together with the data a3a2a1a0 in txd_part[3:0] to
gmiio.txd[7:0]. The two sets of 4-bits parallel data a3a2a1a0
and a7a6a5a4 are successfully converted into 8-bits parallel
data a7a6a5a4a3a2a1a0. At time T2, the counter is cleared, and
the state machine returns to the idle state when the current
transfer ends.

Figure 8(b) shows the conversion timing design in the RX
direction. The transmitted data is a binary data
(a7a6a5a4a3a2a1a0). At time T0, the received data valid signal
rx_dv is set to 1 to indicate that the data transfer is valid, the
state machine enters the transition state from the idle state, the
counter starts counting from 0, and the lower 4 bits of data
gmiii.txd[7:0] (a3a2a1a0) are repeatedly transferred to the
lower 4 bits and the upper 4 bits of rxd[7:0]. Then the lower 4
bits data (a3a2a1a0) of rxd[7:0] are transferred to miii.rxd[3:0].
At time T1, the counter’s value reaches 5, the high 4-bits data
(a7a6a5a4) of gmiii.txd[7:0] is repeatedly transferred to the
lower 4 bits and the upper 4 bits of rxd[7:0], and the lower four
bits of rxd[7:0] (a7a6a5a4) are dumped to miii.rxd[3:0]. At
time T2, the conversion of the a7a6a5a4a3a2a1a0 from the
GMII to the MII is completed, the counter is cleared, and the
state machine is turned back to idle when the RX transmission
is completed.

IV. TESTING RESULTS

The Virtex Ultrascale+ hardware development platform is
shown in Figure 9. The network port is connected to the PC

network port through a network cable. In this paper, the test of
the Ethernet controller is divided into two parts: functional
testing and performance testing.

FIGURE IX. VIRTEX ULTRASCALE+ HARDWARE DEVELOPMENT

PLATFORM

A. Function Testing

The purpose of functional testing is to verify whether the
designed can successfully exchange data with other network
devices. Therefore, according to the data transmission direction,
this paper divides the functional testing into transmitting test
and receiving test. Functional testing is accomplished using the
transmission of ARP packets.

In the transmitting test, the logic data analyzer in the
Vivado is used to observe the relevant data signals, and the
Wireshark is used to capture the ARP packet which sent to the
target PC. The observed data is compared to the data in the
acquired network packet. After comparative analysis, the data
on the data path is consistent with the packet data obtained in
Wireshark., and the information such as the MAC address in
the ARP packet conforms to the transmission the MAC address
and other information in the ARP packet are consistent with the
transmission environment and ARP protocol transmission rules.
Therefore, the designed Ethernet controller can transmit data
correctly.

In the receiving test, the logic data analyzer in the Vivado is
also used to observe the relevant data signals, and the
Wireshark is used to capture the ARP packet on the PC which
sent to the Virtex Ultrascale+ hardware development platform.
By comparing and analyzing, the data on the data path is
exactly the same as the content of the data packet. Therefore,
the designed Ethernet controller can receive data correctly.

B. Performance Testing

In order to verify the performance of the designed Ethernet
controller, this paper uses the transmission of UDP data
packets to test the actual transmission rate and packet loss rate.
Set the length of the transmitted data packets to 1500 bytes.
The test results are shown in Figure 10.

Advances in Computer Science Research, volume 89

61

FIGURE X. ETHERNET CONTROLLER PERFORMANCE TEST LINE

CHART

As shown in the line chart, the transmission error rate is
always 0%, and the transmission rate will fluctuate to some
extent when the number of transmitted UDP packets is
different, but the basic transmission rate remains above and
below 90Mbps. The rate obtained by the test is within a
reasonable range, so the designed Ethernet controller
performance meets the design expectations.

V. SUMMARY

This design uses the open source 10/100Mbps MAC on
Xilinx's new Virtex Ultrascale+ hardware development
platform to complete the interface design between Ethernet and
AXI bus, and realizes the adaptation between MII of MAC and
SGMII of PHY, and finally realizes the overall function of the
Ethernet controller. It is verified that the data can be stably and
correctly transmitted at a hundred-megabit rate through
Ethernet controller. More importantly, the design of the
Ethernet controller as the basis provides strong support for the
implementation of the AI development platform. However, this
design also has certain shortcomings. The use of the IP core
provided by Xilinx has limited the reusability of the design.
Therefore, in the future research, the related functions of the
SGMII IP core should be further independently designed to
improve the reusability of the design.

ACKNOWLEDGMENT

This research was financially supported by the National
Natural Science Foundation of China, the Common
Information System Equipment Advance Research Project, the
Beijing Science and Technology Star Program, the State Key
Laboratory of Architecture, the Beijing Future Chip
Technology High-tech Innovation Center Research Fund
Project and the Science and technology Innovation Service
Capacity Building.

REFERENCES
[1] YIN Shougang,GUO Heng,GUO Shaojun. The Current Situation and

Trend of the Development of Artificial Intelligence Chips[J]. Science
and Technology Review,2018,36(17):45-51.

[2] Yin S, Ouyang P, Tang S, et al. A high energy efficient recon�figurable
hybrid neural network processor for deep learningapplications[J]. IEEE
Journal of Solid-State Circuits, 2018, 53(4): 968-982.

[3] ZHAI Dahai,YANGSHE Rongyuan.The development status and trend of
high-speed Ethernet technology[J].Modern Transport, 2018 (01):
58-63(in chinese).

[4] JI Maosheng,ZUO Guohui,ZHANG Lina.Gigabit Ethernet Access
Design Based on SoC FPGA[J].Computers and Networks, 2017,43 (Z1):
94-96(in chinese).

[5] WANG Yaqi.Design and Implementation of Time Triggered Ethernet
Node Card Based on FPGA [D]. University of Electronic Science and
Technology, 2017(in chinese).

[6] DAI Yulong,LI Jinbiao.Gigabit Ethernet Switching Design Based on
88E6185[J].Industrial Control Computer, 2017,30(08): 24-25+27(in
chinese).

[7] GRLIB IP Core User’s Manual Version 2017.3[S].

[8] ZHAO Qiang,CHEN Lan.Design of DMA Controller Based on ABB
Bus Protocol [J]. Microelectronics and Computer, 2014, 31 (02):
129-131+136(in chinese).

[9] SHI Wenxia,WU Longsheng,SHENG Tingyi,AI Diao,CHEN
Qingyu.Design of a Multi-Channel DMA Controller Supporting Full
Duplex Data Transmission [J].Microelectronics and Computer,
2015,32(02): 76-79+83(in chinese).

[10] Serial-GMII Specification Revision 1.8[S].

Advances in Computer Science Research, volume 89

62

