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Abstract. Accurate voltage stability analysis and online monitoring are essential to ensure a secure 
operation of the power system. To this end, researchers have proposed a variety of voltage stability 
indicators and analysis methods, of which, the voltage stability analysis method based on Thévenin 
equivalent has been widely concerned. However, due to the lack of simple and effective online 
identification method for Thévenin equivalent parameters, this method is still difficult to apply online. 
In this paper, the fixed point principle is applied to voltage stability analysis, and a new voltage 
stability criterion is proposed. Furthermore, in order to determine the physical correspondence 
between the spectral distribution and each specific load, this paper derives a numerical method for 
quickly estimating the spectral distribution. Based on the above, this paper proposes a new online 
analysis and monitoring method for voltage stability. The proposed method was tested on 3-machines 
and 10-bus system, and compared with the voltage stability analysis method based on Thévenin 
equivalent. The results show that the proposed method in this paper is effective. 

Introduction 

Since the 1990s, great progress has been made in the study of voltage stability in power systems. 
So far, researchers have proposed a variety of voltage stability indicators and analysis methods[1-9], of 
which, the voltage stability analysis method based on Thévenin equivalent has been widely 
concerned[10-13].  

Thévenin equivalent is an important concept in linear circuit theory, which has wide application 
value. For time-varying non-linear circuits, in principle, at any time section, the non-linear circuit can 
be simplified to a Thévenin equivalent circuit of a node. Therefore, the voltage stability analysis 
method based on Thévenin equivalence not only has the advantages of clear physical concept, simple 
model, and can clearly characterize the voltage stability of the power system, but also has good 
practical application prospects. In 1999, Khoi Vu and other scholars took the lead in putting forward 
the online identification of Thévenin equivalent parameters and voltage stability monitoring method 
based on local measurement[6]. Since then, scholars in various countries have continuously improved 
and improved on this basis and put forward various improved Thévenin equivalent parameter 
calculation models and methods[12]. However, existing methods for identifying Thévenin equivalent 
parameters based on in-situ measurements are based on the assumption that the Thévenin equivalent 
parameters between two adjacent state points or time sections remain unchanged. Obviously, this 
assumption is not strictly valid, because every operating point of the system should correspond to a 
unique set of deterministic Thévenin equivalent parameters. Therefore, how to accurately track and 
estimate the dynamic Thévenin equivalent parameters is still an unsolved problem[7-9]. 

In order to avoid the above problems, the paper [11] proposes a method of tracking Thévenin 
equivalent parameters based on time domain simulation and develops a corresponding program for 
calculating Thévenin equivalent parameters in FDS system[12]. In theory, this method of calculating 
Thévenin's equivalent parameters based on time domain simulation is accurate and reliable, but the 
results of literature [14] show that different Thévenin's equivalent methods can get different 

2nd International Conference on Electrical and Electronic Engineering (EEE 2019) 

Copyright © 2019, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 185

5



equivalent parameters. Therefore, the calculation of Thévenin's equivalent parameters is uncertain, 
that is, multivalued problem. In addition, Thévenin equivalent parameter tracking method based on 
time domain simulation needs to consider the global network equation, and the admittance matrix of 
the system needs to be modified and the corresponding network equation is solved at each time. The 
calculation amount is large, so it is difficult to apply it online. 

In order to avoid the technical problem of accurate calculation of Thévenin's equivalent 
parameters[7,14], a channel component transforms (CCT) method is proposed in reference [8]. The 
core idea of CCT method is to decouple the coupled network equations into multiple independent 
channels by eigenvalue decomposition, and each channel is similar to a Thévenin equivalent circuit. 
CCT method provides a new ideal for on-line analysis and monitoring of voltage stability. However, 
the CCT method needs eigenvalue decomposition. For a large-scale power system, the corresponding 
eigenvalue decomposition is time-consuming. Another key problem is that the existing eigenvalue 
decomposition method can't directly determine the physical correspondence between the eigenvalue 
and the load node, nor can it directly determine the physical correspondence between the channel and 
the load. In order to correlate the analysis results of voltage stability based on channel components 
with specific loads, reference [8] adopts the identification method based on contribution index. 

In this paper, the fixed-point principle[15] is used to illustrate the voltage stability problem. Its core 
idea is: if the system has a unique fixed-point in the voltage metric space, the system is voltage 
stability. Therefore, according to the basic fixed point theorem, i. e. the compression mapping 
principle, the voltage stability of the power system can be analyzed and judged by the spectral 
analysis method. In order to determine the physical correspondence between the eigenvalue 
distribution and the specific loads, a new method for calculating the spectral distribution of the 
admittance matrix of shrinking nodes is presented in this paper. Generally speaking, the proposed 
method of voltage stability analysis and calculation has the advantages of less calculation and faster 
calculation speed and can be used for on-line monitoring of voltage stability. 

Voltage Stability Analysis Method Based on Fixed Point Principle 

The Theoretical Basis 

Although accurate tracking and estimation of Thévenin equivalent parameters is still a technical 
problem, the voltage stability analysis method based on Thévenin equivalent has been widely 
recognized by researchers. Therefore, in order to facilitate understanding, this paper starts with the 
basic Thévenin equivalent circuit and then elaborates the voltage stability analysis method based on 
the fixed point principle. 

As shown in Figure. 1, for an actual power system, an "observation" of the system from a load bus 
at any time section can be regarded as a two-node system in which a voltage source supplies power to 
the studied load bus through an impedance, which is the Thévenin equivalent. 

In Figure. 1, ( )s tE  and ( )s tZ  are Thévenin's equivalent internal potential and equivalent impedance 
at t  time, ( )k tν  and ( )k ti  are load bus voltage and current at corresponding time, respectively, and 
load power is ( ) ( ) j ( )k k kt p t q t S , and load's equivalent impedance is recorded as ( )k tZ . 

jk kp q

kikv

                                             jk kp q

kv
sZsE

 
(a) Original power system                                                          (b) Thevenin equivalent system 

Figure 1. Thévenin equivalent illustration 

On the premise that Thévenin's equivalent parameters are accurate and effective, the voltage 
stability of Thevenin's equivalent system can be analyzed by "impedance mode criterion". That 
is, s kZ Z , the voltage of the load node is stable; otherwise, the voltage is unstable. 

For the Thévenin equivalent circuit shown in Figure 1, there are: 
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= ( ) ( )k s k k s kν E i ν Z f ν                                                                                                                      (1) 
Where, ( )k ki ν  denotes that it is a function of the voltage state variable kν . Obviously, when 

Thévenin's equivalent parameter is fixed, ( )kf ν  is the so-called self-mapping function about kν . 
Based on equation (1), the problem of voltage stability can be described as follows: if the load node 

voltage kν  can be maintained at a certain equilibrium point in the case of disturbance, the node 
voltage kν  will be stable; if the load node voltage kν  cannot be maintained at a certain equilibrium 
point in the case of disturbance, the voltage kν  will be unstable. 

According to the fixed point theory, for the general nonlinear self-mapping 
equation ( ) R n x f x x， , the so-called fixed point is the equilibrium point ( )s sx f x  under 
perturbation. Therefore, based on the above description of voltage stability, we can naturally apply 
the fixed point principle to study voltage stability: if the non-linear equation (1) has a unique fixed 
point in a specific interval, the system will be voltage stability. In fact, the fixed point theory mainly 
studies the existence, number, nature and calculation method of fixed points. Therefore, the fixed 
point theory is the main theoretical basis for studying the existence, uniqueness and iterative solution 
of various equations. 

There are mainly Banach fixed-point theorem and Brouwer fixed-point theorem for fixed-point 
theorem[14]. In this paper, Banach fixed point theorem is used to study voltage stability. To avoid 
complication, the theorem can be summarized as follows. 

Banach Fixed Point Theorem: Let ( )f x  be a mapping from space  a b  to itself,  , a bx y  

and x y . If there is ( ) ( )   f x f y x y , 1  , then for an initial value  0 a bx , the series 

+1 = ( )n nx f x  generated by iteration  nx  must converge and have s ( )n s
n
lim f


 x x x , that is, sx  is the 

only fixed point of self-mapping ( )x f x  on the interval  a b . 

In the above expression:   is Banach spatial measure, can simply be understood as the Euclidean 

vector norm. 1  , so ( ) ( )   f x f y x y  is a contractive mapping. Therefore, Banach fixed point 

theorem, also known as the contraction mapping principle, is an important tool of metric space theory. 
It provides a strictly theoretical basis for the existence and uniqueness of fixed points of self-mapping 
in metric space, and provides a constructive method for finding these fixed points. 

The above contractive mapping can be expressed in Euclidean space as follows: 

( )
1

 

f x

x
                                                                                                                                  (2) 

In the above formula:   represents the norm of a matrix, which can be specified by column and 

norm, row and norm or spectral norm (denoted as  2
   ). Thus, the principle of contractive 

mapping can be explained by a simple numerical iteration method: if formula (2) holds, the following 
iteration method. 

 +1 0= ( )n n a bx f x x，                                                                                                                       (3) 

It will converge to the only equilibrium point s ( )sfx x . The scheme (3) is a well-known fixed 
point iteration method, and the equation (2) is a sufficient condition for the convergence of the fixed 
point iteration method. 

According to equation (1), there are: 

( ) ( )k k k
s

k k

 
 

 
f ν i ν

Z
ν ν

                                                                                                                           (4) 

Hence, 
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( ) sk s

k k k


 



Zf ν Z

ν Z Z
                                                                                                                           (5) 

Based on the above fixed point theorem, we can see that if there is a constant 1s k Z Z  in a 

certain interval, then equation (1) has a unique fixed point in that interval, that is: 

k
k s

s k



Z

ν E
Z Z

                                                                                                                                    (6) 

Based on the actual power system, the above "certain interval" can be defined as: k min sv   ν E , 

where, minv  represents the limit of voltage stability set in engineering practice (China usually set to 
0.75pu). 

Generally speaking, according to the fixed point principle, if there is constant s kZ Z  in interval 

k min sv   ν E , the load node voltage kν  will be stable; otherwise, the load node voltage will be 

unstable. Obviously, the voltage stability criterion based on the fixed point theorem is consistent with 
the so-called "impedance mode criterion". 

Basic Criteria for Voltage Stability Analysis 

In this section, the voltage stability analysis method of power system based on fixed point principle is 
introduced. 

As we all know, for a certain time section, the nodal network equation of the power grid is: 

YU I                                                                                                                                                (7) 
Where, Y  is the node admittance matrix of the network; ( )tU  is the node voltage column vector of 

the time section; ( )tI  is the node injection current column vector. According to the classification of 
network nodes, the above network equation can be further expressed as: 

GG GL GN G G

LG LL LN L L

NG NL NN N

     
     

      
     
     

Y Y Y E I

Y Y Y V I

Y Y Y U 0

                                                                                                              (8) 

Where, G GE I、  represent the generator terminal voltage column vector and generator injection 
current column vector respectively; L LV I、  represents the load node voltage column vector and load 
current column vector respectively; NU  is the contact node voltage column vector, so-called contact 
node is the network node that neither generators nor loads are connected, and the injection current of 
such node is 0. 

From equation (8), 

1
L G L L

 V CE y I                                                                                                                                   (9) 
Where, 

1
L G
C y y                                                                                                                                       (10) 

1
G LN NN NG LG

 y Y Y Y Y                                                                                                                         (11) 

1
L LL LN NN NL

y Y Y Y Y                                                                                                                           (12) 
When the network topology is fixed, both C  and Ly  in the above expressions are stationary 

matrices. For a certain time section, the generator terminal voltage column vector GE  will be 
determined; when a load of each node is fixed, the load node current LI  is a function of the joint point 
voltage. Thus, equation (9) can be further expressed in the following form: 
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1 ( ) ( )L G L L L L
 V CE y I V F V                                                                                                             (13) 

Hence, 

1( ) ( )L L L
L

L L

 
 

 
F V I V

y
V V

                                                                                                                      (14) 

Where, 

L L
L

L L

 
  

B G
y

G B
                                                                                                                                (15) 

Then, 

( )L L
eq

L

 

 

  
    

β αI V
Y

α βV
                                                                                                                    (16) 

  2
k k k kdiag p v α ，                                                                                                                  (17) 

  2
k k k kdiag q v β ，                                                                                                                   (18) 

Where, kp  and kq  are the active and reactive power of the k  load ( (1 )k m ， ), and kv  is the node 
voltage amplitude. 

Based on the above deduction, there is: 

 1

2

( )L
L eq

L

 

F V

y Y
V

                                                                                                                      (19) 

According to the fixed point theorem, if: 

1( )<1L eq y Y                                                                                                                                       (20) 

Then equation (13) has a unique fixed point at the time section and is therefore voltage stable. 
Equation (20) is the criterion to judge whether the voltage of the power system is stable or not. 

Using existing software tools, 1( ( ))L eq t y Y  can be calculated accurately. Therefore, it is feasible and 

strict to use the above criterion (20) to judge the voltage stability of a large-scale power system. 

Voltage Stability Analysis Based Method on Spectrum Calculation 

It's easy to understand if only a simple calculation of 1( )L eq y Y , it can determine whether the entire 

system voltage stability, but can not analyze each load voltage stability margin or unstable degree. In 
order to analyze the voltage stability of each specific load, it is necessary not only to calculate or 
estimate the spectral distribution of matrix 1

L eq
y Y , i.e. the eigenvalue distribution, but also to 

determine the physical correspondence between the eigenvalue distribution and the specific load. 
It is easy to understand that Ly  is a contractive admittance matrix. In order to calculate the spectral 

distribution of Ly , the following lemmas are introduced. 
Lemma 1 In the power system, both a real part G  and imaginary part B  of the nodal admittance 

matrix are real symmetric positive definite matrices. 
Lemma 2 Supposes that matrix Rn

ija   A   is a lower triangular matrix or an upper triangular 

matrix. If the elements (1 )iia i n 0， ，  on the diagonal line of the matrix are completely different 
from each other, then the matrix can be diagonalized, and its characteristic value is the element on the 
diagonal line, that is, ( ) (1 )k kka k n  A ， ， [16]. 

Based on Lemma 1, it is known that both real part LG  and imaginary part LB  of the contractive 
admittance matrix Ly  are real symmetric positive definite matrices. Therefore, they have the 
following Cholesky decomposition: 
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T
1 1 1L ijb    B L L L ，                                                                                                                        (21) 

T
2 2 2L ijg   G L L L ，                                                                                                                     (22) 

In the above expressions, both 1L and 2L are lower triangular matrices, and the elements on the 
diagonal lines are greater than 0. 

By using the Cholesky decomposition, there is: 

T
T

T
m

L

m

 
  

 

I φφ
y Q Q

φφ I
                                                                                                                     (23) 

1
1 2 ij    φ L L  , 










1

1

L0

0L
Q                                                                                                        (24) 

Where, mI  is the unit matrix of m  dimension. Since both 1L  and 2L  are lower triangular matrices, 
the matrix φ  is also a lower triangular matrix. And, 

ii ii iig b  , (1 )i m ，                                                                                                                        (25) 
According to Lemma 2, if (1 )iib i m 0， ， is completely different from each other, the lower 

triangular matrix 1L  can be diagonalized. Thus, its eigenvalue decomposition is recorded as: 

 T
1 1 1 1 1 diag iibL P λ P λ ，                                                                                                                   (26) 

Similarly, the eigenvalue decomposition of the lower triangular matrix φ  is recorded as: 

 T
2 2 2 2 diag iiφ P λ P λ ，                                                                                                                (27) 

Definition : 

1 2
1 2

1 2

   
   
   

P 0 P 0
P P

0 P 0 P
 ，                                                                                                             (28) 

2
1 2

2
1 2

m

m

  
  

   

λ 0 I λ
τ η

0 λ λ I
 ，                                                                                                            (29) 

Based on the above eigenvalue decomposition, equation (23) can be further decomposed into: 

T T T
1 1 2 2 1 1( )( )( )L y P τP P ηP P τP                                                                                                                (30) 

Hence, 

1 1 T 1 T 1 T
1 1 2 2 1 1( )( )( )L

   y P τ P P η P P τ P                                                                                                       (31) 
Therefore,  

1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( ) ( )

L eq L eq

eq

  

   

 

  





y Y y Y

τ η τ Y
                                                                                               (32) 

Since both η  and eqY  are block diagonal matrices, the approximation based on formula (32) is as 

follows: 

 

1 1( ) ( ) ( )

diag( )

L eq L eq

k

  

 

 



y Y y Y
                                                                                                                     (33) 
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2 2

4 4

+
(1 )k k

k

kk kk

k m
g b

 
 


 ， ，                                                                                                           (34) 

(1 )k k m ， ，  in Formula (34) is the result of spectrum estimation. It has a direct physical 
correspondence with the load, that is, k  corresponds to the k  load. Therefore, k can be used to 
judge the voltage stability of the load node k . If 1k  , it can be considered that the load is voltage 
stable; On the contrary, the voltage situation of the load is very "severe". 

On the basis of the above, the load node voltage stability margin can be defined as follows: 

(1 ) 100 1*
k k k%     ，                                                                                                                (35) 

When the grid topology is fixed, Ly is a constant matrix; when the grid topology changes, kk kkg b，  
(1 )k m ， can be solved by one-time decomposition of LG and LB  by Cholesky decomposition. The 

amount of calculation is much less than that of eigenvalue decomposition. According to formula (17), 
(18), it is easy to realize on-line monitoring of k  and k  by using synchronous phasor measurement 
device PMU[17]. Therefore, under the existing conditions, it is easy to realize the real-time calculation 
and on-line monitoring of load node (1 )k k m ， ， . 

Simulation Testing and Verification 

In order to verify the effectiveness of the proposed method, a simulation test is carried out using the 
FDS program[11] developed by the Chinese Academy of Electrical Sciences, and the method is 
compared with the voltage stability analysis method based on Thévenin equivalence. 

A 3-machine and 10-bus system[18] as shown in Figure. 2 is selected as an example system. The 
load at Bus 7 is set to 100% constant impedance load, and the load at Bus 10 is set to 80% induction 
motor load and 20% constant impedance load in parallel. The parameters of the induction motor for 
constant mechanical torque, stator impedance 1 0 01+j0 145. .Z  pu, rotor impedance 2 0 008+j0 145. .Z pu, 
excitation reactance j3.3 X pu. 

In the simulation test, a three-phase short-circuit fault occurred on the Bus 6 side of the tie-line 
between Bus 5 and Bus 6 at 1 0t .  seconds. The fault lasted 0.057 seconds and was cleared. 

Figure 3 shows the power angle curve of the generator. Obviously, the generator power angle of 
the system is transient stable under the above fault conditions. 

Figure 4 shows the voltage variation curve of the load node. Obviously, the load at Bus 10 is 
voltage unstable under the above fault conditions. 

Figure 5 is the modulus tracking curve of Thévenin equivalent impedance and load equivalent 
impedance at Bus 10. Thévenin equivalent impedance is obtained directly by using the Thévenin 
equivalent parameter calculation program in FDS system. Obviously, if the impedance mode 
criterion based on Thévenin's equivalence is adopted, misjudgment will occur.    

Figure 6 is a tracking monitoring curve of system voltage stability obtained directly from criterion 
(20). It can be seen from the diagram that no misjudgment will occur by using the method proposed in 
this paper. Compared with Figure 6 and Figure 5, it is obvious that the voltage stability criterion 
presented in this paper is more "sensitive" than the voltage stability criterion based on Thévenin 
equivalence. 

Figure 7 is the result of tracking and monitoring the voltage stability of each load by k . According 
to the voltage stability analysis method proposed in this paper, it is obvious that the load at Bus 10 is 
voltage unstable. It is easy to understand that the unstable load voltage at Bus 10 is the root cause of 
the unstable voltage of the whole system. From the comparison of Figure 7 and Figure 6, it can be 
seen that the difference between the monitoring results of load voltage stability at Bus 10 based on k  
and that based on criterion (20) is very small, which shows that the calculation results of the spectrum 
method proposed in this paper are very close to those of the accurate eigenvalue method; in other 
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words, the spectral calculation method proposed in this paper is similar to that of the eigenvalue 
method. It's more accurate. 

To further test the effectiveness of the proposed method, based on the three-phase short-circuit 
fault mentioned above, 100 MW loads at Bus 10 are removed at s. Figure 8 shows the voltage 
amplitude curve of load node. Obviously, after partial load removal, the system voltage restores 
stability. Figure. 9 is the system voltage stability tracking monitoring result obtained by using 
criterion (20) directly. Figure. 10 is the load voltage stability tracking monitoring result based on. 
Obviously, using the method proposed in this paper, the voltage stability monitoring results can truly 
reflect the voltage stability of each load. 

 
Figure 2. 3-machines and 10-bus system 
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Figure 3. 3 Power angle curves of the machines                                             Figure 4. Load voltage curves 
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impedance at Bus 10 

Figure 6. Voltage stability monitoring result for power 
system
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Figure 7. Load voltage stability monitoring result                    Figure 8. Load voltage curves after load shedding 
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Figure 9. Voltage stability monitoring result for power 
system after load shedding 

Figure 10. Load voltage stability monitoring result after 
load shedding 

Conclusion 

(1) Applying the fixed point theory to explain the voltage stability of the power system, the voltage 
stability analysis method based on the fixed point principle is proposed. 

(2) In order to determine the physical correspondence between the spectrum distribution, i.e. the 
eigenvalue distribution and the specific loads, a corresponding and fast numerical method for 
estimating the spectrum distribution is derived, which establishes the relevant mathematical basis for 
the practicality of the voltage stability analysis method based on the fixed point principle. 

(3) The proposed voltage stability analysis and calculation method has the advantages of less 
calculation and fast calculation and can be applied online. The simulation results preliminarily verify 
the effectiveness of the proposed method. 
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