
Research on Preprocessing Method of Performance
Monitoring Data in Cloud Environment

Xiao Zhu
College of art and design, Chongqing Vocational Institute of Engineering, Jiangjin, Chongqing, 402260, China

Abstract—The analysis of performance monitoring
unit(PMU) can not only effectively characterize the operation
characteristics of the program, but also provide a basis for
performance optimization. Because of the huge number of PMU
performance counters in cloud environment, there are some
problems such as low monitoring efficiency and low data quality.
Based on this, this paper starts with filling missing values and
replacing them, uses regression method to complete missing
values, uses local filtering method to filter out outliers, and uses
the method of data preprocessing based on knowledge base to
effectively improve the monitoring efficiency. The experimental
results show that the scheme can effectively analyze the possible
impact of PMU execution on program operation, and the
similarity of the reference value of the processed results is higher
than 80%, up to 95%.

Keywords—PMU; cloud environment; data preprocessing

I. INTRODUCTION

With the development of cloud computing technology,
more and more application services are running on cloud
platforms. Therefore, the scale and number of data centers are
growing at an unprecedented rate. However, large-scale cloud
computing infrastructure poses severe challenges to operation
and maintenance, and new monitoring and maintenance
technologies are needed[1]. The diversity of applications and
heterogeneous hardware platforms present in data centers make
it more difficult to monitor and optimize performance, which
makes performance monitoring in cloud environment
particularly important. Compared with the performance
monitoring at the system level, the counting results of hardware
performance events under PMU can reflect the actual operation
of the machine more carefully and directly.

In modern processors, there are usually 2-8 performance
counters, which are used to record hardware events that occur
at run time[2]. To save chip area and cost, more performance
counters can not be designed in processors. To understand the
running behavior and optimize the performance of the program,
the number of events that need to be monitored is far greater
than the number of performance counters, and it is still growing.
Because the minimal performance improvements in data
centers can be translated into huge cost savings, many
researchers are studying how to use PMU monitoring results to
optimize performance. There are two ways to map performance
events that need to be monitored to performance counters: (1)
the number of performance events monitored is less than or
equal to the number of counters; (2) the number of performance
events monitored is more than the number of counters[3].

The first method can obtain accurate monitoring results, but
limited by the number of performance technicians and actual
needs, it needs repeated experiments to get the results of all the
events required, so this method is inefficient[4]. In addition, the
execution time of the same program running multiple times in
cloud environment will fluctuate greatly, and the unequal time
series results can be obtained, which greatly improves the
difficulty of subsequent analysis. The second way can greatly
improve the monitoring efficiency and avoid duplication of
monitoring work under general needs[5]. However, this method
will reduce the quality of monitoring data, which can be shown
by the failure to effectively monitor the zero value of events or
the sudden increase of data in time series, and the deviation
from other data in the same group is more than multiple
standard deviations. And the more monitoring events are, the
lower the data quality is. In order to improve the monitoring
efficiency and quality, it is urgent to improve the existing
problems in the second mode.

Considering the differences of server processor architecture,
software computing framework and application itself, this
paper proposes a data preprocessing method based on
knowledge base. For the same running environment and
application monitoring tasks under the same computing
framework, monitoring events can be different but contain
events corresponding to missing values. Combining with the
current missing items in monitoring data, a back-up is
constructed. For outliers, local filter parameters are configured
according to the monitoring data of similar monitoring tasks in
the knowledge base, so that the filter can detect and process the
outliers in different event results adaptively.

II. EFFICIENCY AND QUALITY OF PMU APPLICATION IN

CLOUD ENVIRONMENT

A. Performance Counter

Modern processors are usually equipped with performance
monitoring unit (PMU), which consists of two parts: hardware
performance event and performance counter. The performance
counter is used to measure the number of clock cycles,
instructions and cache missing in program execution in micro-
architecture. The result can directly reflect the execution of
hardware in program execution and analyze the use of
hardware resources in program execution[6].

In modern processors, there are usually 2-8 performance
counters. For example, Intel Xeon E5 V3 series processors
equipped with two dedicated performance counters and four
universal performance counters to monitor more than 200

Advances in Computer Science Research, volume 89

2019 International Conference on Wireless Communication, Network and Multimedia Engineering (WCNME 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 139

events, which based on Hasw ell-E microarchitecture, the
dedicated performance counter can only monitor the number of
unpaused clock cycles and the number of successfully executed
instructions. The universal counter can be configured to
monitor all other events. A performance counter is essentially a
special register that records the number of times an event
occurs. The number of performance counters owned by
different series of processors is different, and the types of
hardware events that can support monitoring are different, but
the common point is that the number of performance counters
in all processor structures is much smaller than the number of
events that can be monitored.

B. Application of PMU

The template is used to format your paper and style the text.
All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note peculiarities.
For example, the head margin in this template measures
proportionately more than is customary[7]. This measurement
and others are deliberate, using specifications that anticipate
your paper as one part of the entire proceedings, and not as an
independent document. Please do not revise any of the current
designations.

In the Linux operating system, Perf_events kernel interface
acts as a general-purpose, high-level interface to drive
performance counters to complete monitoring tasks, and is
added to the official kernel after Linux 2.6.31.
Perf_event_open() is a system call, sysfs is a file system to
simplify event naming and tool configuration, and the middle
layer includes a general-purpose core computational logic and
general interface layer design for different processor
architectures.

At present, Perf and Oprofile are popular performance
monitoring tools. Perf_events are invoked. In applications, only
the events to be tested need to be passed in advance[8]. Event
scheduling runs through the whole monitoring process,
including binding counter and output record results through
trigger mechanism. When the number of events to be tested is
more than the actual number of counters, the kernel ensures
that every event to be tested has the opportunity to be
monitored through time division multiplexing counters. In the
process of reuse, polling is adopted and the event occurrence
rate is assumed to be the same. The method of calculating event
results is formula (1), which infers the counting results in the
whole time period according to the proportion of events
allocated and the counting value.

total
final sample

enable

time
count count

time
  (1)

Event scheduling can ensure the maximum use of counters
and minimize reuse overhead, but it cannot guarantee the
accuracy of monitoring results. Some events have specific
counter restrictions, which can easily cause event conflicts in
the event scheduling process, and aggravate the inaccuracy of
monitoring results.

C. Efficiency and Quality of PMU Application in Cloud
Environment

The function of performance monitoring unit as program
feature description is irreplaceable. Significant results have
been achieved in program feature description and performance
optimization in cloud environment. However, when using
PMU-based monitoring tools, these tasks are limited by the
number of performance counters. To ensure the accuracy of
monitoring results, relatively conservative monitoring methods
are adopted, that is, to ensure that the number of events
monitored is not greater than the number of performance
counters in each monitoring event. Although this method can
ensure the accuracy of monitoring results, it needs repeated
operation to obtain more monitoring results, which greatly
reduces the monitoring efficiency.

Semantic gap between hardware performance event results
and performance has always been a research difficulty.
Especially in many events, it is extremely challenging to select
a part to participate in monitoring. In extreme cases, all events
need to be monitored, which can only be monitored through
repeated runs. Some scholars focus on improving the
monitoring accuracy of multiplexing performance counters. For
example, formula (1) is improved by quantifying errors to
obtain higher accuracy. Some scholars improve the formula (1)
by changing the rate of events, and improve the accuracy by
improving the scheduling method. These studies do alleviate
the problem of PMU application, but there are still some
phenomena such as over-regulation of monitoring results and
missing monitoring results in practical application. The
experimental results show that although the number of outliers
and missing values is less than 1% in all data, they have a great
impact on the feature description of time series.

III. DATA PREPROCESSING METHOD BASED ON KB

To improve the monitoring efficiency of PMU and ensure
the quality of monitoring data, a knowledge-based
preprocessing method is proposed, as shown in Figure 1. Each
monitoring result combines historical monitoring data to detect
outliers and missing values, and uses them as reference to
replace outliers and supplement missing values. The historical
monitoring data mentioned above mainly refers to the
monitoring data generated by the same application using the
same event. For outliers, an adaptive local filter is designed to
automatically judge and process outliers. For missing values,
this paper constructs a regression model based on historical
data and the missing part of current data, and uses this model to
supplement missing values.

FIGURE I. DATA PREPROCESSING SCHEMATIC DIAGRAM

Advances in Computer Science Research, volume 89

140

This paper compared the similarity between different length
sequences, and calculate the distance between curves after
dynamic time alignment to judge the similarity of event
monitoring results. DTW is a similarity measurement method
that can better match the shape of time series by bending the
time axis. It is used by Bernd and Clifford to measure the
similarity of time series. This paper uses the results of historical
data as a reference to judge anomalies and missing phenomena.
Compared with the monitoring results of the same program
under different input data, the monitoring results have high
similarity. Big data applications in Hi Bench vary between 50%
and 350% in execution time and average level under different
input data sets. However, after traversing all hardware events
supported by servers, the average DTW distance between
multiple monitoring results and reference results is less than
0.07 under different input data sets for the same event,
indicating the trend of event monitoring results.

A. Construction of Knowledge Base

Historical data comes from records of the same events
when monitoring the same application. This paper designs a
knowledge base with two-tier table mechanism, one-tier master
table and two-tier data record table. The primary table records
the description of the secondary data record table, including
event name, application name, record time, record maximum,
minimum and average value, and record other events as well as
the names of all secondary data record tables. The knowledge
base will be updated with monitoring tasks, including replacing
monitoring results with identical monitoring events, and adding
monitoring results for new monitoring events. For the query of
historical records, the records with similar monitoring tasks are
returned under the query conditions of monitored programs and
problem events. The descriptive information of events is found
from the primary table, and then the historical data of specific
records and current records are searched twice according to
specific needs for the next model training.

B. Local Filter Design

Local filter design includes two cases:

(1) Historical record events: events recorded under the same
monitoring application. At this time, the data in the primary
table is used to describe the information, and the maximum
value of the local record is twice as large as the local threshold
value. The value of the local filter is derived from the empirical
value in the experiment process.

(2) Initial recording of events: From the observation of the
distribution of monitoring data, it can be seen that the data
distribution curve is similar to the Gauss distribution, but not a
strict Gauss distribution.

Based on the characteristics of Gauss distribution, formula
(2) is used as the threshold for data observation, and the sum of
mean and n-fold standard deviation is used as the threshold.

. . .List threshold List mean n List std   (2)

C. Construction of Regression Model

The difference of monitoring results does not change
dramatically with the change of input data set. Historical data
can be used as a basis for supplementing missing values.
However, the sequence length in historical records is not
necessarily the same as that of current missing items. It is
difficult to complete missing values through location
information. However, the regression model can be constructed
quickly by using the correlation between events, and there is no
dislocation when using the regression model to supplement the
data. In this paper, we use the data of similar monitoring events
in the knowledge base, that is, for the same running
environment and application monitoring tasks under the same
computing framework, monitoring events may not be identical,
but must contain missing values. The common event set is
obtained from the intersection of monitoring data and event set
in the current results as training data, and the regression model
is constructed. The regression model is implemented by KNN
regression.

Assuming that only event a has missing item in the result
R1 of monitoring event (a, b, c, d) containing missing item,
find the result R2 containing event a, and monitor the record
result R2 of the same program. R2 contains (a, b, c, e, f)
monitoring records.

1. Same monitoring events:

1 2 (a, b,c)R R  (3)

The missing item a is selected as the objective result, and
the characteristic events are B and C.

2. Integrating data:

The training set Ts1 chooses the monitoring results of
events a, b, C in R2 and the missing parts in R1. The missing
part is defined as Ls1.

3. KNN algorithm is applied to establish classification
model based on K nearest distance data.

4. According to the subordinate classification of (b, c)
prediction a, the average value of all a in the class is the final
prediction value of the missing part.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental cluster consists of four Dell servers, one
of which serves as the primary node and the other three as the
computing sub-nodes. Each server is equipped with 16-core
Intel E5-2630 v3@ 2.4 GHz processors, and the server memory
size is 64GB, operating system Ubuntu 14.04.

Cluster management system is Mesos 1.0 and uses Hadoop
2.7 as the computing framework. At the same time, eight
typical cloud applications from Hibench are selected as the
monitored programs: Pagerank, Aggregation, Scan, Bayes,
Kmeans and Sort, Wordcount.

Advances in Computer Science Research, volume 89

141

A. Data Quality Assessment

From the experiments, it can be seen that even in the same
system environment, repeated monitoring of the same program
can only get very similar experimental results, but cannot get
exactly the same experimental results. Therefore, the
evaluation of data quality in this paper is based on the
similarity of data results and reference values as the evaluation
criteria of data cleaning effect. By calculating DTW of
monitoring data and reference values, the similarity of the
results is evaluated, and the difference degree Diff (%) before
and after data cleaning is compared to show the effect of
processing, such as formula (4).

test test ref1

ref ref1 ref2

test ref

ref

Distance =DTW(data ,data)

Distance =DTW(data ,data)

Distance -Distance
Diff=

Distance









 (4)

B. Analysis of Experimental Results

When multiplexing is adopted, the system can monitor
multiple events simultaneously through time division
multiplexing PMU. Taking the Word Count program in Hi
Bench as an example, the accuracy of simultaneous monitoring
of changes in the number of events is observed (Figure 2). The
results show that the degree of difference increases as the
number of monitored events increases. After pretreatment, the
degree of difference decreased significantly. After pretreatment,
the degree of difference did not exceed 42% of the reference
value, and the lowest deviation was above 50%. In comparison,
the quality of monitoring results is greatly improved, and the
difference of DTW distance is less than 20% when the number
of events monitored at the same time is less than 24. The
maximum number of events that can be monitored can be
increased to five times of the mode, and the maximum
monitoring efficiency can be increased by five times to ensure
that the data can still maintain a high quality.

%

0

20

40

60

80

100

120

140

events

10 16 20 24 28 32 36

●
●

●

●

●
●

●

●
●

●

●

●
●

FIGURE II. QUALITY COMPARISON OF SIMULTANEOUS MULTI-

EVENT MONITORING

At the same time, other applications in Hibench are
validated and compared with the current mean replacement
method (GDP) for missing and outliers. When monitoring 10
hardware events, the Database-based preprocessing method
(KBDP) greatly improves the similarity with the reference
results compared with GDP. The overall average difference is
reduced from 52.7% before processing to 8.7%, which means
the average similarity is 91.3%.

V. SUMMARY

The pre-processing method based on knowledge base
proposed in this paper effectively solves the problem of PMU
application in cloud environment, that is, the limitation of
reliable data can be obtained by completing data collection by
configuring fewer events than the number of performance
counters. Through the pre-processing of monitoring results
after reusing PMU, the abnormal values are dealt with, the
missing values are filled up, and the data quality is improved.
The monitoring data can be directly applied to the follow-up
analysis work, which greatly improves the work efficiency.

ACKNOWLEDGMENT

Thank you Professor Wang, my colleagues and my family.

REFERENCES
[1] Hennessy J L,Patterson D A.Computer architecture: a quantita-tive

approach[M].Elsevier,2012.

[2] Kanev S,Darago J P,Hazelwood K,et al.Profiling a warehouse-scale
computer[C].ACM/IEEE 42nd Annual International Sympo-sium on
Computer Architecture(ISCA),2015:158-169

[3] Barroso L A,Dean J,Holzle U.Web search for a planet:The Google
cluster architecture[J].IEEE Micro,2003,23(2):22-28.

[4] Michael Ferdman,Almutaz Adileh,Onur Kocberber,et al.Clear-ing the
clouds:a study of emerging scale-out w orkloads on modern
hardware[C].Proceedings of the 17th International Conference on

[5] Architectural Support for Programming Languages and Operating
Systems (ASPLOS),2012.

[6] Ren G,Tune E,Moseley T,et al.Google-wide profiling:a con-tinuous
profiling infrastructure for data centers[J]. IEEE M icro,2010,30(4) :65-
79.

[7] Mars J,Tang L,Hundt R,et al.Bubble-up:Increasing utilization in modern
w arehouse scale computers via sensible co-locations[C].Proceedings of
the 44th Annual IEEE/ACM International Symposi-um on
Microarchitecture(MICRO),ACM,2011:248-259.

[8] Devices A M.BIOS and kernel developer's guide for AMD family 15h
models 00h-0Fh processors[M].2013-2015 Advanced Micro
Devices,Inc.,2013.

Advances in Computer Science Research, volume 89

142

