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Abstract. Aiming at bearings-only multi-target tracking, a new multi-sensor particle CPHD filtering 
algorithm is proposed, which analyses the structure information of mixed linear/nonlinear state space 
models and combines particle filter and Kalman filter to predict and estimate the states of multiple 
targets to enhance the estimating performance of the PHD and cardinality distribution. The target 
state estimates are extracted by utilizing the kernel density estimation theory and mean-shift method. 
Simulation results are presented to demonstrate the improved performance of the proposed filtering 
algorithm. 

Introduction 

In bearings-only multi-target tracking, the number of targets is unknown and vary with time due to 
the uncertainty of target information. In addition, the problem of model nonlinearity caused by 
coordinate transformation of target motion modeling and measurement modeling, and the physical 
characteristics of passive sensors themselves, as well as the incompleteness of measurement 
information, all bring great difficulties to target tracking. How to track multi-target effectively based 
on bearings-only measurement information has always been a popular and difficult topic in both 
academic and engineering research[1]. 

Compared with other traditional multi-target tracking algorithms, probability hypothesis density 
(PHD) filtering algorithm based on random set theory can transform complex multi-target state space 
operations into single-target state space operations, effectively avoiding complex data association 
and combination problems in multi-target tracking[2-4]. The cardinalized probability hypothesis 
density (CPHD) filtering algorithm, which can make full use of the information of multi-target 
density and does not need to limit the number of targets to obey Poisson distribution, has attracted 
more attention. Many scholars have carried out relevant research[5-9]. 

In this essay, a new multi-sensor particle CPHD filtering algorithm is proposed which uses 
centralized fusion strategy. By mining the structural information of mixed linear/non-linear state 
model and combining particle filter (PF) [10] and Kalman filter (KF) to predict and estimate the state 
of each target, the PHD and cardinality distribution of multi-target can be better estimated. 
Simulation results show that the proposed filtering algorithm is effective in the challenging 
bearings-only multi-target tracking scenario. 

Problem Formulation 

Consider the following passive multi-sensor bearings-only multi-target tracking system: 
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Where ,n kx  is the system state vector of target n  at -k time ,         T
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,  ,o o

n nx y  is the location of sensor o , ,m k  represents the target indicator 

associated with measurement m . The measurement noise o

kv  is a  white Gaussian process with zero 

mean and covariance matrix oR , and it is uncorrelated with process noise ,n kw . 

Multi-target Tracking With Particle CPHD Filter 

In many applications, the target state space contains both linear and non-linear parts. Aiming at this 
kind of mixed linear/non-linear state model, the linear state and non-linear state of the target are 
estimated separately by combining Kalman filter and particle filter, which improves the estimation 
accuracy and reduces the estimation variance [11]. In this paper, a multi-target tracking particle 
CPHD filtering algorithm is proposed. 

The target filtering model can be described as linear and non-linear forms. 
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Where n

kx and l

kx  represent the nonlinear and linear state of the target at time k, respectively, 
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  . The systems described in (3) are linear Gaussian process, KF can be used 

to estimate the optimal value. 
For non-linear state n

kx , the particle filter is used for estimation. The particles predicted from 

time 1k   to time k  obey the Gaussian distribution, i.e, 
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k kP    represent the one-step predicted value and its covariance of the linear state, 

respectively. 
The proposed particle CPHD filter contains the following two steps. 
Prediction: Assuming  that the posterior intensity 1kD   and the posterior cardinality 1kp    
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We use RB method [11] for each item in  | 1k kD x . Firstly, for the survival target, the non-linear 

state particles are predicted by (4),          , , , ,
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Linear state particles can be obtained by KF equation as follows, 
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The cardinality distribution is calculated as       , 1 11 1
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Update: Assuming that the prediction intensity 1k kD   and the prediction cardinality 1k kp   at time 
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Update the cardinality distribution, 
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Using Mean-Shift algorithm, all the peak positions of the density function can be given accurately 

[14]. For particle 
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kx , its Mean-Shift vector is 

                    
1 1

1 1

i i

k k

k k k k

d d

L J L J
j i j j j i jx x

k k k k k k k
j j

m x xK x x x K x x  
  

 

   
.                                       (10) 

Equation (10) indicates the mean-shift vector 
  i

km x
 should be transferred to the spot of the 

maximum consistent change, which is also the direction of density gradient. The algorithm is to take 
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kx  as a starting point, then move to the densest place, i.e., 
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Simulation Analysis 

In this part, the simulation results and analysis of the proposed algorithm are given. For multi-target 
tracking performance evaluation, the statistics of cardinality estimates and OSPA measure are used.  

Consider the following bearings-only multi-target tracking scenario. The system model is described 
by Eq.(1), in which the number of targets varies with time. The specific parameters of the system are as 
follows:a multi-target bearings-only tracking problem 
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The positions of the sensors are set to  8, 10  km、  8, 10 km and  0,13.86 km. The standard 

deviation of measurement noise 
0.005 

. 

We assume that the spontaneous birth RFS is Poisson with intensity, 
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where 
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, 
   T2 3, 0, 0, 0m 

, 
   T3 3.5, 0, 2,0m  

, 
   T4 5, 0,5,0m  

, and 
  4, 2, 4, 2P diag 

. Target survival probability is 0.99
S

P   and target detection probability is 
0.98

d
P  . Clutter can be modeled as a Poisson RFS with intensity 3k   over the measurement space.  

Particle number is 500N  . The OSPA parameters are set as 2p   and 50c  . 
Fig. 1 shows the true trajectories of the targets.  Fig. 2 shows the true number of targets and the mean 

of the estimated cardinality distribution. In Fig. 3, the comparison of the standard deviation (STD) of  
cardinality distribution for both algorithms is given. It can be seen that both algorithms can estimate 
the number of targets accurately, but the estimated STD of target number of the proposed algorithm is 
smaller than that of RBP-PHD filtering algorithm, which shows that the target number estimation of 
the proposed algorithm is more reliable. 

In addition, Fig. 4 gives the MC average of  OSPA distances for both filters. These results show that 
the proposed algorithm performs better than the RBP-PHD filtering algorithm due to that the proposed 
CPHD filtering algorithm provides more accurate estimates of target states and target number than the 
RBP-PHD filtering algorithm. 
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Figure 1. The true target trajectories in x- and y-coordinates                            Figure 2. The  mean of target number 
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Figure 3. The STD of target number                                    Figure 4. The average OSPA distance 

Conclusion 

In this paper, a new multi-sensor particle CPHD filtering algorithm is proposed as a solution to the 
bearings-only multi-target tracking problem for the class of mixed linear/nonlinear state space models. 
Simulations results demonstrate that the proposed CPHD filtering algorithm performs accurately and 
shows a significant reduction in the variance of estimation of target number. 
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