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Abstract—Assembly of reconfigurable security protocol 

remains a major challenge for deploying higher security-level but 
more complicated security strategies in access points with limited 
resources and computing abilities. To handle this problem 
commendably, a hierarchically collaborative ant colony-based 
assembly algorithm was proposed. This algorithm decomposed 
the security protocol assembly problem into assembling 
directions controlling sub-task and cryptographic components 
selection sub-task. Directions control generated assembly sub-
goals and cryptographic components selection schedules the best-
fitted components for given sub-goals. Both sub-tasks adopted a 
modified version of ant colony algorithm to fulfil its targets. 
These two ant colony algorithms generate a candidate optimal 
solution collaboratively for the assembly problem. And a 
hierarchical pheromone was defined to reinforce positive 
behaviors of ant colony. Additionally, a Lévy theory based 
stochastic gradient algorithm was adopted to verify and re-
optimize the optimal solution. Experiment results suggest that the 
proposed algorithm outperforms baseline algorithms in 
convergence and performance. 

Keywords—security protocol assembly; collaborative ant colony; 
reconfigurable security protocol; space-ground integrated network; 
decision-making 

I. INTRODUCTION 

Reconfigurable secure protocol (RSP), with adaptively 
dynamic protocol assembly and flexible resource configuration 
[1-2], could greatly improves resources utilization and 
enhances network security, especially in access points of space-
ground integrated network (SGIN). Since performance of all 
components determine the efficiency of target protocol, the key 
issues in RSP is to determine the optimal secure access 
resources and corresponding protocol flow to generate the 
target protocol, which is defined as assembly decision-making 
problem (ADMP) in this paper. Generally, the scales of 
cryptogram resources and the diversities in design standards, 
cryptosystem, application situations of cryptogram resources 
enlarge the solution space of RDMP. What’s worse, the 
uncertainty of protocol flow caused by reconfiguration 
granularity, further intensify this situation. However, previous 
works mainly focus on resources scheduling and ignores the 
role of assembly flow in ADMP. Thus, designing an accurate 
and efficient assembly algorithm is of great significance. 

To address this problem, a hierarchically collaborative ant 
colony-based protocol assembly algorithm is proposed. The 

algorithm inspired by hierarchical reinforcement learning [3-4] 
and collaborative behavior of biological populations [5], 
decomposes the ADMP into two sub-problems including sub-
goals generation of resource selection and resources selection 
for each sub-goal. The sub-goals generation sub-task explores 
abstract resources scheduling sub-goals at lower temporal 
resolution in a latent state-space, while cryptographic resources 
selection schedules proper cryptogram resources for the sub-
goals to generates the most optimal solution for the target 
protocol. Both sub-tasks operate with an improved ant colony 
algorithm and a hierarchical pheromone is defined to reinforce 
the positive behaviors of populations. Additionally, a Lévy 
theory [6] based stochastic gradient algorithm is adopted to 
verify and re-optimize the solution. 

II. FORMALIZATION OF THE PROBLEM 

Definition 1 Assembly Model for RSP is defined as a 
quadruples ܴܵܲ = ,ܩܣۦ ,ܴܥ ,ܧܥ ۧܵܣ , where ܩܣ  denotes 
assembly goals, depicting functional and performance 
requirements of the target security protocol. ܴܥ refers to as all 
available cryptogram components including cryptocards, 
FPGAs, reconfigurable processors, etc. ܴܥ  represents 
efficiency criteria for protocol performance evaluation. ܵܣ 
indicates assembly solutions of given protocol, which consists 
of protocol flow and corresponding cryptogram resources. 

Definition 2 Assembly Goal (AG) denotes functional and 
performance requirements of target protocol. 

As complex protocols are formally derived from basic 
security components [7], AG could be decomposed into a sub-
goal set ܩܣ = ሼ݃ݎଵ, ⋯,ଶ݃ݎ ,  ௡ሽ, where each sub-goal can be݃ݎ
matched to a security component. ∀	݃ݎ௜ ∈ ,ܩܣ 1 ≤ ݅ ≤ ݊ , 
there exits ݎሺݍ݁ݎ ௜݃ሻ = ሺ݂ܿ௜, ,௜݉݌ ݌ ௜݂ሻ , where ݂ܿ௜, ,௜݉݌ ݌ ௜݂ 
respectively indicate functionality, interface and performance 
required by sub-goal . Intuitively speaking, there are 
multiple decomposition schemes for a given  due to 
differences in assembly granularity. Thus, there may exist 
other sub-goal sets ܩܣᇱ = ሼݎ ଵ݃ᇱ , ଶᇱ݃ݎ ,⋯ , ௠ᇱ݃ݎ ሽ  that satisfies ܩܣ = ሼݎ ଵ݃, ⋯,ଶ݃ݎ , ௡ሽ݃ݎ = ሼ݃ݎଵᇱ , ଶᇱ݃ݎ ,⋯ , ௠ᇱ݃ݎ ሽ =  .ᇱܩܣ

Definition 3 Cryptography Resources (CR) denotes 
available cryptogram components in the access points 

For each component, its attribute set is defined as a quintet ܥܥ = ሺ݅݀, ,݌ݐ ݂ܿ, ,݂݌ ሻ݉݌ , where ݅݀  uniquely identifies a 
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component, ݌ݐ points out its type, ݂ܿ depicts its functionality, ݂݌  describes its performance, including execution time, 
energy consumption, safety level, etc., and  denotes its 
input and output interfaces. All components together constitute 
the total cryptogram resources ܴܥ = ሼܿܿݎ௜|݅ = 1,2,⋯ܰሽ. 

Definition 4 Component Efficiency (CE) refers to overall 
performance of resources or security protocol. Define the 
efficiency function as ஼݂ா. 

Definition 5 Assembly Solution (AS) depicts the result of 
decision-making for protocol assembly, which consist of a 
protocol flow and a set of cryptogram resources.  

Based on Petri Net model [8], AS could be formulated as ܵܣ = ሺܵ݁ݐܽݐ, ,ݏܴ݁ :ݓ݋݈ܨ ሻ. Whereݓ݋݈ܨ ݁ݐܽݐܵ ↔  denotes ݏܴ݁
one flow of target protocol, transition set ܴ݁ݏ = ሼܿଵ, ܿଶ,⋅⋅⋅, ܿ௡ሽ 
are components of target protocol satisfying ܴ݁ݏ ⊂  and all ܴܥ
resources in ܴ݁ݏ together form the target protocol according to 
the ݓ݋݈ܨ. Place  refers to system states set. The solution 
with highest CE  is the best AS ܵܣ௕௘௦௧. 

Problem 1 ADMP problem: given ሼܿܿ௜|݅ = 1,2,⋯ܰሽ , 
target security protocol rsp and reconfiguration goal ܩܣሺ݌ݏݎሻ, 
ADMP is to find optimal solution ܵܣ௕௘௦௧ = ൫ መܵ, ෠ܶ ; ෠൯ܨ  that 
satisfies the following conditions,  

(1) ෠ܶ = ሼݐଵ, ⋯,ଶݐ , ௠ሽݐ ⊂ ܴܥ , and ⋃ ∋௧ݐ ෠் ி෠→ ݌ݏݎ , where ݉ 

is the size of ෠ܶand ⋃ ∋௧ݐ ෠் ி෠→ indicates that all resources in ෠ܶ ݌ݏݎ together form protocol rsp  according to protocol flow ܨ෠. 
(2) There exists a sub-goal set ሼ݃ݎଵ, ⋯,ଶ݃ݎ , ௠ሽ݃ݎ =  ܩܣ

and a ono-to-one mapping ݂: ܶ → ܩܴ , where ∀݃ݎ௝ ∈ ܩܣ , 
there is one and only one ݐ௜ ∈ ෠ܶሺ݅ = 1,2,⋯ , ݊ሻ  satisfying ݂ܿሺݐ௜ሻ = ݂ܿሺݐݎ௜ሻ, ௜ሻݐሺ݉݌ = ,௜ሻݐݎሺ݉݌ ௜ሻݐሺ݂݌ ≻ ௜ሻݐݎሺ݂݌ , 
where ݔ ≻ ݕ means that ‘ ݔ is better than ݕ ’, ݂ܿሺݔሻ, ,ሻݔሺ݉݌ ሻݔሺ݂݌  respectively denote functionality, 
interfaces and performance of ݔ. 

ሺܴܵ௕௘௦௧ሻ݂݌ (3) ≻  ሻ, which means that performance݌ݏሺ݂݌
of ܵܣ௕௘௦௧ is higher than the overall performance requirements. 

ܵܣ∀ (4) = ሺܵ, ܶ; ௕௘௦௧ሻܵܣሻ, ሺܨ ≻ ஼݂ாሺܵܣሻ. 
III. A HIERARCHICALLY COLLABORATIVE ANT COLONY BASED 

ASSEMBLY ALGORITHM 

This algorithm decomposes the ADMP into two sub-
problems including sub-goals generation of resource selection 
and resources selection for each sub-goal. The former points 
out the directions of scheduling decision and the later 
implements the cryptogram resources selection sub-task, where 
both collaboratively generate an optimal solution of SDMP 
coordinately. 

 In details, at time t, the algorithm firstly apperceives a 
latent system state ݏ௧ାଵand generates a cryptogram resources 

selection sub-goal ݃ݎ௧ାଵሺ0 ≤ ݐ ≤ ܭ − 1ሻ , where K is the 

scale of sub-goals. The sub-goal 1trg   points out the assembly 
directions and all ሼ݃ݎ௧ାଵሺ0 ≤ ݐ ≤ ܭ − 1ሻሽ together cover the 
overall protocol assembly goals. Then, the algorithm follows 

the directions guided by sub-goal ݃ݎ௧ାଵ and schedules optimal 
resource ܿ௧ାଵ′ 	for ݃ݎ௧ାଵ according to current system state ݏ௜ାଵ, 
which are combined to produce a candidate optimal solution. 
And a stochastic gradient algorithm based on Lévy Flight is 
conducted to verify and optimize the candidate solution.  

A. Sub-goal Generation 

As mentioned above, there may be multiple flows 
corresponding to the target protocol owing to difference in 
assembly granularity. Taking protocol flows in Figure Ⅰ for 
instance, there are seven distrinct flows between state ݏ௜ିଵand 
state ݏ௜ାଷ . At state ݏ௜ , there are 3 alternative sub-goals to 
construct the protocol. The sub-task selects one and generates 
the sub-goal ݎ ௜݃. When the sub-goal ݃ݎ௜ is accomplished, state 
transition from ݏ௜ to ݏ௜ାଵ is triggered. 
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FIGURE I.  PROTOCOL FLOWS AND STATE TRANSITION 

To generate proper sub-goal, an ant colony algorithm with 
Q-learning is adopted for training, which combines the 
advantage of optimization theory, non-linear control and 
reinforce learning. This sub-task takes current system state  
and ܴܩ  as input and outputs the sub-goal. When producing 
sub-goals, an adaptive pseudorandom ratio selection rule is 
introduced at probability ߠ଴ , and the sub-goal generation 
policy indicated by flow pheromone is adopted at probability 1 −  ଴. What’s more, sub-goal generation policies are trainedߠ
by updating flow pheromone, which is detailed in Sect. 4.3. At 
each system state, a sub-goal is generated according to policies 
shown in eq. 1-2. 

݂ா௔௡௧ሺݏ௧ሻ = ቊܽݔܽ݉݃ݎ൫ሾ߬௜௞ሺݐሻሿఈ ⋅ ሾߟ௜௞ሺݐሻሿఉ൯ ; ߠ ≤ ௜௝௞݌଴ߠ ሺݐሻ; ߠ > ଴ߠ   (1) 

௜௝௞݌ ሺݐሻ = ቐ ൣఛ೔ೕሺ௧ሻ൧ഀ⋅ሾఎ೔ೖሺ௧ሻሿഁ∑ ሾఛ೔ೞሺ௧ሻሿഀ⋅ሾఎ೔ೞሺ௧ሻሿഁೞ⊂ೌ೗೗೚ೢ೐೏೔ , ݇ ⊂ ,௜0݀݁ݓ݋݈݈ܽ ݇ ⊄ ௜݀݁ݓ݋݈݈ܽ        (2) 

߬௜௝ሺݐሻ is the amount of pheromone deposited for the sub-

goal that triggers state transition ݆݅ , and 0   is heuristic 
factor controlling the influence of ߬௜௝ሺݐሻ ሻݐ௜௞ሺߟ . = ଵ௙಴ಶሺ௥௘௦೔ೖሻ 
heuristic function indicating the expectation that the sub-goal 
triggering state transition ݆݅ is generated, ߚ ≥ 1  is the 
expectational heuristic factor. And ݈݈ܽ݀݁ݓ݋௜ denotes possible 
states set that state ݅ may transfer to. Sub-goal generation is 
implemented repeatedly until the target protocol ends. 
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B. Cryptogram Resources Selection 

Once a sub-goal is generated, the algorithm computes best 
cryptogram resource matching the sub-goal. And then, 
cryptogram resources for all sub-goals together constitute the 
candidate optimal solution for ADMP. Finally, candidate 
optimal solution is verified and optimized to obtain the final 
optimal solution. 

1) Secure access  resource matching for sub-goal 
Scenario of resource matching for a sub-goal is depicted in 

Figure Ⅱ, where given ∀݃ݎ௜ሺ݅ = 1,2,⋯  ሻ, there may exist aݐ
cryptogram resources set ܴܴ௜ ∈ ܴܴ  that could satisfy the 
functional requirements and performance index of the sub-goal ݃ݎ௜ . Cryptogram resource matching aims at finding best-
suitable cryptogram resource for each received sub-goal. 
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FIGURE II.  SCENARIO OF CRYPTOGRAPHIC RESOURCE MATCHING 

Similarly, to address this issue, an ant colony algorithm that 
includes just once cryptogram resource matching is introduced. 
Each matching aim at finding the preponderant cryptogram 
resource for current sub-goal. Rules for cryptogram resource 
matching is depicted in eq. 3-4. 

௟݂௔௡௧ௐ ሺ݃ݎ௧ሻ = ൝ܽݔܽ݉݃ݎ ቀൣ߬௖೔ሺݐሻ൧ఈ ⋅ ሻ൧ఉቁݐ௖೔ሺߟൣ ; ߠ ≤ ;ሻݐ௖೔ሺ݌ߜ ߠ > ߜ           (3) 

ሻݐ௖೔ሺ݌ = ൞ ቂఛ೎೔ሺ௧ሻቃഀ⋅ቂఎ೎೔ሺ௧ሻቃഁ∑ ቂఛ೎ೕሺ௧ሻቃഀ⋅ቂఎ೎ೕሺ௧ሻቃഁ೎ೕ⊂೘೟൫ೝ೒೔൯ , ܿ௜ ⊂ ݎሺܶܯ ௜݃ሻ0, ܿ௜ ⊂ ݎሺܶܯ ௜݃ሻ             (4) 

Where ߜ ∈ ሾ0,1ሿand a random walk rule depicted in eq. 3 is 
adopted when ߠ ≤  otherwise a determinate matching policy ,ߜ
shown in eq. 4 is adopted. ߬௖೔ሺݐሻis the amount of pheromone 
for cryptogram resource ܿ௜ and ߟ௖೔ሺݐሻ  is heuristic function 
indicating the expectation that ܿ௜  matches ݎ ௜݃ ݎሺܶܯ . ௜݃ሻ  is 
resources set that matching sub-goal ݎ ௜݃ . ܿ௜  is the ݅ -th 
component of the solution after each matching process. 

2) Candidate solution producing 
Candidate solution producing adopts the idea of 

concentrating group wisdom. Once all epochs are accomplished, 
to incorporate preponderant components of each solution, all 
generated solution are embedded into preponderant component 
extracting vectors using a linear projection ߶. Then, all vectors 
are pooled by summation to produce the candidate solution 
assuming that ܵܣ଴௖௔ is the candidate optimal solution and ܣ ௜ܵ 
denotes the ݅-th solution, then there exists 

AS଴ୡୟ = ∑ ϕሺAS୧ሻ୏୧ୀଵ 	                            (5) 	
Where ܭ denotes the scale of all solutions. 

3) Solution verification and optimization 
To guarantee that the real optimal solution is obtained, a 

Lévy Flight [6] based stochastic gradient algorithm is 
employed, which introduces the advantages of frequent short-
distance steps and accidental long-distance steps of Lévy flight 
into stochastic gradient policies. 

Assume ܵܣ଴௖௔  the initial candidate solution andܺ௜௖௔  to be 
the ݅ -th updating of ܵܣ଴௖௔ , the solution updating rule is 
formulized as follows 

ܣ ௜ܵାଵ௖௔ = ൫ ஼݂ாሺܣ ௜ܵ௖௔ሻ − ஼݂ாሺܣ ௟ܵ௕௘௦௧ሻ൯ ⊕ ⊕ߪ ሻߦሺݕݒ݁ܮ ܣ+ ௜ܵ௖௔                                                                                      (6) 

Where ߪis step factor controlling the range of optimization 
and ߪ = 1can be used usually in most cases, ܣ ௟ܵ௕௘௦௧denotes the 
historically best solution, ݕݒ′݁ܮሺߦሻ provides the random step 
length from a Lévy distribution. 

ሻߦሺݕݒ݁ܮ ∼ ߤ = ,ଵିకିݐ 0 < ߦ ≤ 2                         (7) 

For ease of calculation, eq. 8 is adopted to calculate the 
Lévy random number. 

Levyሺξሻ ∼ ம×ஜ|஝|భ/ಖ                                   (8) 

Where ߤ, ߦ follow the normal distribution and ߥ = 1.5. 

߶ = ቆ௰ሺଵାకሻ×௦௜௡ሺగ×క/ଶሻ௰ቀభశ഍మ ቁ×క×ଶሺ഍షభሻ/మቇଵ/క                          (9) 

To speed the convergence process of optimal solution 
optimization, some solutions are discarded and substituted by 
new solutions with certain probability. These new solutions are 
generated based on random walk policy as follows. 

RS୧ାଵୡୟ = RS୧ୡୟ + γሺRS୧ୡୟ − RS୩ୡୟሻ                         (10) 

Where ܴܵ௞௖௔ is a discarded solution and ߛ is step factor. 

After aforementioned solution optimization, assume 
ca
nRS  

to be the optimized solution, and then the final optimal solution ܴܵ௕௘௦௧ can be obtained with (17). 

௕௘௦௧ܵܣ = ൫ݔܽ݉݃ݎܽ ஼݂ாሺܵܣ௕௘௦௧ሻ, ஼݂ாሺܵܣ௡௖௔ሻ൯           (11) 

C. Hierarchical Pheromone Updating 

Additionally, a hierarchical pheromone is defined to 
reinforce the positive feedback of each sub-task, which is 
defined as follows 
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phe = ൛phe୤, phe୰ൟ                             (12) 

Where the upper pheromone ݌ℎ݁௙ = ൛݌ℎ݁௜௝௙ |݅, ݆ ∈ ܰൟ 
denotes pheromone on sub-goals and ݌ℎ݁௜௝௙ is the amount of 
pheromone on the sub-goal triggering state transition ݆݅. While 
the lower pheromone ݌ℎ݁௥ = ሼ݌ℎ݁௜௥|݅ ∈ ܰ, 0 < ݅ <  ሽ݉ݑܰ
refers to as pheromone for cryptogram resources and ݌ℎ ௜݁௥ is 
the amount of pheromone on the ݅-th cryptogram resource. 

A pheromone updating process will be triggered when sub-
goal generating or cryptogram resource selection is 
accomplished. Due to the differences in adopted ant colony 
algorithms, different pheromone updating rules are adopted. 

Pheromone updating for sub-goals 

Pheromone updating for sub-goals occurs mainly in the 
sub-goal generation phase. As sub-goal generation adopts the 
Ant colony algorithm with Q-learning, once the sub-goal is 
generated, the pheromone of this sub-goal is updated according 
to the following rule. 

ݐℎ݁௜௝௙ሺ݌ + ݊ሻ = ൫1 − ሻݐℎ݁௜௝௙ሺ݌௙൯ߩ + ௙ߩ ൭݌߂ℎ݁௜௝௙ + ߛ
⋅ ℎ݁௜௞௙݌௞∈௔௟௟௢௪௘ௗೕݔܽ݉ ሺݐሻ൱                   (13) 

ℎ݁௜௝௙݌߂ = ஺ா൫௑್೐ೞ೟೟ ൯ି஺ா൫௑್೐ೞ೟೟శ೙൯஺ா൫௑್೐ೞ೟೟శ೙ ൯                       (14) 

Where ߩ௙denotes the volatilization factor of protocol flow 

pheromone. ݌߂ℎ݁௜௝௙ depicts increment of sub-goal pheromone 
triggering state transition ݆݅. And, ߛ is the discount factor for 
computing the accumulated reward. Finally, after the algorithm 
is trained, the sub-goals pheromone could be transferred into 
sub-goal generation policies. 

1) Updating of pheromone for cryptogram resources 
Pheromone updating for cryptogram resources is triggered 

in two occasions, namely the cryptogram resource matching 
phase and the solution verification and optimization phase. 
During the cryptogram resource matching phase, when the 
best-suitable cryptogram resource for each received sub-goal is 
found, pheromone for this best-suitable cryptogram resource 
will be updated. Meanwhile, when the optimal solution is 
generated in solution verification and optimization phase, 
pheromones for all cryptogram resources constituting the 
optimal solution will be updated. The updating rule can be 
formulized as follows. 

ݐℎ݁௖௥ሺ݌ + ݊ሻ = ሺ1 − ሻݐℎ݁௖௥ሺ݌௥ሻߩ +  ℎ݁௖௥          (15)݌߂

Where ߩ௥  denotes the volatilization factor of resources 
pheromone, ݌߂ℎ݁௖௥ depicts the increment of pheromone on 
cryptogram resources c . In cryptogram resource matching 
phase, ݌߂ℎ݁௖௥ = ௐ௙಴ಶሺ௖ሻ . While in solution verification and 

optimization phase, ݌߂ℎ݁௖௥ = ௐ௙಴ಶሺ௑೗್೐ೞ೟ሻ, where ௟ܺ௕௘௦௧  is local 

optimal solution in an epoch and ܹ  is a constant variable. 
When the hierarchical pheromone is trained, it could be 
transferred into scheduling policies. 

IV. EXPERIMENTS 

A. Settings 

Experiments are carried out to analyze the convergence and 
performance of the proposed algorithm. A simplified 
cryptogram component set listed in table I.  

TABLE I. SIMPLIFIED CRYPTOGRAM COMPONENTS 

Security Service Cryptographic algorithm and components 

Confidentiality 
S-DES; DES; 3-DES; IDEA; Blowfish; CAST-128; 
CAST-256; A5/1; A5/2; RC4; RC5; RC6; Elgamal; 

Integrity MD4; MD5; SHA-1; SHA-2; RIPEMO-160;  

Authentication  Hash, RSA, Schnorr; ElGamal, DSS, ECC 

Anti-replay Linear Congruence, Normal distribution, Monte 

Non-repudiation  Hash, RSA, Schnorr; ElGamal, DSS, ECC 

 

Security protocols including Hsieh’s scheme [9], Jiang’s 
scheme [10], Priauth [11], Chen’s scheme [12] are adopted as 
target security protocols. 

B. Convergence Analysis 

Convergence analysis focuses on the influences of 
cryptogram resources requirements of security protocol, total 
scale of cryptogram resources, the step length of global 
optimization, the pheromone volatility factor and the 
population collaboration on the algorithm convergence. And 
the stopping condition for training is set to be that the deviation 
of two adjacent solutions is less than 0.01. 

1) Levy step of the global optimization 
In solution verification and optimization, a levy flight based 

stochastic gradient decline algorithm is adopted. To analyze the 
influence of levy flight step on convergence, the fixed step and 
the random step are taken as benchmarks. 
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FIGURE III.  INFLUENCE OF LEVY STEP 

From Figure III, we can find that the levy flight step 
outperforms the random step and fixed step in convergence. 
After analysis, we can see that the levy flight based stochastic 
gradient decline algorithm combines long step and short step, 
where steps can be adjusted according to the distance to the 
optimal solution, resulting in faster convergence. Additionally, 
compared to fixed step, random step possesses faster 
convergence. 

2) Volatility factor of pheromone 
Set total size of cryptogram resources be 100. Choose 

Hsieh’s scheme as target protocol. As both flow pheromone 
and resource pheromone have its own volatility factor, the 
influence of these two volatility factors are tested separately. 
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FIGURE IV.  INFLUENCE OF VOLATILITY FACTOR 

From figure IV, we can find that the pheromone volatility 
factor directly influences the convergence rate. Intuitively, 
larger volatility factor leads to faster convergence rate. As the 
volatility factor get larger, the pheromones of unvisited 
cryptographic resources or protocol flow drop to 0 much faster 
and the probability that the visited ones are selected again get 
larger, leading to the speed-up of convergence, which also 
loses the randomness. Additionally, the influences of volatility 

factor for protocol flow pheromone and resources pheromone 
are equal, which further points out the signification of 
coordination. 

3) Population collaboration 
Set the total size of cryptogram resources to be 100, and 

choose Hsieh’s scheme as target protocol. Change ant number 
in population of each sub-task to adjust the rate of collaboration. 
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FIGURE V.  INFLUENCE OF POPULATION COLLABORATION 

From Figure V, when ant number in the population of either 
sub-task drops to 0, the convergence gets slower. When the ant 
number in population in both sub-task equals 0, population 
collaboration disappears and degenerates to Cuckoo Search 
algorithm and Ant-Q algorithm respectively, and the 
convergence time reaches the ceiling. 

C. Performance Analysis 

Set size of whole cryptogram resources to be 100, and take 
ant colony algorithm [13], cuckoo search algorithm [14] and 
reinforcement learning [15] as benchmark algorithm. 

TABLE II. PERFORMANCE ANALYSIS 

Algorithms Items 
Protocols 

Hsieh Jiang Priauth Chen 

Ant Colony 
Time 2267.5 3016.7 2659.4 5453.3

Accuracy 88.9% 86.7% 87.6% 82.5%

Cuckoo Search
Time 1653.8 2543.1 1956.6 4431.6

Accuracy 92.5% 91.7% 92.1% 90.2%
Reinforcement 

Learning 
Time 455.3 642.5 574.2 996.3 

Accuracy 98.8% 98.0% 98.3% 95.6%

HiCoACS 
Time 234.8 323.2 277.9 534.3 

Accuracy 99.5% 99.4% 99.5% 99.1%

 

From table II, it could be seen that our algorithm possesses 
less time cost and higher accuracy, and outperforms given 
benchmark algorithms in accuracy and efficiency. This result in 
some degree demonstrates the advantages of combining 
hierarchical reinforcement learning and collaborative behavior 
of biological populations. 
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