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Abstract—The analysis of performance monitoring 
unit(PMU) can not only effectively characterize the operation 
characteristics of the program, but also provide a basis for 
performance optimization. Because of the huge number of PMU 
performance counters in cloud environment, there are some 
problems such as low monitoring efficiency and low data quality. 
Based on this, this paper starts with filling missing values and 
replacing them, uses regression method to complete missing 
values, uses local filtering method to filter out outliers, and uses 
the method of data preprocessing based on knowledge base to 
effectively improve the monitoring efficiency. The experimental 
results show that the scheme can effectively analyze the possible 
impact of PMU execution on program operation, and the 
similarity of the reference value of the processed results is higher 
than 80%, up to 95%.  
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I. INTRODUCTION 

With the development of cloud computing technology, 
more and more application services are running on cloud 
platforms. Therefore, the scale and number of data centers are 
growing at an unprecedented rate. However, large-scale cloud 
computing infrastructure poses severe challenges to operation 
and maintenance, and new monitoring and maintenance 
technologies are needed[1]. The diversity of applications and 
heterogeneous hardware platforms present in data centers make 
it more difficult to monitor and optimize performance, which 
makes performance monitoring in cloud environment 
particularly important. Compared with the performance 
monitoring at the system level, the counting results of hardware 
performance events under PMU can reflect the actual operation 
of the machine more carefully and directly. 

In modern processors, there are usually 2-8 performance 
counters, which are used to record hardware events that occur 
at run time[2]. To save chip area and cost, more performance 
counters can not be designed in processors. To understand the 
running behavior and optimize the performance of the program, 
the number of events that need to be monitored is far greater 
than the number of performance counters, and it is still growing. 
Because the minimal performance improvements in data 
centers can be translated into huge cost savings, many 
researchers are studying how to use PMU monitoring results to 
optimize performance. There are two ways to map performance 
events that need to be monitored to performance counters: (1) 
the number of performance events monitored is less than or 
equal to the number of counters; (2) the number of performance 
events monitored is more than the number of counters[3]. 

The first method can obtain accurate monitoring results, but 
limited by the number of performance technicians and actual 
needs, it needs repeated experiments to get the results of all the 
events required, so this method is inefficient[4]. In addition, the 
execution time of the same program running multiple times in 
cloud environment will fluctuate greatly, and the unequal time 
series results can be obtained, which greatly improves the 
difficulty of subsequent analysis. The second way can greatly 
improve the monitoring efficiency and avoid duplication of 
monitoring work under general needs[5]. However, this method 
will reduce the quality of monitoring data, which can be shown 
by the failure to effectively monitor the zero value of events or 
the sudden increase of data in time series, and the deviation 
from other data in the same group is more than multiple 
standard deviations. And the more monitoring events are, the 
lower the data quality is. In order to improve the monitoring 
efficiency and quality, it is urgent to improve the existing 
problems in the second mode. 

Considering the differences of server processor architecture, 
software computing framework and application itself, this 
paper proposes a data preprocessing method based on 
knowledge base. For the same running environment and 
application monitoring tasks under the same computing 
framework, monitoring events can be different but contain 
events corresponding to missing values. Combining with the 
current missing items in monitoring data, a back-up is 
constructed. For outliers, local filter parameters are configured 
according to the monitoring data of similar monitoring tasks in 
the knowledge base, so that the filter can detect and process the 
outliers in different event results adaptively. 

II. EFFICIENCY AND QUALITY OF PMU APPLICATION IN 

CLOUD ENVIRONMENT 

A. Performance Counter 

Modern processors are usually equipped with performance 
monitoring unit (PMU), which consists of two parts: hardware 
performance event and performance counter. The performance 
counter is used to measure the number of clock cycles, 
instructions and cache missing in program execution in micro-
architecture. The result can directly reflect the execution of 
hardware in program execution and analyze the use of 
hardware resources in program execution[6]. 

In modern processors, there are usually 2-8 performance 
counters. For example, Intel Xeon E5 V3 series processors 
equipped with two dedicated performance counters and four 
universal performance counters to monitor more than 200 
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events, which based on Hasw ell-E microarchitecture, the 
dedicated performance counter can only monitor the number of 
unpaused clock cycles and the number of successfully executed 
instructions. The universal counter can be configured to 
monitor all other events. A performance counter is essentially a 
special register that records the number of times an event 
occurs. The number of performance counters owned by 
different series of processors is different, and the types of 
hardware events that can support monitoring are different, but 
the common point is that the number of performance counters 
in all processor structures is much smaller than the number of 
events that can be monitored. 

B. Application of PMU 

The template is used to format your paper and style the text. 
All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note peculiarities. 
For example, the head margin in this template measures 
proportionately more than is customary[7]. This measurement 
and others are deliberate, using specifications that anticipate 
your paper as one part of the entire proceedings, and not as an 
independent document. Please do not revise any of the current 
designations. 

In the Linux operating system, Perf_events kernel interface 
acts as a general-purpose, high-level interface to drive 
performance counters to complete monitoring tasks, and is 
added to the official kernel after Linux 2.6.31. 
Perf_event_open( ) is a system call, sysfs is a file system to 
simplify event naming and tool configuration, and the middle 
layer includes a general-purpose core computational logic and 
general interface layer design for different processor 
architectures. 

At present, Perf and Oprofile are popular performance 
monitoring tools. Perf_events are invoked. In applications, only 
the events to be tested need to be passed in advance[8]. Event 
scheduling runs through the whole monitoring process, 
including binding counter and output record results through 
trigger mechanism. When the number of events to be tested is 
more than the actual number of counters, the kernel ensures 
that every event to be tested has the opportunity to be 
monitored through time division multiplexing counters. In the 
process of reuse, polling is adopted and the event occurrence 
rate is assumed to be the same. The method of calculating event 
results is formula (1), which infers the counting results in the 
whole time period according to the proportion of events 
allocated and the counting value. 

total
final sample

enable

time
count count

time
                       (1) 

Event scheduling can ensure the maximum use of counters 
and minimize reuse overhead, but it cannot guarantee the 
accuracy of monitoring results. Some events have specific 
counter restrictions, which can easily cause event conflicts in 
the event scheduling process, and aggravate the inaccuracy of 
monitoring results. 

C. Efficiency and Quality of PMU Application in Cloud 
Environment 

The function of performance monitoring unit as program 
feature description is irreplaceable. Significant results have 
been achieved in program feature description and performance 
optimization in cloud environment. However, when using 
PMU-based monitoring tools, these tasks are limited by the 
number of performance counters. To ensure the accuracy of 
monitoring results, relatively conservative monitoring methods 
are adopted, that is, to ensure that the number of events 
monitored is not greater than the number of performance 
counters in each monitoring event. Although this method can 
ensure the accuracy of monitoring results, it needs repeated 
operation to obtain more monitoring results, which greatly 
reduces the monitoring efficiency. 

Semantic gap between hardware performance event results 
and performance has always been a research difficulty. 
Especially in many events, it is extremely challenging to select 
a part to participate in monitoring. In extreme cases, all events 
need to be monitored, which can only be monitored through 
repeated runs. Some scholars focus on improving the 
monitoring accuracy of multiplexing performance counters. For 
example, formula (1) is improved by quantifying errors to 
obtain higher accuracy. Some scholars improve the formula (1) 
by changing the rate of events, and improve the accuracy by 
improving the scheduling method. These studies do alleviate 
the problem of PMU application, but there are still some 
phenomena such as over-regulation of monitoring results and 
missing monitoring results in practical application. The 
experimental results show that although the number of outliers 
and missing values is less than 1% in all data, they have a great 
impact on the feature description of time series. 

III. DATA PREPROCESSING METHOD BASED ON KB 

To improve the monitoring efficiency of PMU and ensure 
the quality of monitoring data, a knowledge-based 
preprocessing method is proposed, as shown in Figure 1. Each 
monitoring result combines historical monitoring data to detect 
outliers and missing values, and uses them as reference to 
replace outliers and supplement missing values. The historical 
monitoring data mentioned above mainly refers to the 
monitoring data generated by the same application using the 
same event. For outliers, an adaptive local filter is designed to 
automatically judge and process outliers. For missing values, 
this paper constructs a regression model based on historical 
data and the missing part of current data, and uses this model to 
supplement missing values. 

 

FIGURE I.  DATA PREPROCESSING SCHEMATIC DIAGRAM 
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This paper compared the similarity between different length 
sequences, and calculate the distance between curves after 
dynamic time alignment to judge the similarity of event 
monitoring results. DTW is a similarity measurement method 
that can better match the shape of time series by bending the 
time axis. It is used by Bernd and Clifford to measure the 
similarity of time series. This paper uses the results of historical 
data as a reference to judge anomalies and missing phenomena. 
Compared with the monitoring results of the same program 
under different input data, the monitoring results have high 
similarity. Big data applications in Hi Bench vary between 50% 
and 350% in execution time and average level under different 
input data sets. However, after traversing all hardware events 
supported by servers, the average DTW distance between 
multiple monitoring results and reference results is less than 
0.07 under different input data sets for the same event, 
indicating the trend of event monitoring results. 

A. Construction of Knowledge Base 

Historical data comes from records of the same events 
when monitoring the same application. This paper designs a 
knowledge base with two-tier table mechanism, one-tier master 
table and two-tier data record table. The primary table records 
the description of the secondary data record table, including 
event name, application name, record time, record maximum, 
minimum and average value, and record other events as well as 
the names of all secondary data record tables. The knowledge 
base will be updated with monitoring tasks, including replacing 
monitoring results with identical monitoring events, and adding 
monitoring results for new monitoring events. For the query of 
historical records, the records with similar monitoring tasks are 
returned under the query conditions of monitored programs and 
problem events. The descriptive information of events is found 
from the primary table, and then the historical data of specific 
records and current records are searched twice according to 
specific needs for the next model training. 

B. Local Filter Design 

Local filter design includes two cases: 

(1) Historical record events: events recorded under the same 
monitoring application. At this time, the data in the primary 
table is used to describe the information, and the maximum 
value of the local record is twice as large as the local threshold 
value. The value of the local filter is derived from the empirical 
value in the experiment process. 

(2) Initial recording of events: From the observation of the 
distribution of monitoring data, it can be seen that the data 
distribution curve is similar to the Gauss distribution, but not a 
strict Gauss distribution.  

Based on the characteristics of Gauss distribution, formula 
(2) is used as the threshold for data observation, and the sum of 
mean and n-fold standard deviation is used as the threshold. 

. . .List threshold List mean n List std                 (2) 

C. Construction of  Regression Model 

The difference of monitoring results does not change 
dramatically with the change of input data set. Historical data 
can be used as a basis for supplementing missing values. 
However, the sequence length in historical records is not 
necessarily the same as that of current missing items. It is 
difficult to complete missing values through location 
information. However, the regression model can be constructed 
quickly by using the correlation between events, and there is no 
dislocation when using the regression model to supplement the 
data. In this paper, we use the data of similar monitoring events 
in the knowledge base, that is, for the same running 
environment and application monitoring tasks under the same 
computing framework, monitoring events may not be identical, 
but must contain missing values. The common event set is 
obtained from the intersection of monitoring data and event set 
in the current results as training data, and the regression model 
is constructed. The regression model is implemented by KNN 
regression. 

Assuming that only event a has missing item in the result 
R1 of monitoring event (a, b, c, d) containing missing item, 
find the result R2 containing event a, and monitor the record 
result R2 of the same program. R2 contains (a, b, c, e, f) 
monitoring records. 

1. Same monitoring events: 

1 2 (a, b,c)R R                               (3) 

The missing item a is selected as the objective result, and 
the characteristic events are B and C. 

2. Integrating data: 

The training set Ts1 chooses the monitoring results of 
events a, b, C in R2 and the missing parts in R1. The missing 
part is defined as Ls1. 

3. KNN algorithm is applied to establish classification 
model based on K nearest distance data. 

4. According to the subordinate classification of (b, c) 
prediction a, the average value of all a in the class is the final 
prediction value of the missing part. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

The experimental cluster consists of four Dell servers, one 
of which serves as the primary node and the other three as the 
computing sub-nodes. Each server is equipped with 16-core 
Intel E5-2630 v3@ 2.4 GHz processors, and the server memory 
size is 64GB, operating system Ubuntu 14.04. 

Cluster management system is Mesos 1.0 and uses Hadoop 
2.7 as the computing framework. At the same time, eight 
typical cloud applications from Hibench are selected as the 
monitored programs: Pagerank, Aggregation, Scan, Bayes, 
Kmeans and Sort, Wordcount. 
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A. Data Quality Assessment 

From the experiments, it can be seen that even in the same 
system environment, repeated monitoring of the same program 
can only get very similar experimental results, but cannot get 
exactly the same experimental results. Therefore, the 
evaluation of data quality in this paper is based on the 
similarity of data results and reference values as the evaluation 
criteria of data cleaning effect. By calculating DTW of 
monitoring data and reference values, the similarity of the 
results is evaluated, and the difference degree Diff (%) before 
and after data cleaning is compared to show the effect of 
processing, such as formula (4). 

test test ref1

ref ref1 ref2

test ref

ref

Distance =DTW(data ,data )

Distance =DTW(data ,data )

Distance -Distance
Diff=

Distance









              (4) 

B. Analysis of Experimental Results 

When multiplexing is adopted, the system can monitor 
multiple events simultaneously through time division 
multiplexing PMU. Taking the Word Count program in Hi 
Bench as an example, the accuracy of simultaneous monitoring 
of changes in the number of events is observed (Figure 2). The 
results show that the degree of difference increases as the 
number of monitored events increases. After pretreatment, the 
degree of difference decreased significantly. After pretreatment, 
the degree of difference did not exceed 42% of the reference 
value, and the lowest deviation was above 50%. In comparison, 
the quality of monitoring results is greatly improved, and the 
difference of DTW distance is less than 20% when the number 
of events monitored at the same time is less than 24. The 
maximum number of events that can be monitored can be 
increased to five times of the mode, and the maximum 
monitoring efficiency can be increased by five times to ensure 
that the data can still maintain a high quality. 
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FIGURE II.  QUALITY COMPARISON OF SIMULTANEOUS MULTI-

EVENT MONITORING 

At the same time, other applications in Hibench are 
validated and compared with the current mean replacement 
method (GDP) for missing and outliers. When monitoring 10 
hardware events, the Database-based preprocessing method 
(KBDP) greatly improves the similarity with the reference 
results compared with GDP. The overall average difference is 
reduced from 52.7% before processing to 8.7%, which means 
the average similarity is 91.3%. 

V. SUMMARY 

The pre-processing method based on knowledge base 
proposed in this paper effectively solves the problem of PMU 
application in cloud environment, that is, the limitation of 
reliable data can be obtained by completing data collection by 
configuring fewer events than the number of performance 
counters. Through the pre-processing of monitoring results 
after reusing PMU, the abnormal values are dealt with, the 
missing values are filled up, and the data quality is improved. 
The monitoring data can be directly applied to the follow-up 
analysis work, which greatly improves the work efficiency. 
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