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Abstract. Risk assessment is vital to an information system. Current approaches usually rely on 
human experts’ experience to give scores to vulnerabilities in the information system and synthesize 
the scores to form the whole risk score of the system. The experts give such scores by understanding 
a vulnerability in terms of the difficulties of exploiting and impacts of being exploited. However, 
such scores are mostly dependent on the human’s experiences, which makes the results are not 
consistent when different analysts give the scores. In this paper, we design an approach to give such 
scores without any need of human experiments. Specifically, we acknowledge a vulnerability, 
especially the impact of the vulnerability, by searching it online. From the results, we are able to 
know its popularity and impacts using machine learning algorithms. To avoid the redundant searched 
results, we utilize an n-gram based approach to eliminate them. We also give examples in the 
evaluation to show how our approach work. Results show that our approach is able to give such 
scores without any need on human’s experiences, in the result of giving unbiased scores. 

Introduction 

As we know, an information system needs risk assessment performed regularly to identify and 
analyze potential events and judge the risk of being attacked [1]. Such assessment will also expose 
vulnerabilities of the whole system, which could further be addressed (e.g., patched) to enhance the 
security of the system. In this process, human analysts usually score the vulnerabilities and also give 
an overall risk value to the system, telling the owner the possibility of being attacked and being 
successfully exploited [2]. The lower the score, the more risks the system will face. The value of the 
risk is not fixed. This is mainly because that the risk assessment should not be performed for only one 
time. Instead, it should be carried out regularly. The score of risk also changes with time due to the 
understanding of the vulnerabilities changes and the patches could be developed and executed on the 
system. 

Currently, the risk assessment is highly dependent on human analysts. Especially, they will give 
score to a vulnerability found on the system to stand for the risk brought by the vulnerability. As 
mentioned before, the score should be changed when time passes by or environment changed, since 
the understanding and the capability of leveraging the vulnerability changes. For example, a 
vulnerability will have more impacts if it is discussed a lot on a web (i.e., known by more attackers). 
Also, the exploits of the vulnerability could be open to public. As a result, more attacks could be 
performed with minimal efforts on studying the vulnerability. Even for an attacker lacking of 
experience, he could utilize the exploit code published online to finish the attack. Sometimes, a 
scanner targeting the vulnerability would be open to the public so that the attacker could easily scan 
the whole network to find the vulnerable systems. As a result, the score of assessing the vulnerability 
should be changed when considering the extra information released online, which finally impacts the 
risk scores of the whole system.  

However, a security analyst may not notice such changes that happen and continuously evolve 
online. Thus, he usually utilizes only the static features of a vulnerability to give the score. For 
example, he could use the type of the vulnerability. If it is a memory overflow vulnerability, arbitrary 
code could be executed so that the risk score could be higher than an information disclosure 
vulnerability. However, he may not know what kind of information could be leaked by the 
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information disclosure vulnerability. He may not understand the difficulties of exploiting the two 
vulnerabilities. So the real impact of the two vulnerabilities may not be considered. Another problem 
of using static features is that this method does not consider the combinations of exploiting several 
vulnerabilities which could be introduced on web. In this way, some vulnerabilities looking 
un-harmful may be of great importance in an attack.  

Based on the discussion above, the analyst should always keep his eyes on web to know the details 
of vulnerabilities. However, this is quite challenging. A human analyst may not have enough time to 
achieve this goal. For an inexperienced analyst, he might neither have the ability to understand the 
details about all the vulnerabilities. Even if the analyst could search online when meeting every new 
vulnerability, lots of time could be spent on searching and comparing the results of the searched 
results.  

To address this problem, our idea is to design an automatic approach to give risk scores to 
vulnerabilities, which dynamically evolves with the discussions on the vulnerabilities online. In 
particular, when a new vulnerability is met in the process of risk assessment, our approach first 
searches the vulnerability online. From the results, we could roughly understand how popular the 
vulnerability is. To further ensure the impact of the vulnerability, we should calculate the redundancy 
among the web pages and decrease the impact of it. This is due to that the repeated posts of the 
vulnerability may not be of great value for attacks to understand and exploit the vulnerability. The 
more diverse of the discussion, the more impacts could be of the vulnerability. Moreover, we further 
calculate the scores using the features of the web pages discussing the vulnerability. In this process, 
machine learning algorithms are leverage to generate a model for scoring risks. To train the model, 
labelled data by human experts are utilized. In the evaluation, we give an example of how to use our 
approach and compare a popular vulnerability with an unpopular one. Even if they look quite similar 
from CVE descriptions, their popularities are quite different, which makes the risks of the two 
vulnerabilities be different.  

Roadmap. The rest of the paper is organized as follows. Section 2 provides the background and 
related work of risk assessment and vulnerabilities. Section 3 gives the details of our design and 
Section 4 gives concrete examples which include two real vulnerabilities. In the end, we conclude our 
work in Section 5.  

Background and Related Work 

There are many vulnerability scoring system, which are put forward by different organizations, for 
example microsoft, USCERT, NVD, oracle and so on. So there are a variety of security vulnerability 
rating standards, which brings uncertain factors to risk evaluation, emergency response. CVSS can 
solve the problems above. CVSS[9] is the common vulnerability scoring system, which is a 
framework for rating the severity of security vulnerabilities in software. The CVSS uses an algorithm 
to determine three severity rating scores: base, temporal and environmental. And the scores are 
numeric, which range from 0.0 to 10.0. And some works improved the CVSS framework. For 
example, in [2], presents a vulnerability scoring mechanism based on CVSS by analyzing advantages 
and disadvantages of CVSS. However, we find that the score from CVSS is too centralized and 
usually the weights in CVSS are based on experience.  

Besides, ASVA[3] is an automatic security vulnerability assessment framework, which can 
automatically apply any quantitative vulnerability assessment standards (QVAS) to special 
vulnerability databases. ASVA obtain values of metrics of a QVAS with new features of Text mining, 
then assign these values to a formula of QVAS and finally compute the severity values of the 
vulnerabilities. In [4], presents a novel method to implement multi-dimension evaluation on 
vulnerability, which is based on influence scope and patch fixed situation. Besides, researchers focus 
on the vulnerability analysis and assessment for smart phone, tablet operating systems[5] and IoT[6]. 
All these methods are mostly based on the experience. So we propose a new approach to score 
vulnerability which is based on searching results. 
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Approach 

The basic idea our approach is shown in Figure 1. When a vulnerability is found on a system, our 
approach first searches it online. From the search results, we first do some preparation on them such 
as calculating redundant information. In the second step, we extract features of the searched results 
and feed them to the model for prediction. The model is trained using previous knowledge labelled by 
human experts. In this way, the model could output a risk score for the vulnerability instead of the 
human, which could catch the continuous evolvement of the vulnerabilities, freeing the human efforts 
in the process of risk assessment. Below we elaborate the details of each module. 

Data 
Preparation

Data 
Extraction

Model 
Prediction

Risk ScoreVulnerability

 
Figure 1. Overview of our approach 

Data Preparationf 

In this step, we first search a vulnerability online and collect the searched results. Sometimes, the 
results contain lots of web pages. We need to group similar ones together. For example, when we 
search CVE-2019-9601 online, the returned results contain 120 web pages (as shown in Section 4). 
We find that some of them are only repost. Thus, we calculate the redundancy and pick the unique 
web pages.  

To achieve this goal, for any two web pages, we could compare their similarity. Here, we leverage 
n-gram similarity approach [7]. Particularly, for each web page, we split the contents in it using n 
words. Then we slide the window of the n words and get another group of n words. For each group of 
the n words, we calculate the hash value of them. Then for each web page, we could get a set of hash 
values which represents the n-word groups in the web page. In this way, we could compare the two 
pages by calculating the number of same hash values between them. Suppose the number of the same 
hashes is ns, and the number of the unique hashes in the two web pages are nall. The similarity score is 
calculated as s=ns/nall. If the score is higher than a threshold, we say the two web pages are similar. 
We will put them into the same group so that redundant information will not be calculated repeatedly.  

 

Figure 2. An example of analysis on a CVE [https://github.com/nccgroup/CVE-2017-8759/] 

For example, in the webpage when searching “CVE-2017-8759” as shown in Figure 2, we use 
every n words to split the contents. Suppose we choose n=5 here. The first group of 5 words are “This 
repo contains sample exploits”. Then we calculate the hash value of the five words. Here we use MD5 
to calculate the value, which equals “bd105d538aa2931bd711f3fd5ac81929”. Later, we slide the 
window of 5 words and get another group of words (i.e., “repo contains sample exploits for”). 
Similarity, we calculate the hash. In this way, the web page could be expressed as a set of the hashes. 
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Then for another web page (as shown in Figure 3), we just compare the similarity using the two sets. 
From the results, we can see that the two webpages are not the same. 

 

Figure 3. The other webpage when searching CVE-2017-8759 
[https://www.fireeye.com/blog/threat-research/2017/09/zero-day-used-to-distribute-finspy.html] 

In this way, for each vulnerability, we could get the web pages and the similarity between each two 
webpages. Then we group similar webpages and get the number of groups. In this way, we have 
prepared the dataset for a vulnerability. 

Feature Extraction 

In this step, we extract features for a vulnerability, which could be utilized to predict the risk score. 
For each vulnerability, we collect the following features as shown in Table 1. In the table np stands for 
the number of web pages returned from searching. For example, if we use google as a search engine, 
the number of returned web pages is 22,200, which shows that the vulnerability is really popular and 
attackers could gain lots of information from the results. nup is the number of groups of unique web 
pages, which means that we group similar web pages using the n-gram similarity score mentioned 
above. This feature could also illustrate the popularity of studies on the vulnerability. nexp shows the 
number of groups containing exploits. If an exploit is given, the vulnerability is highly possible to be 
utilized for attacking. We get this value by checking whether a web page contains links to an 
attachment (in .c, .zip, or .rar type). This may have some false positives, but it could give a rough idea 
on whether the vulnerability could be exploited. Sometimes, the exploits are not directly given. The 
author of the web page may give some instructions in the page to show the instructions to generate 
exploits. So we use nins to characterize the number of groups containing instructions to generate 
exploits. We count a web page as the one containing instructions if some keywords (e.g., “exploits”, 
“step”, “generation”, “eip”, “execution flow”, etc.) and a good number of figures appear in the web 
pages. We also measure the average length of the webpages in groups (referred to as avelen), since a 
detailed webpage contains more information for attackers to generation exploits or to know how to 
utilize the vulnerability. Using these features, we are able to characterize a vulnerability and score the 
risk. 

Table 1. Features of web pages for scoring the risk of a vulnerability 

Features Descriptions 
np Number of web pages returned from 

searching 
nup Number of groups of unique web pages 
nexp Number of groups containing exploits 
nins Number of groups containing instructions 

to generate exploits 
avelen Average length of the webpages in groups

Model Training and Prediction 

Our idea to score a vulnerability is to utilize a trained model for prediction. Such model is trained 
using labelled data (e.g., by human experts), and could be later for prediction. In the training process, 
we give a number of vulnerabilities (e.g., CVEs) and let human experts score their risks. For each 
vulnerability, we search it online and generate the features (np, nup, nexp, nins, avelen). Then we use a 
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machine learning model (e.g., SVM [8]) to train the model. The training approach is standard. In this 
way, we could get the parameters and finally form the model. At last, for a newly given vulnerability, 
we could use the model to predict the risk of the vulnerability. The more the data, the more accurate of 
the model. If the model is not accurate enough, we could use more data for training until human 
experts are satisfied with the model prediction results. 

Evaluation 

In this section, we use a case study to illustrate our approach. For a given vulnerability 
CVE-2019-9601 which is a newly appeared vulnerability for android, we searched it online. The 
number of returned pages is 120. Then from the searched results, we could combine some similar web 
pages. For example, Figure 4 and Figure 5 show the similar results of the vulnerability, and we should 
combine them into the same group. Also, we can find the web page contains a link to 
https://www.exploit-db.com/exploits/46380, which actually includes an exploit.   

 

Figure 4. A webpage showing CVE-2019-9601 (https://www.tenable.com/cve/CVE-2019-9601) 

 

Figure 5. A similar webpage showing CVE-2019-9601 (https://nvd.nist.gov/vuln/detail/CVE-2019-9601) 

For some vulnerabilities, the results are very few, especially the newly appeared vulnerabilities. 
For example, the vulnerability CVE-2019-9632 is newly appeared in March 2019. The number of 
pages returned by Google is 27, most of them only contain the brief information of the vulnerability. 
Also there is no exploit is given by the web pages, which means that the vulnerability is hard to be 
utilized by attackers while compared with previous mentioned vulnerabilities. Therefore, the risk 
score should not be high. By this approach, we are able to score the risk of a vulnerability 
automatically. 

Conclusion 

In this paper, to solve the problem of relying on human experts’ experiences to score risks of 
vulnerabilities, we design an automatic approach, which only uses the searched results of the 
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vulnerabilities by popular search engines. By extracting features from the searched results and 
training the model using labelled data by human experts, we are able to utilize the model for future 
risk prediction. In this way, human experiences would not be very necessary in this step of risk 
assessment. Also, our approach is much more quick in prediction and is able to catch the continuous 
evolvement of the vulnerabilities. If a new exploit is generated for a vulnerability and opened to 
public, our approach could quickly catch it and change the risk score. In this way, our approach could 
be more accurate to reflect the real risk of the vulnerabilities. 
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