
Algebraic Cryptanalysis of Block Ciphers

Rustem Biyashev1, Dilmuhanbet Dyusenbayev1, Kunbolat Algazy1 and Nursulu Kapalova1,*
1Information Security laboratory Institute of Information and Computational Technologies CS MES RK Almaty, Kazakhstan

*Corresponding author

Abstract— Algebraic methods of cryptanalysis are applicable
to present-day ciphers. These methods are based on generation of
an equation system, where elements of a ciphertext and a key are
chosen as variables of the system. When implementing a
linearization method to solve the equation system, we consider a
possibility to find partial elements of a key. Generally,
cryptosystems use S-blocks, which are the only element
contributing to nonlinearity of a ciphering transformation and the
level of its strength against cryptanalytic attacks. In this paper we
present, by the example of encryption algorithm Kuznechik, an
algebraic analysis applicable to some block ciphers.

Keywords—algebraic cryptanalysis; linearization; S-block;
residual variables; equation systems; truth tables; Boolean function;
Zhegalkin polynomial

I. INTRODUCTION

While developing cryptosystems, engineers in many
applications use S-blocks, which are the only element
contributing to nonlinearity of a ciphering transformation and
the level of its strength against cryptanalytic attacks.

Algebraic methods are based on formation of a nonlinear
equation system representing transformations in S-blocks, and
then solving the nonlinear system. In the equations composed
for a linear transformation, the number of variables is not
increasing when passing to next rounds, i.e. the number of
variables after the first round is equal to the number of variables
after the nth round. In contrast, in nonlinear transformations the
number of variables increases after each round owing to
multiplications of variables from a previous round. An
algorithm complexity can be evaluated on the basis of the
systems of linear equations resulting from linearization.

The size of variables chosen for a study depends on the type
of the algorithm under consideration, as well as preferences of
a cryptanalyst. For example, variables can have a size of a bit
or byte.

When implementing a linearization method to solve a set of
equations, it is possible to find elements of a key in parts. Our
study was conducted with the developed software enabling
generation of an equation system for linear and nonlinear
transformations, namely for substitution S-blocks. The essence
of the method is generation of equations representing nonlinear
substitution transformations of S-blocks with a subsequent
attempt to solve the generated equation systems and obtain
parts of a cipher key. When performing the attack, a
cryptanalyst can see in a stepwise manner changes in outputs
after each round.

The attack was conducted against encryption algorithm
Kuznechik. Our study has shown that all processes of the

algorithm, apart from S-block, can be presented in a linear form.
If a ciphertext has been known then the respective plaintext and
key are considered as variables [1,2]. Each output of S-block
can be converted with an input and represented by nonlinear
expressions. We then obtain a set of nonlinear equations and
through linearization pass to a linear equation system. Here, the
number of variables is increasing exponentially with each round.
So, in our studies we used an abridged linearization with
residual variables. By residual variables we mean a grouped
sum of terms, which are products of two or more variables.

II. BLOCK CIPHER «KUZNECHIK»

This is a symmetric block encryption algorithm with a block
size of 128 bits and a 256-bit key, generated with a Feistel
network. The cipher is built on the basis of an SP-network,
which is a transformation involving several identical rounds,
where each round comprises of linear and nonlinear
conversions followed by applying a key. An SP-network
transforms the whole input block as against a half-block in a
Feistel network. The length of input block of the algorithm is
128 bits, and the length of master key is 256 bits [3, 4].

Kuznechik peculiarities:

 Round keys are generated from a master key based on
a Feistel network, where a round transformation of the original
algorithm serves as a function;

 A linear transformation can be performed with a shift
register.

When implementing encryption and decryption algorithms,
the following transformations are used:

X[k]: V128 → V128, X[k](a) = k ⊕ a, where k, a ∈ V128; (1)

S: V128 → V128, S(a) = S(a15||…||a0) = π(a15)||…||π(a0), (2)

where a = a15||…||a0 ∈ V128, ai ∈ V8, i = 0, 1, …, 15;

L: V128 → V128 - L(a) = R16(a), where a ∈ V128; (3)

The linear transformation is given by mapping ℓ: V816 →
V8, which is defined as follows:

ℓ(a15, …, a0) = ∇(148 · Δ(a15) + 32 · Δ(a14) + 133 · Δ(a13) + 16
·Δ(a12) + 194 · Δ(a11) + 192 · Δ(a10) + 1 · Δ(a9) + 251 · Δ(a8) +
1 Δ(a7) + 192 · Δ(a6) + 194 · Δ(a5) + 16 · Δ(a4) + 133 · Δ(a3)
+ 32 Δ(a2) + 148 · Δ(a1) + 1 · Δ(a0)) (4)

Advances in Computer Science Research, volume 89

2019 International Conference on Wireless Communication, Network and Multimedia Engineering (WCNME 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 129

III. ALGEBRAIC CRYPTANALYSIS OF KUZNECHIC ALGORITHM

Let (ݔଵ଴, ,ଶ଴ݔ … , ,ଵଵݔ) ௡଴) andݔ …,ଶଵݔ , ௡ଵ) be input and outputݔ
bit blocks of the linear transformation at the initial step. Output
bits are expressible by: ݔ௜ଵ = ௡଴, (5)ݔ௜,௡ݍ⨁…⨁ଶ଴ݔ௜,ଶݍ⨁ଵ଴ݔ௜,ଵݍ	

where coefficients ݍ௜,௝ ∈ {0,1} , ݅, ݆ = 1, ݊തതതതത (n – block length)
reflect the contribution of bit ݔ௝଴ to the equation. In Kuznechik
algorithm, n = 384, m = 128.

Suppose (ݔଵ௥, ,ଶ௥ݔ … , ௡௥) is an output vector of round r. Theݔ
number of variables in linear equations remains unchanged.
The equations governing bits of the output vector of round r are
given by formula: x୧୰ = 	q୧,ଵ୰ xଵ଴⨁q୧,ଶ୰ xଶ଴⨁…⨁q୧,୬୰ x୬଴ (6)

The regularity above cannot be attributed merely to S-block.
If we represent input bits as (ݔଵ, ,ଶݔ … , -and output bits of S (଼ݔ
block as (ݕଵ, …,ଶݕ , then the output bits can be transformed ,(଼ݕ
by input bits by the following expression:

y୧ = q୧⨁෍൫q୧୨x୨൯଼
୨ୀଵ ⨁

⨁∑ ൫ݍ௜௝భ௝మݔ௝భݔ௝మ൯⨁ଵஸ௝భ,௝మஸ଼ ଵݔ଼…௜ଵݍ⨁… (7) ଼ݔ…

If we linearize the S-block equation represented by output
bits, then the number of variables will be less than 256. In the
event the number of variables is equal 256, S-block cannot
provide a random permutation. When the equation expresses a
complete combination, then:

෍x୨଼
୨ୀଵ ⨁ ෍ x୨భx୨మଵஸ୨భ,୨మஸ଼ ໄ …⨁xଵ … x଼ =

= (xଵ⨁1)… (x଼⨁1)⨁1 = xଵ⋁…⋁x଼

Providing that the block length is 128, we will get not more
than 4096 output variables for 16 input bytes. Here, inputs of
S-blocks involve 8 variables as against 16 ones. If the number
of variables is k, then the number of combinations will not

exceed ܭ =෌ ௜௞௞௜ୀ଴ܥ . In the general case, the S-block output
variables for k input variables can be expressed as ݕ௜:

௜ݕ = ܽ௜,଴⨁෍൫ܽ௜,௝ݔ௝൯௞
௝ୀଵ ⨁ ෍ ൫ܽ௜,௝భ,௝మݔ௝భݔ௝మ൯⨁ଵஸ௝భ,௝మஸ௞

⨁…⨁ܽ௜,ଵ,…,௞ݔଵ × …× ௞ (8)ݔ

where ݅ = 1,8തതതത.

A. Analysis of Linear Operations

When using formula (6) for transformation (3), a linear
transformation can be represented as a transition matrix of size
[128×128]. Matrix ܯଵଶ଼×ଵଶ଼௥ expresses 128 output bits of
transformation (3) and describes 128 expressions, where each
expression linearly depends on 128 input bits of (3) and r is the
number of transformations performed. To get the matrix, we
need to represent each value of the algorithm operations as a
mathematical expression in the form of polynomials with
elements L(a)=R16(a). The linear transformation involves two
operations, i.e. a byte shift and a conversion. In turn, the
conversion is composed of several multiplication operators.

1) Multiplication operator
In what follows, each multiplication operator from (4) is

considered separately for the cases where output bits are
represented by input bits. Here, a multiplication operators are
performed over finite augmented field

GF(2)[z]\(z8 + z7 + z6 + z + 1).

The first term of linear transformation (4) (148 · X) can be
expressed as follows:

(z7 + z4 + z2) · (x7 · z7 + x6 · z6 + x5 · z5 + x4 · z4 + x3 · z3 +

+ x2 · z2 + x1 · z1 + x0 · z0 = x7 · z14 + x6 · z13 + x5 · z12 +

+ (x7 ⊕ x4) · z11 + (x6 ⊕ x3) · z10 + (x7 ⊕ x5 ⊕ x2) · z9 +

+(x6⊕x4⊕x1) · z8 + ((x5 ⊕ x3 ⊕ x0) · z7 + (x4 ⊕ x2) · z6+

+ (x3 ⊕ x1) · z5 + (x2 ⊕ x0) · z4 + x1 · z3 + x0 · z2;

Now we perform a modulo operation, which result in the
following:

(148 · X) | mod (z8 + z7 + z6 + z + 1) = (x7 · z14 + x6 · z13 +

+ x5 · z12 + (x7 ⊕ x4) · z11 + (x6 ⊕ x3) · z10 +

+ (x7 ⊕ x5 ⊕ x2) · z9 + (x6 ⊕ x4 ⊕ x1) · z8 +

+ ((x5 ⊕ x3 ⊕ x0) · z7 + (x4 ⊕ x2) · z6 + (x3 ⊕ x1) · z5 +

+ (x2 ⊕ x0) · z4 + x1 · z3 + x0 · z2) | mod (z8 + z7 + z6 + z + 1) =

= (x7 ⊕ x6 ⊕ x5 ⊕ x1 ⊕ x0) · z7 + (x7 ⊕ x4 ⊕ x2) · z6 +

+ (x7 ⊕ x5 ⊕ x3 ⊕ x1) · z5 + (x6 ⊕ x4 ⊕ x2 ⊕ x0) · z4 +

+ (x5 ⊕ x3 ⊕ x1) · z3 + (x7 ⊕ x4 ⊕ x2 ⊕ x0) · z2 +

+ (x6 ⊕ x3 ⊕ x1) · z1 + (x7 ⊕ x6 ⊕ x2 ⊕ x0);

We repeat the steps for the other terms.

2) Byte-shift operations
The algorithm in question works with bytes. Since we have

a bit representation, we consider ai in the bitwise manner as
follows:

a16 = (x127, x126,…, x120), a15 =

=(x119, x118, …, x112), … , a1 =

= (x15, x14, …, x8), a0 = (x7, x6, …, x0).

After each cycle, all bytes rotate right shift of one position,
i.e. ai = ai+1, except for the 16th (a16) byte, which is
determined from formula a16 = ℓ(a15, …, a0). If we represent

Advances in Computer Science Research, volume 89

130

bytes as bits, then after r-th cycle the output bits will follow the
formula: aଵ଺୰ = (xଵଶ଻୰ , … , xଵଶ଴୰), (9)

where ݔଵଶ଻௥ାଵ = ଵଶ଻௥ݔ ଵଶ଺௥ݔ⨁ ଵଶହ௥ݔ⨁ ଵଶଵ௥ݔ⨁ ଵଶ଴௥ݔ⨁ ଵଵ଼௥ݔ⨁ ଵଵ଻௥ݔ⨁ ଵଵହ௥ݔ⨁ ⨁ ଵଵସ௥ݔ⨁ ଵଵଵ௥ݔ⨁ ଵ଴ଽ௥ݔ⨁ ଵ଴଼௥ݔ⨁ ଵ଴଻௥ݔ⨁ ଵ଴ହ௥ݔ⨁ ଵ଴ସ௥ݔ⨁ ⨁ ଵ଴ଷ௥ݔ⨁ ଵ଴ଶ௥ݔ⨁ ଵ଴଴௥ݔ⨁ ଽଽ௥ݔ⨁ ଽଷ௥ݔ⨁ ଽଵ௥ݔ⨁ ଽ଴௥ݔ⨁ ௥଼଼ݔ⨁ ⨁ ଻௥଼ݔ⨁ ଺௥଼ݔ⨁ ହ௥଼ݔ⨁ ଷ௥଼ݔ⨁ ଶ௥଼ݔ⨁ ଴௥଼ݔ⨁ ଻ଽ௥ݔ⨁ ଻ଵ௥ݔ⨁ ଺ଽ௥ݔ⨁ ⨁ ଺଻௥ݔ⨁ ଺ସ௥ݔ⨁ ଺ଷ௥ݔ⨁ ହହ௥ݔ⨁ ହସ௥ݔ⨁ ହଷ௥ݔ⨁ ହଵ௥ݔ⨁ ହ଴௥ݔ⨁ ସ଼௥ݔ⨁ ⨁ ସହ௥ݔ⨁ ସଷ௥ݔ⨁ ସଶ௥ݔ⨁ ସ଴௥ݔ⨁ ଷଽ௥ݔ⨁ ଷ଼௥ݔ⨁ ଷ଺௥ݔ⨁ ଷହ௥ݔ⨁ ଷଵ௥ݔ⨁ ⨁ ଶଽ௥ݔ⨁ ଶ଼௥ݔ⨁ ଶ଻௥ݔ⨁ ଶହ௥ݔ⨁ ଶସ௥ݔ⨁ ଶଶ௥ݔ⨁ ଶଵ௥ݔ⨁ ଵଽ௥ݔ⨁ ଵ଼௥ݔ⨁ ⨁ ଵହ௥ݔ⨁ ଵସ௥ݔ⨁ ଵଷ௥ݔ⨁ ଻௥ݔ⨁௥଼ݔ⨁ଽ௥ݔ⨁ = = ଵଶ଻,ଵ௥ାଵݍ ଵଶ଻,ଶ௥ାଵݍ⨁ଵ଴ݔ ଵଶ଻,௡௥ାଵݍ⨁…⨁ଶ଴ݔ ௡଴ݔ

By formula (4) we can also represent the following bits: ݔଵଶ଺௥ାଵ, ,ଵଶହ௥ାଵݔ ,ଵଶସ௥ାଵݔ ,ଵଶଷ௥ାଵݔ ,ଵଶଶ௥ାଵݔ ,ଵଶଵ௥ାଵݔ .ଵଶ଴௥ାଵݔ

A byte shift represented in bits is as follows: ݔ௜௥ାଵ = ௜ି଼௥ݔ = 	 ௜,ଵ௥ݍ ௜,ଶ௥ݍ⨁ଵ଴ݔ ௜,௡௥ݍ⨁…⨁ଶ଴ݔ ௡଴ݔ = = ௡଴ (10)ݔ௜,௡௥ାଵݍ⨁…⨁ଶ଴ݔ௜,ଶ௥ାଵݍ⨁ଵ଴ݔ௜,ଵ௥ାଵݍ

Formula (10) is true for all ݅, i.e. an output bit of every ,ݎ
cycle can be expressed by elements of previous cycles. For any ݅, ௜௥ݍ equation ݎ = .ଵ௥ାଵ holds trueݍ

Formula (10) involves n variables. The equation system
under consideration uses 256 variables for key generation, and
384 variables for encryption.

B. Analysis of S-blocks

We look at S-block in its bit representation: (ݔଵ, ,ଶݔ … , (଼ݔ ௌ→ ,ଵݕ) …,ଶݕ , (11) ,(଼ݕ

where ݔ௜, ௜ݕ ∈ {0,1}, ݅ = 1,8തതതത
The bit representations are set as eight truth tables. For each

truth table we construct a Boolean function of 8 variables
involving in a Zhegalkin polynomial [5,6], i.e. you can describe
each output bit of the S-box. In the equations above our concern
was only with monomials involving one variable. The sum of
the rest terms we denote as residual variables.

When linearizing the equation system we obtain as follows ݕଵ(ݔଵ, ,ଶݔ … , (଼ݔ = ,ଵݔ)ଶݕ ,ଵߜ ,ଶݔ … , (଼ݔ = ,ଵݔ)ଷݕ ,ଶߜ ,ଶݔ … , (଼ݔ = ,ଵݔ)ସݕ ଷߜ⨁ଶݔ⨁ଷݔ⨁଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ହݕ ,ସߜ⨁ଵݔ⨁ଷݔ⨁ହݔ⨁଻ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଺ݕ ହ, (12)ߜ ,ଶݔ … , (଼ݔ = ,଺ߜ⨁ସݔ⨁ହݔ⨁଺ݔ⨁଻ݔ

y଻(xଵ, xଶ, … , x଼) = x଼⨁x଻⨁xସ⨁xଷ⨁xଵ⨁δ଻, y଼(xଵ, xଶ, … , x଼) = x଼⨁x଻⨁x଺⨁xହ⨁xସ⨁xଷ⨁xଶ⨁δ଼

A similar abridgement can be performed using residual
variables, which are products of three different variables. As an
example: ݕଵ(ݔଵ, ,ଶݔ … , (଼ݔ = ,ଵݔ)ଶݕ .ଵߜ⨁ଵݔଶݔ⨁ଵݔଷݔ⨁ଵݔହݔ⨁ଵݔ଺ݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଺ݔ⨁ଶݔ଻ݔ⨁ ⨁ଷݔ଼ݔ⨁ସݔହݔ⨁ହݔ଺ݔ⨁଺ݔ଻ݔ⨁଻ݔ଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ଷݕ .ଶߜ⨁ଵݔଶݔ⨁ଵݔ଺ݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଻ݔ⨁ଶݔ଼ݔ⨁ଷݔହݔ⨁ସݔହݔ⨁ ⨁ସݔ଺ݔ⨁ହݔ଺ݔ⨁ହݔ଻ݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଻ݔ଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ସݕ .ଷߜ⨁ଵݔସݔ⨁ଵݔ଺ݔ⨁ଵݔ଼ݔ⨁ଶݔସݔ⨁ଶݔହݔ⨁ ⨁ଶݔ଺ݔ⨁ଶݔ଻ݔ⨁ଶݔ⨁ଷݔସݔ⨁ଷݔ଺ݔ⨁ଶݔ଻ݔ⨁ଷݔ଻ݔ⨁ଷݔ⨁ସݔହݔ⨁ ⨁ସݔ଺ݔ⨁ହݔ଺ݔ⨁ହݔ଼ݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ହݕ .ସߜ⨁ଵݔଶݔ⨁ଵݔଷݔ⨁ଵݔ଺ݔ⨁ଵݔ଼ݔ⨁ ⨁ଵݔ⨁ଶݔଷݔ⨁ଶݔହݔ⨁ଶݔ଺ݔ⨁ଶݔ଼ݔ⨁ଷݔ଻ݔ⨁ଷݔ଼ݔ⨁ଷݔସݔହݔ⨁ ⨁ସݔ଺ݔ⨁ସݔ଻ݔ⨁ହݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଻ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଺ݕ .ହߜ⨁ଵݔଶݔ⨁ଵݔସݔ⨁ଵݔହݔ⨁ଵݔ଻ݔ⨁ଵݔ଼ݔ⨁ଶݔଷݔ⨁ଶݔହݔ⨁ଶݔ଺ݔ⨁ ⨁ଶݔ଼ݔ⨁ଷݔସݔ⨁ଷݔହݔ⨁ଷݔ଺ݔ⨁ସݔହݔସݔ଺ݔ⨁ସݔ଻ݔ⨁ସݔ଼ݔ⨁ଷݔ⨁ ⨁ହݔ଺ݔ⨁ହݔ଻ݔ⨁ହݔ଼ݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଻ݔ଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଻ݕ (13)																																଺.ߜ⨁ଵݔଶݔ⨁ଵݔସݔ⨁ ⨁ଵݔହݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଺ݔ⨁ଶݔ଻ݔ⨁ସݔ଺ݔ⨁ସݔ଻ݔ⨁ ⨁ସݔ଼ݔ⨁ସݔ⨁ହݔ⨁଺ݔ଼ݔ⨁଺ݔ⨁଻ݔ଼ݔ⨁଻ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଼ݕ .଻ߜ⨁ଵݔଶݔ⨁ଵݔଷݔ⨁ଵݔ଺ݔ⨁ଵݔ⨁ଶݔଷݔ⨁ଶݔ଻ݔ⨁ଶݔ଼ݔ⨁ ⨁ଷݔସݔ⨁ଷݔ଻ݔ⨁ଷݔ଼ݔ⨁ଷݔ⨁ସݔ଺ݔ⨁ସݔ଻ݔ⨁ସݔ଼ݔ⨁ ⨁ସݔ⨁ହݔ଻ݔ⨁ହݔ଼ݔ⨁଺ݔ଻ݔ⨁଻ݔ଼ݔ⨁଻ݔ⨁଼ݔ ,ଶݔ … , (଼ݔ = .଼ߜ⨁ଵݔଷݔ⨁ଵݔସݔ⨁ଵݔ଺ݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଺ݔ⨁ଶݔ⨁ଷݔସݔ⨁ ⨁ଷݔହݔ⨁ଷݔ⨁ସݔହݔ⨁ସݔ଺ݔ⨁ସݔ଼ݔ⨁ସݔ⨁ହݔ଺ݔ⨁ହݔ଻ݔ⨁ ⨁ହݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଺ݔ⨁଻ݔ଼ݔ⨁଻ݔ⨁଼ݔ
C. Linearization Abridgement

Let ∑ ൫ݍ௜௝భ௝మݔ௝భݔ௝మ൯ଵஸ௝భ,௝మஸ௡ ଵݔ௜ଵ…௡ݍ⨁…⨁ ௡ݔ… be a part
of expression (8). We denote the remaining part as a new
variable ߜ௜ ∈ {0,1}, then formula (8) becomes as follows: ݔ௜௥ = ௜,଴௥ݍ ௜,ଵ௥ݍ⨁ ௜,ଶ௥ݍ⨁ଵ଴ݔ ௜,௡௥ݍ⨁…⨁ଶ଴ݔ ௜ (14)ߜ⨁௡଴ݔ

where ݔ௜௥, ݅ = 1,128തതതതതതത are bits of a ciphertext.

We divide linear equation system (14) into two parts: ܭ)ܨ, ܺ) = ௜,଴௥ݍ ௜,ଵ௥ݍ⨁ ௜,ଶ௥ݍ⨁ଵ଴ݔ ௜,௡௥ݍ⨁…⨁ଶ଴ݔ ,௡଴ݔ and residual
variables

 Q = (δଵ, δଶ, … , δଵଶ଼), F(K, X)⨁Q = Y (15)

Where ܭ = ,ଵݔ) ,ଶݔ … , (ଶହ଺ݔ are key bits, ܺ ,ଶହ଻ݔ)= ,ଶହ଼ݔ … , (ଷ଼ସݔ are plaintext bits, and ܻ ,ଵݕ)= …,ଶݕ , .ଵଶ଼) are ciphertext bitsݕ

Let there be given two blocks of the cipher ܨଵ(ܭ, ଵܺ)⨁ܳଵ = ଵܻ and ܨଶ(ܭ, ܺଶ)⨁ܳଶ = ଶܻ.

If we add the plaintext variables to residuals, we will obtain:

Advances in Computer Science Research, volume 89

131

∗ଵܳ⨁(ܭ)∗ܨ = ଵܻ∗, ∗ଶܳ⨁(ܭ)∗ܨ = ଶܻ∗	 (16)

When adding together equation systems (16), we get as
follows: ܳଵ∗⨁ܳଶ∗ = ଵܻ∗⨁ ଶܻ∗ (17)

The resulting equation system has 256 variables. In a
general way, it needs an exhaustive search of 2256 operations to
retrieve the key. By using equation system (17) the complexity
of exhaustive search will be 2128.

IV. SUMMARY

Based on the research findings it can be proposed as follows:

- If equation system (15) provides for a possibility to
calculate variables of the system in parts, then the complexity
of the exhaustive search will be less than 2ଵଶ଼;

- If equation system (15) does not provide for a
possibility to calculate variables of the system in parts, then the
complexity of the exhaustive search will be more than 2ଵଶ଼;

With the developed software implementing the approach
described above, it is possible to trace involvement of each key
bit in the process of transformation. Our study of Kuznechik
algorithm has shown that the transformation results lead to the
second proposition, i.e. the complexity of the exhaustive search
will be more than 2ଵଶ଼. The algebraic method discussed in the
paper can also be implemented to other block encryption
algorithms.

ACKNOWLEDGMENT

This research was financially supported by the Ministry of
Education and Science of the Republic of Kazakhstan.

REFERENCES
[1] Voronin R. I., Algebraic cryptoanalysis of one-round S-AES, PDM, 2011,

4, 29–31.
[2] Kapalova N., Dyusenbayev D., Security analysis of an encryption scheme

based on nonpositional polynomial notations // Journal Open Engineering.
- 2016. – 6: p. 250-258.

[3] National Standard of the Russian Federation, GOST R 34.12-2015,
Information technology, Cryptographic data security, Block ciphers.
Moscow, Москва, Standartinform, 2015, p. 21.

[4] E.A. Ischukova, R.A. Koshutskiy, L.K. Babenko. Development and
implementation of high speed data encryption algorithm Kuznechik,
Electronic scientific journal of the Kursk State University. 2015. No. 4
(08).

[5] S.D. Shaporev. Mathematical logic. Course of lectures and tutorial. – SPb.:
BHV-Peterburg, 2007. – p. 416: il.

[6] A.G. Rostovtsev, E.B. Makhovenko. Theoretical cryptography. NPO
Professional, Sankt-Petersburg, 2004.

Advances in Computer Science Research, volume 89

132

