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Abstract— Algebraic methods of cryptanalysis are applicable 
to present-day ciphers. These methods are based on generation of 
an equation system, where elements of a ciphertext and a key are 
chosen as variables of the system. When implementing a 
linearization method to solve the equation system, we consider a 
possibility to find partial elements of a key. Generally, 
cryptosystems use S-blocks, which are the only element 
contributing to nonlinearity of a ciphering transformation and the 
level of its strength against cryptanalytic attacks. In this paper we 
present, by the example of encryption algorithm Kuznechik, an 
algebraic analysis applicable to some block ciphers. 
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I. INTRODUCTION  

While developing cryptosystems, engineers in many 
applications use S-blocks, which are the only element 
contributing to nonlinearity of a ciphering transformation and 
the level of its strength against cryptanalytic attacks. 

Algebraic methods are based on formation of a nonlinear 
equation system representing transformations in S-blocks, and 
then solving the nonlinear system. In the equations composed 
for a linear transformation, the number of variables is not 
increasing when passing to next rounds, i.e. the number of 
variables after the first round is equal to the number of variables 
after the nth round. In contrast, in nonlinear transformations the 
number of variables increases after each round owing to 
multiplications of variables from a previous round. An 
algorithm complexity can be evaluated on the basis of the 
systems of linear equations resulting from linearization. 

The size of variables chosen for a study depends on the type 
of the algorithm under consideration, as well as preferences of 
a cryptanalyst. For example, variables can have a size of a bit 
or byte. 

When implementing a linearization method to solve a set of 
equations, it is possible to find elements of a key in parts. Our 
study was conducted with the developed software enabling 
generation of an equation system for linear and nonlinear 
transformations, namely for substitution S-blocks. The essence 
of the method is generation of equations representing nonlinear 
substitution transformations of S-blocks with a subsequent 
attempt to solve the generated equation systems and obtain 
parts of a cipher key. When performing the attack, a 
cryptanalyst can see in a stepwise manner changes in outputs 
after each round.  

The attack was conducted against encryption algorithm 
Kuznechik. Our study has shown that all processes of the 

algorithm, apart from S-block, can be presented in a linear form. 
If a ciphertext has been known then the respective plaintext and 
key are considered as variables [1,2]. Each output of S-block 
can be converted with an input and represented by nonlinear 
expressions. We then obtain a set of nonlinear equations and 
through linearization pass to a linear equation system. Here, the 
number of variables is increasing exponentially with each round. 
So, in our studies we used an abridged linearization with 
residual variables. By residual variables we mean a grouped 
sum of terms, which are products of two or more variables. 

II. BLOCK CIPHER «KUZNECHIK» 

This is a symmetric block encryption algorithm with a block 
size of 128 bits and a 256-bit key, generated with a Feistel 
network. The cipher is built on the basis of an SP-network, 
which is a transformation involving several identical rounds, 
where each round comprises of linear and nonlinear 
conversions followed by applying a key. An SP-network 
transforms the whole input block as against a half-block in a 
Feistel network. The length of input block of the algorithm is 
128 bits, and the length of master key is 256 bits [3, 4]. 

Kuznechik peculiarities: 

 Round keys are generated from a master key based on 
a Feistel network, where a round transformation of the original 
algorithm serves as a function; 

 A linear transformation can be performed with a shift 
register. 

When implementing encryption and decryption algorithms, 
the following transformations are used: 

X[k]: V128 → V128, X[k](a) = k ⊕ a, where k, a ∈ V128;     (1) 

S: V128 → V128, S(a) = S(a15||…||a0) = π(a15)||…||π(a0),     (2) 

where a = a15||…||a0 ∈ V128, ai ∈ V8, i = 0, 1, …, 15;  

L: V128 → V128 - L(a) = R16(a), where a ∈ V128;              (3) 

The linear transformation is given by mapping ℓ: V816 → 
V8, which is defined as follows:  

ℓ(a15, …, a0) = ∇(148 · Δ(a15) + 32 · Δ(a14) + 133 · Δ(a13) + 16 
·Δ(a12) + 194 · Δ(a11) + 192 · Δ(a10) + 1 · Δ(a9) + 251 · Δ(a8) + 
1  Δ(a7) + 192 · Δ(a6) + 194 · Δ(a5) + 16 · Δ(a4) + 133 · Δ(a3) 
+ 32  Δ(a2) + 148 · Δ(a1) + 1 · Δ(a0))                                     (4) 
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III. ALGEBRAIC CRYPTANALYSIS OF KUZNECHIC ALGORITHM 

Let (ݔଵ଴, ,ଶ଴ݔ … , ,ଵଵݔ) ௡଴) andݔ …,ଶଵݔ ,  ௡ଵ) be input and outputݔ
bit blocks of the linear transformation at the initial step. Output 
bits are expressible by: ݔ௜ଵ =  ௡଴,                     (5)ݔ௜,௡ݍ⨁…⨁ଶ଴ݔ௜,ଶݍ⨁ଵ଴ݔ௜,ଵݍ	

 
where coefficients ݍ௜,௝ ∈ {0,1} , ݅, ݆ = 1, ݊തതതതത  (n – block length) 
reflect the contribution of bit ݔ௝଴ to the equation. In Kuznechik 
algorithm, n = 384, m = 128.  

Suppose (ݔଵ௥, ,ଶ௥ݔ … ,  ௡௥) is an output vector of round r. Theݔ
number of variables in linear equations remains unchanged. 
The equations governing bits of the output vector of round r are 
given by formula: x୧୰ = 	q୧,ଵ୰ xଵ଴⨁q୧,ଶ୰ xଶ଴⨁…⨁q୧,୬୰ x୬଴                          (6) 

The regularity above cannot be attributed merely to S-block. 
If we represent input bits as (ݔଵ, ,ଶݔ … , -and output bits of S (଼ݔ
block as (ݕଵ, …,ଶݕ ,  then the output bits can be transformed ,(଼ݕ
by input bits by the following expression: 

y୧ = q୧⨁෍൫q୧୨x୨൯଼
୨ୀଵ ⨁ 

⨁∑ ൫ݍ௜௝భ௝మݔ௝భݔ௝మ൯⨁ଵஸ௝భ,௝మஸ଼ ଵݔ଼…௜ଵݍ⨁…  (7)      ଼ݔ…

If we linearize the S-block equation represented by output 
bits, then the number of variables will be less than 256. In the 
event the number of variables is equal 256, S-block cannot 
provide a random permutation. When the equation expresses a 
complete combination, then: 

෍x୨଼
୨ୀଵ ⨁ ෍ x୨భx୨మଵஸ୨భ,୨మஸ଼ ໄ …⨁xଵ … x଼ = 

= (xଵ⨁1)… (x଼⨁1)⨁1 = xଵ⋁…⋁x଼ 

Providing that the block length is 128, we will get not more 
than 4096 output variables for 16 input bytes. Here, inputs of 
S-blocks involve 8 variables as against 16 ones. If the number 
of variables is k, then the number of combinations will not 

exceed ܭ =෌ ௜௞௞௜ୀ଴ܥ . In the general case, the S-block output 
variables for k input variables can be expressed as ݕ௜:   

௜ݕ = ܽ௜,଴⨁෍൫ܽ௜,௝ݔ௝൯௞
௝ୀଵ ⨁ ෍ ൫ܽ௜,௝భ,௝మݔ௝భݔ௝మ൯⨁ଵஸ௝భ,௝మஸ௞  

⨁…⨁ܽ௜,ଵ,…,௞ݔଵ × …×  ௞                      (8)ݔ

where ݅ = 1,8തതതത. 

A. Analysis of Linear Operations  

When using formula (6) for transformation (3), a linear 
transformation can be represented as a transition matrix of size 
[128×128]. Matrix ܯଵଶ଼×ଵଶ଼௥  expresses 128 output bits of 
transformation (3) and describes 128 expressions, where each 
expression linearly depends on 128 input bits of (3) and r is the 
number of transformations performed. To get the matrix, we 
need to represent each value of the algorithm operations as a 
mathematical expression in the form of polynomials with 
elements L(a)=R16(a). The linear transformation involves two 
operations, i.e. a byte shift and a conversion. In turn, the 
conversion is composed of several multiplication operators.  

1) Multiplication operator 
In what follows, each multiplication operator from (4) is 

considered separately for the cases where output bits are 
represented by input bits. Here, a multiplication operators are 
performed over finite augmented field  

GF(2)[z]\(z8 + z7 + z6 + z + 1). 

The first term of linear transformation (4) (148 · X) can be 
expressed as follows: 

(z7 + z4 + z2) · (x7 · z7 + x6 · z6 + x5 · z5 + x4 · z4 + x3 · z3 + 

+ x2 · z2 + x1 · z1 + x0 · z0 = x7 · z14 + x6 · z13 + x5 · z12 + 

+ (x7 ⊕ x4) · z11 + (x6 ⊕ x3) · z10 + (x7 ⊕ x5 ⊕ x2) · z9 + 

+(x6⊕x4⊕x1) · z8 + ((x5 ⊕ x3 ⊕ x0) · z7 + (x4 ⊕ x2) · z6+ 

+ (x3 ⊕ x1) · z5 + (x2 ⊕ x0) · z4 + x1 · z3 + x0 · z2; 

Now we perform a modulo operation, which result in the 
following: 

(148 · X) | mod (z8 + z7 + z6 + z + 1) = (x7 · z14 + x6 · z13 + 

+ x5 · z12 + (x7 ⊕ x4) · z11 + (x6 ⊕ x3) · z10 + 

+ (x7 ⊕ x5 ⊕ x2) · z9 + (x6 ⊕ x4 ⊕ x1) · z8 + 

+ ((x5 ⊕ x3 ⊕ x0) · z7 + (x4 ⊕ x2) · z6 + (x3 ⊕ x1) · z5 + 

+ (x2 ⊕ x0) · z4 + x1 · z3 + x0 · z2) | mod (z8 + z7 + z6 + z + 1) = 

= (x7 ⊕ x6 ⊕ x5 ⊕ x1 ⊕ x0) · z7 + (x7 ⊕ x4 ⊕ x2) · z6 + 

+ (x7 ⊕ x5 ⊕ x3 ⊕ x1) · z5 + (x6 ⊕ x4 ⊕ x2 ⊕ x0) · z4 + 

+ (x5 ⊕ x3 ⊕ x1) · z3 + (x7 ⊕ x4 ⊕ x2 ⊕ x0) · z2 + 

+ (x6 ⊕ x3 ⊕ x1) · z1 + (x7 ⊕ x6 ⊕ x2 ⊕ x0); 

We repeat the steps for the other terms. 

2) Byte-shift operations 
The algorithm in question works with bytes. Since we have 

a bit representation, we consider ai in the bitwise manner as 
follows:  

a16 = (x127, x126,…, x120), a15 = 

=(x119, x118, …, x112), … , a1 = 

= (x15, x14, …, x8), a0 = (x7, x6, …, x0). 

After each cycle, all bytes rotate right shift of one position, 
i.e. ai = ai+1, except for the 16th (a16) byte, which is 
determined from formula a16 = ℓ(a15, …, a0). If we represent 
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bytes as bits, then after r-th cycle the output bits will follow the 
formula:  aଵ଺୰ = (xଵଶ଻୰ , … , xଵଶ଴୰ ),                              (9) 

where  ݔଵଶ଻௥ାଵ = ଵଶ଻௥ݔ ଵଶ଺௥ݔ⨁ ଵଶହ௥ݔ⨁ ଵଶଵ௥ݔ⨁ ଵଶ଴௥ݔ⨁ ଵଵ଼௥ݔ⨁ ଵଵ଻௥ݔ⨁ ଵଵହ௥ݔ⨁ ⨁ ଵଵସ௥ݔ⨁ ଵଵଵ௥ݔ⨁ ଵ଴ଽ௥ݔ⨁ ଵ଴଼௥ݔ⨁ ଵ଴଻௥ݔ⨁ ଵ଴ହ௥ݔ⨁ ଵ଴ସ௥ݔ⨁ ⨁ ଵ଴ଷ௥ݔ⨁ ଵ଴ଶ௥ݔ⨁ ଵ଴଴௥ݔ⨁ ଽଽ௥ݔ⨁ ଽଷ௥ݔ⨁ ଽଵ௥ݔ⨁ ଽ଴௥ݔ⨁ ௥଼଼ݔ⨁ ⨁ ଻௥଼ݔ⨁ ଺௥଼ݔ⨁ ହ௥଼ݔ⨁ ଷ௥଼ݔ⨁ ଶ௥଼ݔ⨁ ଴௥଼ݔ⨁ ଻ଽ௥ݔ⨁ ଻ଵ௥ݔ⨁ ଺ଽ௥ݔ⨁ ⨁ ଺଻௥ݔ⨁ ଺ସ௥ݔ⨁ ଺ଷ௥ݔ⨁ ହହ௥ݔ⨁ ହସ௥ݔ⨁ ହଷ௥ݔ⨁ ହଵ௥ݔ⨁ ହ଴௥ݔ⨁ ସ଼௥ݔ⨁ ⨁ ସହ௥ݔ⨁ ସଷ௥ݔ⨁ ସଶ௥ݔ⨁ ସ଴௥ݔ⨁ ଷଽ௥ݔ⨁ ଷ଼௥ݔ⨁ ଷ଺௥ݔ⨁ ଷହ௥ݔ⨁ ଷଵ௥ݔ⨁ ⨁ ଶଽ௥ݔ⨁ ଶ଼௥ݔ⨁ ଶ଻௥ݔ⨁ ଶହ௥ݔ⨁ ଶସ௥ݔ⨁ ଶଶ௥ݔ⨁ ଶଵ௥ݔ⨁ ଵଽ௥ݔ⨁ ଵ଼௥ݔ⨁ ⨁ ଵହ௥ݔ⨁ ଵସ௥ݔ⨁ ଵଷ௥ݔ⨁ ଻௥ݔ⨁௥଼ݔ⨁ଽ௥ݔ⨁ = = ଵଶ଻,ଵ௥ାଵݍ ଵଶ଻,ଶ௥ାଵݍ⨁ଵ଴ݔ ଵଶ଻,௡௥ାଵݍ⨁…⨁ଶ଴ݔ  ௡଴ݔ

By formula (4) we can also represent the following bits:  ݔଵଶ଺௥ାଵ, ,ଵଶହ௥ାଵݔ ,ଵଶସ௥ାଵݔ ,ଵଶଷ௥ାଵݔ ,ଵଶଶ௥ାଵݔ ,ଵଶଵ௥ାଵݔ  .ଵଶ଴௥ାଵݔ

A byte shift represented in bits is as follows: ݔ௜௥ାଵ = ௜ି଼௥ݔ = 	 ௜,ଵ௥ݍ ௜,ଶ௥ݍ⨁ଵ଴ݔ ௜,௡௥ݍ⨁…⨁ଶ଴ݔ ௡଴ݔ = =  ௡଴               (10)ݔ௜,௡௥ାଵݍ⨁…⨁ଶ଴ݔ௜,ଶ௥ାଵݍ⨁ଵ଴ݔ௜,ଵ௥ାଵݍ

Formula (10) is true for all ݅,  i.e. an output bit of every ,ݎ
cycle can be expressed by elements of previous cycles. For any ݅, ௜௥ݍ equation ݎ =  .ଵ௥ାଵ holds trueݍ

Formula (10) involves n variables. The equation system 
under consideration uses 256 variables for key generation, and 
384 variables for encryption. 

B. Analysis of S-blocks  

We look at S-block in its bit representation:  (ݔଵ, ,ଶݔ … , (଼ݔ ௌ→ ,ଵݕ) …,ଶݕ ,  (11)                    ,(଼ݕ

where ݔ௜, ௜ݕ ∈ {0,1}, ݅ = 1,8തതതത 
The bit representations are set as eight truth tables. For each 

truth table we construct a Boolean function of 8 variables 
involving in a Zhegalkin polynomial [5,6], i.e. you can describe 
each output bit of the S-box. In the equations above our concern 
was only with monomials involving one variable. The sum of 
the rest terms we denote as residual variables. 

When linearizing the equation system we obtain as follows ݕଵ(ݔଵ, ,ଶݔ … , (଼ݔ = ,ଵݔ)ଶݕ ,ଵߜ ,ଶݔ … , (଼ݔ = ,ଵݔ)ଷݕ ,ଶߜ ,ଶݔ … , (଼ݔ = ,ଵݔ)ସݕ ଷߜ⨁ଶݔ⨁ଷݔ⨁଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ହݕ ,ସߜ⨁ଵݔ⨁ଷݔ⨁ହݔ⨁଻ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଺ݕ ହ,                                                     (12)ߜ ,ଶݔ … , (଼ݔ =  ,଺ߜ⨁ସݔ⨁ହݔ⨁଺ݔ⨁଻ݔ

y଻(xଵ, xଶ, … , x଼) = x଼⨁x଻⨁xସ⨁xଷ⨁xଵ⨁δ଻, y଼(xଵ, xଶ, … , x଼) = x଼⨁x଻⨁x଺⨁xହ⨁xସ⨁xଷ⨁xଶ⨁δ଼ 

A similar abridgement can be performed using residual 
variables, which are products of three different variables. As an 
example: ݕଵ(ݔଵ, ,ଶݔ … , (଼ݔ = ,ଵݔ)ଶݕ .ଵߜ⨁ଵݔଶݔ⨁ଵݔଷݔ⨁ଵݔହݔ⨁ଵݔ଺ݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଺ݔ⨁ଶݔ଻ݔ⨁ ⨁ଷݔ଼ݔ⨁ସݔହݔ⨁ହݔ଺ݔ⨁଺ݔ଻ݔ⨁଻ݔ଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ଷݕ .ଶߜ⨁ଵݔଶݔ⨁ଵݔ଺ݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଻ݔ⨁ଶݔ଼ݔ⨁ଷݔହݔ⨁ସݔହݔ⨁ ⨁ସݔ଺ݔ⨁ହݔ଺ݔ⨁ହݔ଻ݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଻ݔ଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ସݕ .ଷߜ⨁ଵݔସݔ⨁ଵݔ଺ݔ⨁ଵݔ଼ݔ⨁ଶݔସݔ⨁ଶݔହݔ⨁ ⨁ଶݔ଺ݔ⨁ଶݔ଻ݔ⨁ଶݔ⨁ଷݔସݔ⨁ଷݔ଺ݔ⨁ଶݔ଻ݔ⨁ଷݔ଻ݔ⨁ଷݔ⨁ସݔହݔ⨁ ⨁ସݔ଺ݔ⨁ହݔ଺ݔ⨁ହݔ଼ݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)ହݕ .ସߜ⨁ଵݔଶݔ⨁ଵݔଷݔ⨁ଵݔ଺ݔ⨁ଵݔ଼ݔ⨁ ⨁ଵݔ⨁ଶݔଷݔ⨁ଶݔହݔ⨁ଶݔ଺ݔ⨁ଶݔ଼ݔ⨁ଷݔ଻ݔ⨁ଷݔ଼ݔ⨁ଷݔସݔହݔ⨁ ⨁ସݔ଺ݔ⨁ସݔ଻ݔ⨁ହݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଻ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଺ݕ .ହߜ⨁ଵݔଶݔ⨁ଵݔସݔ⨁ଵݔହݔ⨁ଵݔ଻ݔ⨁ଵݔ଼ݔ⨁ଶݔଷݔ⨁ଶݔହݔ⨁ଶݔ଺ݔ⨁ ⨁ଶݔ଼ݔ⨁ଷݔସݔ⨁ଷݔହݔ⨁ଷݔ଺ݔ⨁ସݔହݔସݔ଺ݔ⨁ସݔ଻ݔ⨁ସݔ଼ݔ⨁ଷݔ⨁ ⨁ହݔ଺ݔ⨁ହݔ଻ݔ⨁ହݔ଼ݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଻ݔ଼ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଻ݕ  (13)																																଺.ߜ⨁ଵݔଶݔ⨁ଵݔସݔ⨁ ⨁ଵݔହݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଺ݔ⨁ଶݔ଻ݔ⨁ସݔ଺ݔ⨁ସݔ଻ݔ⨁ ⨁ସݔ଼ݔ⨁ସݔ⨁ହݔ⨁଺ݔ଼ݔ⨁଺ݔ⨁଻ݔ଼ݔ⨁଻ݔ ,ଶݔ … , (଼ݔ = ,ଵݔ)଼ݕ .଻ߜ⨁ଵݔଶݔ⨁ଵݔଷݔ⨁ଵݔ଺ݔ⨁ଵݔ⨁ଶݔଷݔ⨁ଶݔ଻ݔ⨁ଶݔ଼ݔ⨁ ⨁ଷݔସݔ⨁ଷݔ଻ݔ⨁ଷݔ଼ݔ⨁ଷݔ⨁ସݔ଺ݔ⨁ସݔ଻ݔ⨁ସݔ଼ݔ⨁ ⨁ସݔ⨁ହݔ଻ݔ⨁ହݔ଼ݔ⨁଺ݔ଻ݔ⨁଻ݔ଼ݔ⨁଻ݔ⨁଼ݔ ,ଶݔ … , (଼ݔ =  .଼ߜ⨁ଵݔଷݔ⨁ଵݔସݔ⨁ଵݔ଺ݔ⨁ଵݔ଻ݔ⨁ଶݔଷݔ⨁ଶݔ଺ݔ⨁ଶݔ⨁ଷݔସݔ⨁ ⨁ଷݔହݔ⨁ଷݔ⨁ସݔହݔ⨁ସݔ଺ݔ⨁ସݔ଼ݔ⨁ସݔ⨁ହݔ଺ݔ⨁ହݔ଻ݔ⨁ ⨁ହݔ⨁଺ݔ଻ݔ⨁଺ݔ଼ݔ⨁଺ݔ⨁଻ݔ଼ݔ⨁଻ݔ⨁଼ݔ
C. Linearization Abridgement 

Let ∑ ൫ݍ௜௝భ௝మݔ௝భݔ௝మ൯ଵஸ௝భ,௝మஸ௡ ଵݔ௜ଵ…௡ݍ⨁…⨁ ௡ݔ…  be a part 
of expression (8). We denote the remaining part as a new 
variable ߜ௜ ∈ {0,1}, then formula (8) becomes as follows: ݔ௜௥ = ௜,଴௥ݍ ௜,ଵ௥ݍ⨁ ௜,ଶ௥ݍ⨁ଵ଴ݔ ௜,௡௥ݍ⨁…⨁ଶ଴ݔ  ௜               (14)ߜ⨁௡଴ݔ

where ݔ௜௥, ݅ = 1,128തതതതതതത are bits of a ciphertext.  

We divide linear equation system (14) into two parts: ܭ)ܨ, ܺ) = ௜,଴௥ݍ ௜,ଵ௥ݍ⨁ ௜,ଶ௥ݍ⨁ଵ଴ݔ ௜,௡௥ݍ⨁…⨁ଶ଴ݔ ,௡଴ݔ  and residual 
variables  

 Q = (δଵ, δଶ, … , δଵଶ଼), F(K, X)⨁Q = Y                    (15) 

Where ܭ = ,ଵݔ) ,ଶݔ … , (ଶହ଺ݔ  are key bits, ܺ ,ଶହ଻ݔ)= ,ଶହ଼ݔ … , (ଷ଼ସݔ  are plaintext bits, and ܻ ,ଵݕ)= …,ଶݕ ,  .ଵଶ଼) are ciphertext bitsݕ

Let there be given two blocks of the cipher  ܨଵ(ܭ, ଵܺ)⨁ܳଵ = ଵܻ and ܨଶ(ܭ, ܺଶ)⨁ܳଶ = ଶܻ. 

If we add the plaintext variables to residuals, we will obtain:   
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∗ଵܳ⨁(ܭ)∗ܨ = ଵܻ∗, ∗ଶܳ⨁(ܭ)∗ܨ = ଶܻ∗	                        (16) 

When adding together equation systems (16), we get as 
follows: ܳଵ∗⨁ܳଶ∗ = ଵܻ∗⨁ ଶܻ∗                                   (17) 

The resulting equation system has 256 variables. In a 
general way, it needs an exhaustive search of 2256 operations to 
retrieve the key. By using equation system (17) the complexity 
of exhaustive search will be 2128.    

IV. SUMMARY 

Based on the research findings it can be proposed as follows: 

- If equation system (15) provides for a possibility to 
calculate variables of the system in parts, then the complexity 
of the exhaustive search will be less than 2ଵଶ଼; 

- If equation system (15) does not provide for a 
possibility to calculate variables of the system in parts, then the 
complexity of the exhaustive search will be more than 2ଵଶ଼; 

With the developed software implementing the approach 
described above, it is possible to trace involvement of each key 
bit in the process of transformation. Our study of Kuznechik 
algorithm has shown that the transformation results lead to the 
second proposition, i.e. the complexity of the exhaustive search 
will be more than 2ଵଶ଼. The algebraic method discussed in the 
paper can also be implemented to other block encryption 
algorithms.  
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