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Abstract

We deal with the higher degree multivariate
fuzzy transforms (F -transforms with polyno-
mial components) in the case when general-
ized fuzzy partition of the Cartesian prod-
uct of intervals is given by multivariate B-
splines. The aim of this paper is to gener-
alize the technique of modified F -transform
introduced previously for the univariate case
to the multivariate case. The proposed modi-
fication allows to extend good approximation
properties of the multivariate spline-based F -
transform from the subset where the Ruspini
condition is fulfilled to the whole initial do-
main.

Keywords: Multivariate fuzzy transform,
B-spline, extrapolation, approximation error

1 Introduction

The technique of ordinary F -transforms introduced
by I. Perfilieva [13, 10] was generalized to the case
of higher degree (i.e., Fm-transforms) in [12] as well
as extended to the multivariate version (see, e.g.,
[16, 14, 3, 5]). In all these settings, properties of
F -transforms significantly depend on basic functions
which form a fuzzy partition. We focus on Fm-
transforms with respect to a spline-based fuzzy par-
tition proposed in [6], generalized for the multivariate
case in [7].

Previously we have proved that using B-splines may
improve approximation properties of Fm-transforms
for smooth functions of one and also of many variables
However, the approximation error estimations both in
the univariate case [8] and in the multivariate case [7]
are true only in the subset where the Ruspini condition
is fulfilled. To eliminate this obstacle for the effective
use of the advantages of the Fm-transform technique

in applications a modification of the spline-based Fm-
transform was proposed. It was done by the authors
for the univariate case at the IPMU 2018 conference
[9].

The aim of this paper is to generalize the modification
introduced in [9] to the multivariate case. As in the
univariate case, the modification is done by adding
more basic functions to the fuzzy partition and by
applying an extrapolation technique with respect to
functions under consideration. The paper is organized
as follows. Section 2 contains preliminaries on spline-
based fuzzy partitions and Fm-transforms (direct, in-
verse and composite). Section 3 describes the modi-
fication technique including extension of spline-based
fuzzy partition and extrapolation technique. Section 4
is devoted to the investigation of approximation prop-
erties of the modified spline-based Fm-transforms for
smooth functions.

2 Preliminaries

2.1 Notation in Rd

Let N be the set of positive integers and N0 = N∪{0}
be the set of nonnegative integers. Let d ∈ N be a fixed
space dimension. The elements of the set Nd0 are called
multi-indices. For a multi-index j = (j1, . . . , jd) ∈ Nd0
we denote |j| = j1 + j2 + . . . + jd. The multi-indices
can be added and subtracted in the usual way: k± j =
(k1± j1, k2± j2, . . . , kd± jd); moreover, we write k < j
if simultaneously k1 < j1, . . . , kd < jd. Furthermore,
if c ∈ R is a scalar, then cj stands for (cj1, . . . , cjd) and
c < j means that simultaneously c < j1, . . . , c < jd.
The factorial of a multi-index j = (j1, . . . , jd) is defined
as j! = j1!j2! . . . jd!.

For a multi-index α = (α1, . . . , αd) the higher order

derivative ∂|α|f

∂x
α1
1 ∂x

α2
2 ...∂x

αd
d

of a function f (w.r.t. the

variable x = (x1, . . . , xd)) is denoted by ∂αf .

For a vector of d real variables x = (x1, . . . , xd) ∈
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Rd and a multi-index l = (l1, . . . , ld) ∈ Nd0 we denote
the monomial xl11 x

l2
2 . . . x

ld
d by xl. Then l is called the

degree of the monomial xl and |l| is called its total
degree. We denote by Pdm the space of all polynomials
in d variables of the total degree at most m ∈ N0.

Finally, for x ∈ Rd and a positive real r we denote the
respective `∞ ball as

Br (x) =
d∏
i=1

[xi − r, xi + r].

2.2 Univariate uniform fuzzy partition

Consider an interval [a, b] ⊂ R. Let N ∈ N and h >
0, h′ > h/2. Suppose that t0, . . . , tN are h-equidistant
nodes s.t. a < t0 < . . . < tN < b. Furthermore,
suppose that

⋃N
j=0[ti − h′, ti + h′] = [a, b].

Definition 1 ([11]). Fuzzy sets A0, . . . , AN ∈ C[a, b]
are said to constitute a generalized (h, h′)-uniform
fuzzy partition (FP for short) of [a, b] if the following
conditions are satisfied: for all j ∈ {0, . . . , N}:

• Aj(t) ∈ (0, 1] if t ∈ (tj−h′, tj +h′), and Aj(t) = 0
otherwise;

• Aj(tj − t) = Aj(tj + t) for all t ∈ [0, h′];

•
∑N
j=0Aj(t) > 0 for all t ∈ (a, b);

• Aj(t) = Aj+1(t+ h) for all t ∈ [tj − h′, tj + h′], if
j 6= N .

Then there is a function A : [−H,H]→ R (called the
generating function of the partition), where H = h′/h,
s.t. for all j ∈ {0, . . . , N} and t ∈ [tj − h′, tj + h′],

Aj(t) = A
(
t−tj
h

)
.

Furthermore, if there is an interval I ⊂ [a, b] such that∑N
j=0Aj(t) = 1 for all t ∈ I, the fuzzy partition is said

to fulfill the Ruspini condition on I.

2.3 Multivariate fuzzy partition

Let [ai, bi] ⊂ R for all i ∈ {1, . . . , d} and denote Iab =∏d
i=1[ai, bi]. Let A

(i)
0 , . . . , A

(i)
Ni

be a fuzzy partition of
[ai, bi] for all i, then the collection {Aj : 0 ≤ j ≤ N},
N = (N1, . . . , Nd), is called a fuzzy partition (FP) of
Iab, where

Aj(x) :=
d∏
i=1

A
(i)
ji

(xi), x ∈ Iab

are called the basic functions of this partition.

The fuzzy partition of Iab is said to fulfill the Ruspini
condition on some subset I ⊂ Iab if the basic functions
form a partition of unity on I, i.e.,

∑
jAj(x) = 1 for

all x ∈ I.

2.4 Discrete Fm-transform

Fix a FP A of Iab. Let ∆ = {z1, . . . , zL} ⊂ Iab be
a discrete subset of the cuboid Iab and f : ∆ → R.
Denote ys = f(zs), for each s ∈ {1, . . . , L}, and let

Y = (y1, y2, . . . , yL)
T

be a column vector containing
the values of the function f .

Fix any ordering of the set
{
l ∈ Nd0 : 0 ≤ |l| ≤ m

}
and

suppose that it is given using the following notation:
lr, r ∈ {1, . . . ,m′}, where m′ =

(
m+d
d

)
is the number

of elements of this set.

For each j satisfying 0 ≤ j ≤ N construct the L ×m′
matrix Xj and the L× L matrix Aj as follows:

Xj =


Pl1(z1 − tj) . . . Plm′ (z1 − tj)
Pl1(z2 − tj) . . . Plm′ (z2 − tj)

. . .

Pl1(zL − tj) . . . Plm′ (zL − tj)

 ,

Aj = diag (Aj(z1), . . . , Aj(zL)) ,

where Pl(x) = xl and tj = (t1,j1 , t2,j2 , . . . , td,jd).

Definition 2. The set ∆ is sufficiently dense in the
fuzzy partition A w.r.t. m if for each j the matrix
XT

j AjXj is invertible.

Notice that this definition slightly differs from [4, Def.
3].

Definition 3. Let p = (pj : 0 ≤ j ≤ N) be a collec-
tion of polynomials of the total degree at most m in d
variables. Then the function

F←m [p](t) =

∑
j pj(t)Aj(t)∑

jAj(t)
(1)

is called the inverse Fm-transform of p.

Definition 4. Let ∆ = {z1, . . . , zL} ⊂ Iab be suffi-
ciently dense in the FP A w.r.t. m and let f : ∆→ R.
Then the collection F→m [f ] = (F→m,j : 0 ≤ j ≤ N) of
polynomials F→m,j defined by

F→m,j(t) =

m′∑
r=1

β(j)
r Plr (t− tj),

where
β(j) =

(
XT

j AjXj

)−1
XT

j AjY,

is said to be the direct discrete Fm-transform of f
w.r.t. the fuzzy partition A.

The inverse Fm-transform of this collection, i.e., the
function

Fm[f ](t) =

∑
j∈IN F

→
m,j(t)Aj(t)∑

j∈IN Aj(t)
, (2)

is called the (composite) Fm-transform of f .
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2.5 Fuzzy partition based on B-splines

We form a FP in each dimension by using central B-
splines as the generating function. Central B-splines
[15] are even B-splines that have 1-equidistant knots.
For a fixed degree the central B-spline is unique (up
to a constant factor). The properties of B-splines and
construction of a fuzzy partition using central B-spline
as the generating function are described in more details
in [7].

Definition 5. The central B-spline of degree 2k − 1,
denoted by φ2k−1, is the unique piecewise polynomial
function satisfying the following requirements: 1) for
each j ∈ {−k, . . . , k − 1} the restriction of φ2k−1 to
[i, i + 1] is a polynomial of degree at most 2k − 1; 2)
φ2k−1 ∈ C2k−2(R); 3) φ2k−1(t) = 0 if t /∈ (−k, k); 4)∫
R φ2k−1(t) dt = 1.

Fix N,k ∈ Nd such that N ≥ 4k − 1. For all i ∈
{1, . . . , d}, let A(i) = φ2ki−1. Denote hi = (bi−ai)/Ni
and define hi-equidistant nodes

ti,ji = ai + hiji, ji ∈ {0, . . . , Ni}.

We also denote tj = (t1,j1 , . . . , td,jd), for 0 ≤ j ≤ N,
called the basic nodes of this FP, and

A
(i)
ji

(xi) = φ2ki−1

(
xi − ti,ji

hi

)
, xi ∈ [ai, bi],

for all ji ∈ {ki, . . . , Ni − ki} and i ∈ {1, . . . , d}.

Then the basic functions A
(i)
ki

, . . . , A
(i)
Ni−ki form a

generalized (hi, hiki)-uniform fuzzy partition of [ai, bi]
(the different indexing allows to index the basic nodes
from 0 to N). We refer to the respective multi-
variate FP as FPB(k,N). It can be shown that
the described FP fulfills the Ruspini condition on∏d
i=1[ti,2ki−1, ti,Ni−2ki+1].

It is well-known that the composite Fm-transform is
exact for polynomials of degree ≤ m. The main ad-
vantage of the FPB is that the composite transform
is exact for polynomials of degree 2m + 1 (as long as
it does not exceed the respective spline degree in each
dimension) in the set where the Ruspini condition is
fulfilled.

Let the discrete set ∆ consists of the basic nodes tj,
0 ≤ j ≤ N (this set is sufficiently dense w.r.t. the
FP iff m ≤ 2ki − 2 for each i)1. Let Fm[f ] stand
for the composite Fm-transform of f : ∆ → R w.r.t.
FPB(k,N).

Theorem 6. Let non-negative integers r,m satisfy

r ≤ min {2m+ 1, 2k1 − 1, . . . , 2kd − 1}
1One could allow larger values of m by taking finer sub-

grids ∆, ∆̃, see [7] for details; for simplicity, we consider

here only the case when ∆̃ consists only of the basic nodes.

and m ≤ mini (2ki − 2). Then for all f ∈ Pdr

Fm[f ](x) = f(x) for all x ∈
d∏
i=1

[ti,2ki−1, ti,Ni−2ki+1].

3 Extended multivariate FPB and
modified F -transform

3.1 Extended FPB

Let Iab =
∏d
i=1[ai, bi] be fixed, as well as appropriate

parameters k,N ∈ Nd with N ≥ 4k−1. As previously,
associate with k, N points tj ∈ Iab with 0 ≤ j ≤ N.
Define also the vector h with h = (h1, . . . , hd), where
hi = bi−ai

Ni
. To achieve an analog of Theorem 6, we

have to ensure that the Ruspini condition is satisfied
in the whole domain. As in the 1D case, this is ensured
by adding more basic functions to the fuzzy partition.

First we extend the given domain in the i-th dimension
for each i by the interval of length (2ki−1)hi, to the left
and right of ai, bi, respectively; denote the resulting set
as

Iãb =
d∏
i=1

[ai − (2ki − 1)hi, bi + (2ki − 1)hi].

Then construct the B-spline based fuzzy partition
FPB(k,N + 4k− 2) of the set Iãb, denoted by Ã. The
basic nodes of this fuzzy partition include the previous
tj with 0 ≤ j ≤ N, but there are now additional nodes
outside the initial domain Iab. All the basic nodes of
Ã are labeled tj with −(2k − 1) ≤ j ≤ N + (2k − 1)

and the basic functions of Ã are Aj with multi-index j
satisfying −k + 1 ≤ j ≤ N + k− 1.

By construction, the subset where the Ruspini condi-
tion holds for Ã is the initial domain Iab. Therefore,
when we restrict all basic functions Aj to Iab, we ob-
tain a fuzzy partition of Iab, which fulfills the Ruspini
condition everywhere in Iab. We call this fuzzy parti-
tion the (k,N)-eFPB of Iab and denote it by A:

A = {AjIab : −k + 1 ≤ j ≤ N + k− 1} .

Furthermore, the discrete set ∆ consists of all basic
nodes in the initial domain Iab, i.e.,

∆ = {tj : 0 ≤ j ≤ N} .

We can only access functions in C(Iab) via their values
on ∆ (i.e., for f ∈ C(Iab) only the values f(tj) at
the respective nodes are known). The set ∆ can be
naturally extended to the wider set

∆̃ = {tj : −(2k− 1) ≤ j ≤ N + (2k− 1)} ⊂ Iãb.
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If a function f were defined at ∆̃ (and we could access
those values outside Iab), we could perform the usual
Fm-transform w.r.t. Ã on Iãb and due to Theorem 6
obtain good approximation of f in Iab. However, the
function f may not be even defined outside Iab. So
this approach fails, but it also serves as motivation for
our strategy for achieving uniform approximation in
the whole Iab: let us extrapolate function f to some
small vicinity outside Iab and then apply the usual
Fm-transform w.r.t. Ã on Iãb. Since this is equivalent
to modifying the way the Fm-transform components
F→m,j are defined, with j corresponding to the fuzzy sets
Aj near the boundary of Iab, we refer to this method
as the modified Fm-transform.

3.2 Extrapolation operators

For every ε > 0 define Sε =
∏d
i=1[ai − ε, bi + ε]. Fix a

nonnegative integer M and a positive real δ. Suppose
that for every ε > 0 there are defined linear bounded
operators Eε : C(Iab)→ C(Sε) such that the following
holds:

1. Eεf = f for every polynomial f ∈ PdM ;

2. (Eεf) (x) = f(x) for all x ∈ Iab;

3. Eε are δ-local, i.e., whenever f, g ∈ C(Iab) coin-
cide on Bδε (x0) ∩ Iab for some x0 ∈ Iab, we also
have

Eεf(x) = Eεg(x) for all x ∈ Bε (x0) ∩ Sε;

4. the family {Eε}ε is uniformly bounded, i.e., there
exists a constant C? > 0 (independent of ε) such
that ‖Eε‖ ≤ C? for all ε.

We refer to the operator Eε as a δ-local order-M ex-
trapolator (for functions f ∈ C(Iab)).

We note that such a family of extrapolators can be con-
structed via some local extrapolation technique, e.g.,
via moving least squares [1, Chapter 22] with a weight
function ensuring that we use only the known values
of the function in a certain vicinity near the point at
which we intend to compute the extrapolated value.

3.3 Modification of Fm-transform

Let δ > 1 be a positive real; fix a family of δ-local
order-M extrapolators {Eε}ε for functions f ∈ C(Iab).

Further, fix k ∈ Nd and N ∈ Nd, s.t. N ≥ 4k− 1. Let

• A be the corresponding (k,N)-eFPB of Iab;

• Iãb =
∏d
i=1[ai − (2ki − 1)hi, bi + (2ki − 1)hi];

• Ã be the respective unrestricted FPB of the wider
set Iãb.

Set δ′ = 2 ‖k‖∞ and h = ‖h‖∞. We shall use E as a
shorthand for Eδ′h. Notice that hδ′ ≥ (2ki − 1)hi for
each i, thus Ef ∈ C(Iãb).

Let ∆ and ∆̃ be as described before; let m be a non-
negative integer s.t. m ≤ 2ki − 2 for all i, so that ∆̃
is sufficiently dense in Ã. Then we call the direct Fm-
transform (w.r.t the fuzzy partition Ã of Iãb) of the
extrapolant Ef a modified Fm-transform:

Let f ∈ C(Iab) and E be an extrapolator described
above. Denote f̃ = Ef and let

F→m [f̃ ] = (F→m,j[f̃ ] : −k ≤ j ≤ N + k)

be the direct Fm-transform of f̃ w.r.t. Ã.

We refer to the collection F→m [f̃ ] as the direct modified
Fm-transform (shortened to direct F̃m-transform) of
f (based on the extrapolants Eε, w.r.t. the fuzzy par-
tition A) and denote it by F̃→m [f ]. Similarly, the jth
component of F̃→m [f ] is called the jth component of the
direct F̃m-transform of f and denoted by F̃→m,j[f ].

The (composite) F̃m-transform is defined as the usual
inverse Fm-transform applied to the collection F̃→m [f ]
and denoted by F̃m[f ].

Theorem 7. Under the constraints described previ-
ously, the following holds:

1. F̃m is a linear operator from C(Iab) to C(Iab);

2. F̃→m,j[f ] = F→m,j[f ] for all j s.t. k ≤ j ≤ N− k;

3. Suppose that M ≤ 2m + 1. Let integer r sat-
isfy 0 ≤ r ≤ min {M, 2k1 − 1, . . . , 2kd − 1}. Then
p(x) = F̃m[p](x) for all p ∈ Pdr and x ∈ Iab.

Proof. The linearity of F̃m follows from that of E and
the usual Fm-transform. For the second claim, notice
that the corresponding basic function Aj is supported
in the product of intervals (ti,ji−ki , ti,ji+ki) ⊂ [ai, bi],

where f ≡ f̃ . Finally, the modified transform is based
on order-M extrapolators and p ∈ PdM , thus p̃ ≡ p.
Since r ≤ M ≤ 2m + 1 and r ≤ 2ki − 1, Theorem
6 implies that the composite transform of p w.r.t the
fuzzy partition Ã of Iãb coincides with p on the subset
where the Ruspini condition holds. By construction,
this subset of Iãb equals the initial cuboid Iab, thus

F̃m[p] ≡ p on Iab.

Now we note that the family of modified Fm-
transforms (with fixed Iab and k but varying N and,
thus, h) forms a family of uniformly bounded linear
operators acting from C(Iab) to itself.
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Theorem 8. Let k, m ≥ 0 and a family of δ-local
order-M extrapolators {Eε}ε be as described previ-

ously. Consider the family of operators
{
F̃m,N

}
N

,

where F̃m,N : C(Iab) → C(Iab) stands for the modi-
fied Fm-transform w.r.t. the (k,N)-eFPB of Iab, for
all N ≥ 4k− 1.

Then this family is uniformly bounded, i.e., there
is a constant C > 0, independent of N, such that∣∣∣F̃m[f ]

∣∣∣ ≤ C ‖f‖ for all f ∈ C(Iab).

Sketch of the proof. The family of extrapolators {Eε}ε
is uniformly bounded by C?, thus for every f ∈ C(Iab)
we have a bound on the extrapolated function’s values:∣∣∣f̃(x)

∣∣∣ ≤ C? ‖f‖ for all x ∈ Iãb.

Therefore it suffices to show that the usual Fm-
transform is uniformly bounded (when k is fixed, N
varies, and w.r.t. the FPB(k,N + 4k − 2) of the set
Iãb, which itself depends on N). In other words, it suf-
fices to show that Fm[g] ≤ C ′ ‖g‖ for all g ∈ C(Iãb),
with C ′ independent of h, N or g; then the claim fol-
lows with C = C ′C?. The proof is somewhat technical
and we omit it here, but it can be carried out simi-
larly as the proof of a similar claim in [7, Lemma 9],
by expressing the composite transform for each x ∈ Iãb
as

Fm[g](x) =
∑
j

∑
l∈Nd0 :
|l|≤m

cj,l[g]Pj,l(x)Aj(x)

and showing that only O(1) summands are nonzero,
and among those summands each factor Pj,l(x)Aj(x)
is O(1) and the remaining factor satisfies cj,l[g] =
O(‖g‖), with the big-O constants depending only on
k, d and m.

Further we demonstrate the locality of F̃m.

Theorem 9. Let k, N, δ ≥ 1 and an integer m ≥ 0 be
fixed as previously; denote δ′ = 2 ‖k‖∞ and h = ‖h‖∞.
Fix a family of δ-local order-M extrapolators {Eε}ε as
described previously.

Suppose that f, g ∈ C(Iab) and x0 ∈ Iab satisfy

f(x) = g(x) for all x ∈ Iab s.t. ‖x− x0‖∞ ≤ δδ
′h.

Then F̃m[f ](x0) = F̃m[g](x0).

Proof. We have F̃m[f ](x) = Fm[f̃ ](x), where Fm
stands for the usual Fm-transform w.r.t. the fuzzy
partition Ã of Iãb and f̃ = Ehδ′f .

We shall show the following two assertions:

1. the functions f̃ and g̃ satisfy f̃(x) = g̃(x) for all
x ∈ Iãb s.t. ‖x− x0‖∞ ≤ δ′h,

2. if the previous assertion holds, then the values
Fm[f̃ ](x0) and Fm[g̃](x0) are equal.

Clearly, combining those two claims proves the theo-
rem.

For the first assertion, notice that f, g ∈ C(Iab) coin-
cide on Bδδ′h (x0)∩Iab. Since E is δ-local, this implies

f̃(x) = g̃(x) for all x ∈ Bδ′h (x0) ∩ Sδ′h.

Since Sδ′h ⊃ Iãb, we conclude the required f̃(x) = g̃(x)
for all x ∈ Iãb s.t. ‖x− x0‖∞ ≤ δ′h.

To show the second claim, we note that there is a
multi-index j? s.t.

0 ≤ j?i ≤ Ni − 1 and ti,j?i ≤ x0,i ≤ ti,j?i +1.

Observe that Aj(x0) = 0 unless j?−k+1 ≤ j ≤ j?+k.
Let I? stand for the set of all multi-indices j satisfying
these constraints, i.e.,

I? = {j j? − k + 1 ≤ j ≤ j? + k} .

Then

Fm[f̃ ](x0) =
∑
j∈I?

F→m,j[f̃ ](x0)Aj(x0).

Obviously, F→m,j depends only of the function’s
values in the support on Aj, i.e, in the set∏d
i=1(ti,ji−ki , ti,ji+ki). Each x from this set satisfies

xi ≥ ti,ji−ki ≥ ti,j?i −2ki+1 ≥ x0,i − 2kihi,

xi ≤ ti,ji+ki ≤ ti,j?i +2ki ≤ x0,i + 2kihi,

for all i ∈ {1, . . . , d}. Since

2kihi ≤ max
i

(2ki) ·max
i
hi = δ′h,

we conclude that f̃ ≡ g̃ on suppAj for all j ∈ I?, hence

Fm[f̃ ](x0) = Fm[g̃](x0) as desired.

The previous two theorems imply the following:

Corollary 10. Let k, m ≥ 0, δ ≥ 1 and a family of
δ-local order-M extrapolators {Eε}ε be fixed as previ-
ously.

Suppose that there is a constant K1 > 0 and an integer
n ≥ 1, such that for some x0 ∈ Iab and all h > 0 there
is a function f ∈ C(Iab), possibly depending on h and
x0, which satisfies

|f(x)| ≤ K1h
n for all x ∈ B2hδδ′ (x0) ∩ Iab.

Then there is a constant K2 > 0, independent of h or
x0, such that∣∣∣F̃m[f ](x)

∣∣∣ ≤ K2h
n for all x ∈ Bhδδ′ (x0) ∩ Iab.
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Proof. For the sake of simplicity, denote r = hδδ′. Fix
any x ∈ Br (x0) ∩ Iab and form a new function fr ∈
C(Iab) defined as fr(z) = f (gr(z)), where gr ∈ C(Iab)
stands for

gr(z) = x + (z− x) ·min {‖z− x‖∞ , r} .

In other words, gr(z) is simply z if z is in the `∞-ball
Br (x), otherwise it is the point on the boundary of
this ball, which is on the segment joining x and z.

By construction, fr values cannot exceed those of f(z)
when ‖z− x‖∞ ≤ r. However, for each such z we have
‖z− x0‖ ≤ ‖z− x‖+ ‖x− x0‖ ≤ 2r, thus

|f(z)| ≤ K1h
n and ‖fr‖ ≤ K1h

n.

By construction fr and f coincide on Br (x) with r =
hδδ′, thus Theorem 9 implies∣∣∣F̃m[f ](x)

∣∣∣ =
∣∣∣F̃m[fr](x)

∣∣∣ .
By Theorem 8,

∥∥∥F̃m∥∥∥ ≤ C for some constant C, inde-

pendent of h, which implies∣∣∣F̃m[f ](x)
∣∣∣ =

∣∣∣F̃m[fr](x)
∣∣∣ ≤ C ‖fr‖ ≤ K1Ch

n.

Since K1 and C are independent of x or h, we have
the desired result with K2 = CK1.

4 Approximation of smooth functions

Throughout this section, we fix

• k ∈ Nd;

• a real number δ ≥ 1;

• N ∈ Nd satisfying N ≥ 4k− 1;

• 0 ≤ m ≤ min {2k1 − 2 . . . , 2kd − 2};

• a family of δ-local order-(2m + 1) extrapolators
{Eε}ε as described previously;

• the (k,N)-eFPB of Iab, denoted by A.

Furthermore, F̃m stands for the modified Fm-
transform w.r.t. the eFPB A, based on the extrap-
olators {Eε}ε. We also denote

h = ‖h‖∞ = max
i
hi and δ′ = 2 ‖k‖∞ = 2 max

i
ki.

Under those assumptions the following holds:

Theorem 11. Let r ∈ Z satisfy

0 ≤ r ≤ min {2m+ 1, 2k1 − 1, . . . , 2kd − 1} .

Then∥∥∥f − F̃m[f ]
∥∥∥ = O(hr+1) for all f ∈ Cr+1(Iab).

Proof. Fix any f ∈ Cr+1(Iab) and x ∈ Iab. Then there
is a multi-index j s.t. 0 ≤ ji ≤ Ni − 1 and

ti,ji ≤ xi ≤ ti,ji+1, i = 1, 2, . . . , d.

We take x0 := tj and apply the Taylor formula to f
with the Lagrange form of the remainder (note that
‖x− x0‖∞ ≤ h), obtaining

f(x) = pr(x)+
∑
β:

|β|=r+1

∂βf (x0 + θ(x− x0))
(x− x0)β

β!
,

where pr is the Taylor polynomial for f , deg pr ≤ r,
x0 is the point of expansion, θ ∈ [0, 1]. Let us denote

Rs,θ(x) :=
∑
β:
|β|=s

∂βf (x0 + θ(x− x0))
(x− x0)β

β!
,

then we can succinctly write f(x) = pr(x)+Rr+1,θ(x).
Notice that Rr+1,θ is a continuous function, since the
respective derivatives of f are. By the linearity of the
F̃m-transform,

F̃m[f ]− f = F̃m[Rr+1,θ]−Rr+1,θ, (3)

since F̃m[pr] = pr by Theorem 7.

Next we shall show that Rr+1,θ fulfills the require-
ments of Corollary 10, i.e., there is a positive constant
K1, independent of x, j or h, such that

|Rr+1,θ(z)| ≤ K1h
r+1 for all z ∈ B2hδδ′ (x0) ∩ Iab.

To see that, choose any z ∈ Iab s.t. ‖z− x0‖ ≤ 2hδδ′.
Since each ∂βf is continuous on the compact set Iab,
it has finite norm

∥∥∂βf∥∥. Then

|Rr+1,θ(z)| ≤
∑
β:

|β|=r+1

∥∥∂βf∥∥
β!

·
∣∣(z− x0)β

∣∣ .
Each component of z− x0 is bounded by 2hδδ′, thus

∣∣(z− x0)β
∣∣ ≤ d∏

i=1

(2hδδ′)βi = (2hδδ′)|β| = (2hδδ′)r+1.

Therefore |Rr+1,θ(z)| ≤ K1h
r+1, where the constant

K1 := (2δδ′)r+1
∑
|β|=r+1

∥∥∂βf∥∥
β!

is independent of h or x0. Now Corollary 10 implies
that there is a positive constant K2, independent of
x0 or h, s.t.∣∣∣F̃m[Rr+1,θ](z)

∣∣∣ ≤ K2h
r+1 for all z ∈ Bhδδ′ (x0) ∩ Iab.
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Since |x− x0| ≤ h ≤ hδδ′, we conclude that also

|Rr+1,θ(x)| ≤ K1h
r+1 and

∣∣∣F̃m[Rr+1,θ](x)
∣∣∣ ≤ K2h

r+1.

Now these estimates together with (3) give∣∣∣F̃m[f ](x)− f(x)
∣∣∣ ≤ (K1 +K2)hr+1.

Since this holds for all x ∈ Iab and K1,K2 are indepen-
dent of x or h, we have obtained the desired uniform
approximation of order hr+1.

We illustrate the preceding theorem by illustrating ap-
proximation of two bivariate functions. We will set the
same spline degree in each dimension, as well as the
same number of basic nodes in each dimension, i.e.,
k = (k, k) and N = (N,N) for some valid k,N . The
modified transform will be based on order-(2m + 1)
extrapolators, obtained via moving least squares ap-
proximation.

Let f ∈ C∞
(
[0, 1]2

)
be Franke’s function [2], defined

by

f(x, y) =0.75e−1/4((9x−2)
2+(9y−2)2)

+0.75e−1/49(9x+1)2−1/10(9y−2)2

+0.5e−1/4((9x−7)
2+(9y−3)2)

−0.2e−(9x−4)
2−(9y−7)2 ,

illustrated in Figure 1. In Table 1 we show the approx-

Figure 1: Franke’s function

imation error of Franke’s function when k = 2 (i.e.,
the cubic B-splines in each dimension are used) and

m = 1, as well as when k = 3 (the quintic B-splines
in each dimension are used) and m = 2. In the for-
mer case Theorem 11 predicts uniform approximation
order O(N−4), in the latter case we expect approxima-
tion of order O(N−6). These estimates are consistent
with the numeric approximation errors (obtained by
splitting each basic interval in each dimension into 10
parts and obtaining a refinement of ∆, then comput-
ing the error at each of the new nodes and taking the
maximum absolute error) in Table 1. Furthermore, in
Figure 2 we illustrate the approximation error when
k = 2, m = 1 (i.e., the difference between Franke’s
function and its modified F 1-transform).

N k = 2,m = 1 k = 3,m = 2

64 2.745161e-04 1.524311e-04
128 1.758060e-05 4.600762e-06
256 1.014198e-06 7.311263e-08
512 5.966349e-08 1.076466e-09
1024 3.601380e-09 1.607425e-11
2048 2.209334e-10 3.154699e-12

Table 1: Maximum absolute error when approximating
Franke’s function

Figure 2: Approximation error of Franke’s function by
the modified F 1-transform, k = (2, 2), N = (64, 64)

The other function we approximate with the mod-
ified Fm-transform is g ∈ C

(
[−1, 1]2

)
, defined by

g(x, y) = sin(2π2xy) exp(x2 + y2). As previously, we
consider approximation of g with the modified F 1-
transform when the fuzzy partition is formed by bicu-
bic B-splines, and with the modified F 2-transform
when the fuzzy partition is formed by biquintic B-
splines. Then the numeric approximation errors are
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computed (as described previously) and summarized
in Table 2. Again, the results are consistent with the
theoretic estimates O(N−4) and O(N−6).

N k = 2,m = 1 k = 3,m = 2

64 1.674709e+00 2.119694e+00
128 3.063849e-01 5.454578e-02
256 1.156863e-02 3.651562e-03
512 6.291720e-04 5.158642e-05
1024 3.930254e-05 5.401694e-07
2048 2.449533e-06 7.444174e-09

Table 2: Maximum absolute error when approximating
g(x, y) = sin(2π2xy) exp(x2 + y2)

5 Conclusion

Taking into account that a large part of applications of
fuzzy transforms corresponds to the multi-dimensional
case, in this paper we generalized the technique of
modified multivariate Fm-transform with respect to
fuzzy partition given by multivariate central B-splines
of odd degree for each variable. Our future research
will focus on applications of the modified spline-based
Fm-transform for further development of numerical
methods for solving differential equations.
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