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Abstract

Data stream analysis is growing in popu-
larity in the last years since several appli-
cation domains require to continuously and
quickly analyse data produced by sensors
with the aim of, for instance, reacting im-
mediately when problems arise, or detecting
new trends. The specificity of these domains
imposes strict temporal constraints on ma-
chine learning algorithms to be used for min-
ing useful insights. The Hoeffding Decision
Tree (HDT) is a well-known classification al-
gorithm for efficient streaming data classifi-
cation. In this paper, with the aim of im-
proving HDT accuracy and capability of han-
dling noisy data, we exploit the learning pro-
cedure proposed in HDT for adapting a re-
cently proposed fuzzy decision tree to cope
with streaming data classification problems.
We tested the fuzzy approach on a bench-
mark dataset for the on-line learning of data
stream classification models. Results show
that, during the on-line learning process, the
fuzzy approach outperforms HDT in terms of
accuracy.

Keywords: Streaming Data Classification,
Hoeffding Decision Tree, Fuzzy Decision
Tree, Evolving Classifiers

1 Introduction

Data stream analysis is gaining more and more atten-
tion thanks to the daily usage of a huge number of het-
erogeneous sources of streaming data such as sensors,
wearables, smartphones and all other smart devices
of the Internet of Things [17] in different application
domains, including measurements in network monitor-
ing and traffic management [6], log records and click-
streams in web surfing [2] as well as in virtual learning

environments [12], manufacturing processes [19], and
continuous monitoring of twitter posts [4]. Moreover,
data stream analysis is part of the Big Data and An-
alytics enabling technology for Industry 4.0 [13].

In the data stream context, data are collected typi-
cally at high rate, and algorithms processing them are
required to work under very strict constraints. Conse-
quently, data streams pose some important challenges
for designing proper machine learning/data mining al-
gorithms. First of all, due to the availability of lim-
ited resources with respect to the (practically infinite)
amount of data to be handled, such algorithms should
scan and inspect instances only once, trying to reduce
the data to be stored and adopted for the training
stage. Second, dealing with data whose nature and dis-
tribution generally changes over time, the concept drift
should be appropriately managed. Third, the mod-
els, although continuously updated as the data arrive,
should be capable to make a prediction at any time
[16]. Three main interdependent metrics are usually
concerned when designing data stream mining models,
namely accuracy, amount of memory for training data
storage and time required for parameter learning [1].
To concurrently optimize the values of these metrics
during the learning phase is a very challenging task,
since an increase in accuracy is generally achieved by
increasing the amount of memory and time, and vice-
versa.

The Hoeffding Decision Tree (HDT) [5], also known
as “Very Fast Decision Tree”, represents a reference
model for streaming data classification. HDT adopts
an on-line learning strategy, which grows a decision
tree incrementally. The strategy considers to split a
leaf of the tree whenever it contains a minimum num-
ber of instances. The actual number of instances for
generating a split depends on the Hoeffding bound.
This statistic ensures, with a certain level of confi-
dence, that the attribute selected for the split is the
same as the one that would have been chosen if an
infinite number of instances had arrived. The main
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strengths of HDT are: i) only the tree and its neces-
sary statistics are stored in memory and ii) the learned
model is asymptotically nearly identical to the one
built by a non-incremental learner (if the number of
training instances is large enough).

In the last years, a number of strategies have been
proposed for improving HDT. For example, in [7] the
authors have discussed an approach for dealing with
continuous data and to face the concept drift phe-
nomenon. Furthermore, the work in [21] has presented
a methodology for handling noisy instances and con-
trolling the dimension of the tree. Recently, in [11],
the Vertical HDT, which is a parallel and distributed
version of the on line learning procedure of the HDT,
has been introduced and experimented on big stream-
ing data.

Some elements of fuzzy logic and fuzzy set theory
have been exploited for enhancing classification mod-
els based on decision trees, both in batch and stream-
ing contexts. In particular, vague and noisy data can
be handled very efficiently whenever fuzzy sets are
adopted for discretizing the domains of the attributes
used in the classifiers [18]. An approach for learning
binary and multi-way fuzzy decision trees (FDTs) in
batch mode for big data classification has been recently
discussed in [20]. Specifically, the authors exploit a
fuzzy partitioning of the input attributes, carried out
by using a novel distributed discretizer, and adopt the
fuzzy information gain for selecting the attributes at
the decision nodes.

The Flexible Fuzzy Decision Tree (FlexDT) proposed
in [9] represents one of the first examples of FDT for
streaming data classification. FlexDT is based on the
classical incremental learning algorithm of HDT, but
it employs binary fuzzy partitions for each attribute
at a decision node. Sigmoidal fuzzy sets are adopted
and appropriate heuristics for tuning their parameters
during the learning stage have been defined. The clas-
sical formulations of the Hoeffding bound and of the
information gain are used, respectively, for deciding
whether to expand or not the tree and to select the
best input attribute to be used for the splitting at each
node. Recently, an extension of FlexDT, denoted as
Multi FlexDT, has been introduced in [10]. In Multi
FlexDT multi-way splits rather than binary splits are
allowed at each decision node. In Multi FlexDT, when
a new decision node is created, a binary fuzzy parti-
tion is adopted as in FlexDT. Then, the incremen-
tal learning algorithm allows creating a new binary
partition for the attribute at a specific decision node,
whenever a new training instance arrives and its mem-
bership degree to each fuzzy set is lower than a pre-
fixed threshold. Thus, the previous partition at the
node is extended considering the two new sigmoidal

fuzzy sets and two new splittings may be considered.
Both FlexDT and Multi FlexDT generate, incremen-
tally, noise-robust models and also allow managing effi-
ciently missing values. As stated in [10], Multi FlexDT
outperforms FlexDT in terms of accuracy and depth of
the trees. However, linguistic labels cannot be defined
a-priori for each input attribute and a good level of
integrity of the fuzzy partitions is not ensured. Thus,
the interpretability of the fuzzy decision trees may be
compromised.

In this paper, we propose a novel approach for in-
cremental learning of multi-way FDTs in classifica-
tion tasks. We exploit the main workflow of HDT for
adapting the FDT proposed in [20]. Unlike in [20],
for the sake of simplicity, we adopt uniform fuzzy par-
titions for each input attribute: the selection of the
best input attribute to be used for the splitting at
each node is performed by using the fuzzy information
gain defined in [20]. We experimented the proposed in-
cremental learning procedure for building FDTs on a
benchmark dataset for on-line learning of classifiers for
data streams [3]. We compared the proposed stream-
ing FDT, denoted as SFDT in the following, with
HDT. The results show that, in most of the time in-
tervals, SFDT outperforms HDT in terms of accuracy.
Moreover, the use of uniform fuzzy partitions allows us
to generate simple, accurate and explainable linguistic
decision trees.

The rest of the paper is structured as follows. In Sec-
tion 2, we summarize some preliminaries about fuzzy
partitioning and the structure of FDT. In Section 3 we
describe the proposed incremental procedure for learn-
ing SFDTs. Section 4 shows the preliminary results
and discusses some comparisons with HDT. Finally,
Section 5 draws some conclusions.

2 Preliminaries

In this section, we briefly introduce some preliminary
concepts regarding fuzzy partitions and the structure
of FDT.

2.1 Fuzzy Partitions

Let X = {X1, . . . , XF } be the set of numerical in-
put attributes and XF+1 be the output of a fuzzy
classification model. Let Uf , with f = 1, ..., F , be
the universe of the f th attribute Xf . Let Pf =
{Af,1, . . . , Af,j , . . . , Af,Tf

} be a partition of Xf con-
sisting of Tf fuzzy sets Af,j . The output XF+1 is a
categorical variable assuming values in the set Γ =
{C1, . . . , Ck, . . . , CK} of K possible classes Ck.

In this work, we adopt strong and uniform triangular
fuzzy partitions [8], as shown in Figure 1: the parti-
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tions are formed of three triangular fuzzy sets Af,j ,
whose membership function is defined by the tuples
(af,j ,bf,j ,cf,j), where af,j and cf,j correspond to the
left and right extremes of the support of Af,j , and bf,j
to its core.

Af,1 Af,3Af,2

bf,1=af,2 cf,2=bf,2=af,3 cf,2=bf,3

Figure 1: An example of a strong triangular fuzzy par-
tition.

2.2 Fuzzy Decision Trees

A decision tree is a directed acyclic graph, where in-
ternal nodes represent a test on an attribute, branches
denote the outcome of the test, and terminal nodes
(leaves) contain instances belonging to one or more
class labels. The topmost node is the root of the tree.
In a general scenario, class Ck ∈ Γ of each leaf is associ-
ated with a weight wk, which determines the strength
of class Ck in the leaf node.

Given a training set TS, the structure of a decision
tree, in terms of nodes, branches and leaves, is gener-
ated recursively. First of all, one of the attributes is
selected at the root, taking the overall TS into con-
sideration. The attribute selection algorithm returns
also a set of branches and corresponding nodes. A
branch corresponds to a condition on the values of the
attribute. For each node, a new attribute is selected
from the set of the attributes, considering only the
instances of the TS which satisfy the test associated
with the branch. When no attribute can be selected,
the node is considered as a leaf. The attribute selec-
tion algorithm is usually based on a specific metric,
such as Gini Index or Information Gain [15].

In this paper, we exploit a multi-way FDT based on
Fuzzy Information Gain [20]. First, each attribute
is partitioned by using strong and uniform triangular
fuzzy partitions. The recursive procedure for building
the tree uses the Fuzzy Information Gain for the iden-
tification of the best splitting attribute. In multi-way
FDTs, each test node produces exactly Tf branches,
corresponding to all possible partitions of the attribute
over which the test is being performed. Figure 2 shows
an example of multi-way FDT, in which, for the sake of
simplicity, we consider only two attributes: X2 in the
root and X1 at the second level. Each attribute is par-
titioned into three fuzzy sets, and, as a consequence,
produces exactly three output branches. In the exam-
ple, each leaf is associated with just one class.

A2,2

A2,1 A2,3

A1,1 A1,3

A1,2

C2

C1
C1

C1

C3

X1

X2

Figure 2: An example of multi-way FDT.

Once the tree has been generated, a given unlabeled
instance x̂ can be assigned to a class Ck ∈ Γ by follow-
ing the activation path of nodes from the root to one
or more leaves. In classical decision trees, each node
represents a crisp set and each leaf is labeled with a
unique class label. It follows that x̂ activates a unique
path and is assigned to a unique class. In FDT, each
node represents a fuzzy set. Thus, x̂ can activate mul-
tiple paths in the tree, reaching more than one leaf
with different strengths of activation, called match-
ing degrees. In this work, the chosen output class la-
bel for a certain unlabeled instance is obtained using
the weighted vote approach, which considers the max-
imum total strength across all classes and the afore-
mentioned weight wk per class [20].

2.3 The Incremental Learning Procedure of
HDT

In this Section, we briefly describe the iterative learn-
ing procedure of the classical HDT. In the data stream-
ing scenario, in a certain time interval, we suppose that
a stream of labeled training instances arrives. Thus,
the iterative learning procedure is in charge of updat-
ing the current structure of the decision tree through
two main stages: i) update of the statistics in the nodes
and leaves, and ii) possible growth of the tree. We re-
call that the incremental learning procedure of HDT
depends on a set of parameters including Grace Period
(GP ), Tie Threshold (TT ), Split Confidence (usually
denoted as δ) and Minimum Fraction (MF ).

As regards the first stage, starting from the root, the
procedure determines the leaf reached by the current
instance and its statistics for the calculation of the
information gain are updated. Then, a set of condi-
tions are checked for deciding whether to split or not
the current leaf (CL). First of all, the splitting is not
allowed if the total number of instances in CL, de-
noted as Total Cardinality (TCCL), is lower than GP .
Otherwise, attributes are ranked considering the In-
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formation Gain and the Hoeffding Bound of the leaf
(HBCL), calculated as follows:

HBCL =

√
R2 ln(1/δ)

2TCCL
, (1)

where R is the log2 of the number of classes contained
in CL. If the difference between the information gains
of the first two attributes in the ranking is higher than
HBCL or HBCL is lower than TT , then the splitting
of CL is allowed by using the attribute with the high-
est information gain. The splitting is actually carried
out if the percentage of instances in each post-split
branch is higher than MF . We recall that the use of
the Hoeffding Bound as a threshold ensures, with high
probability, that the attribute chosen for the splitting
using n samples (where n is the TCCL) is the same
that would be chosen using infinite samples [5].

3 The Proposed Incremental Learning
Procedure for SFDTs

The incremental procedure for the SFDT learning, in-
troduced in this work, resembles the one used in the
standard HDT, except for the updating of the leaf
statistics and the use of the Fuzzy Information Gain
for selecting the best splitting attribute. Furthermore,
the adopted classification strategy is the weighted vote
approach as described in [20].

As regards the first stage, starting from the root, the
procedure determines the leaves reached by the cur-
rent instance. While in classical HDT only one leaf
is reached by the instance, in SFDT an instance can
reach more than one leaf. Indeed, an instance can
activate more than one branch since an instance has
different membership degree to the fuzzy sets corre-
sponding to the possible values of the attribute used
for splitting the node. In our case, due to the uni-
form partition we adopt, two branches are activated
at each decision node. Thus, the instance can travel
different paths with different membership degree and
therefore reach different leaves. Once a leaf is reached,
the matching degree of the path of the tree is calcu-
lated. Further, the fuzzy cardinalities of the fuzzy sets
activated by the instance are updated. More details on
the calculation of fuzzy membership degrees, matching
degrees and fuzzy cardinality can be found in [20].

In the second stage, the procedure verifies whether the
conditions to grow SFDT by splitting some of the cur-
rent leaves CLs are satisfied. First of all, the Total
Fuzzy Cardinality (TFCCL) of each current leaf CL
is calculated, summing up its single fuzzy cardinali-
ties per class. If the TFCCL is higher than GP , the
procedure ranks the attributes calculating, for each

attribute Xf , the Fuzzy Information Gain as in [20].
Furthermore, the Fuzzy Hoeffding Bound of the cur-
rent leaf is computed as follows:

FHBCL =

√
R2 ln(1/δ)

2TFCCL
, (2)

If the difference between the fuzzy information gains
of the first two attributes in the ranking is higher than
FHBCL or FHBCL is lower than TT , then the split-
ting of CL is allowed by employing the attribute with
the highest fuzzy information gain. Also in this case,
the splitting is actually carried out if the percentage of
instances in each post-split branch is higher than MF .
Notice that, since the maximum value of the fuzzy car-
dinality of an instance in CL is equal to 1, TCCL is
an upper bound for TFCCL. Thus, FHBCL is an
upper bound for HBCL and, consequently, the split-
ting condition checked for the incremental learning of
the SFDT is more restrictive than the one checked for
HDT.

4 Simulations and Results

In this section, first we describe the used dataset and
the considered simulation scenario. Then, we show
and discuss the results achieved by the proposed SFDT
and compare them to the ones obtained by the classical
HDT.

4.1 The Dataset used in the Experiments

In order to assess the effectiveness of the proposed ap-
proach for data stream classification, we consider a real
world classification dataset, but simulating its evolu-
tion over time. We used the Optical Recognition of
Handwritten Digits dataset, extracted from the UCI
machine learning repository1. The dataset contains
normalized bitmaps of hand-written digits belonging
to 10 classes (digits ranging from zero to nine): 32×32
bitmaps are divided into non-overlapping blocks of
4 × 4 and the number of pixels are counted in each
block. This generates an input matrix of 8 × 8 where
each element is an integer in the range [0..16]. As a
consequence, each image is an instance featuring 64
numerical attributes with values in [0..16], and one
class attribute in [0..9]. In the experiments, we have
normalized the values of each attribute from the range
[0..16] to the range [0..1], thus the universe Uf of each
input attribute Xf ranges from zero to one. The com-
plete dataset includes a total of 5620 samples, but we
considered only the first 5600 ones as described in the
following.

1https://archive.ics.uci.edu/ml/datasets/
optical+recognition+of+handwritten+digits
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4.2 Simulation Scenario

In order to simulate a data stream, we divided the
aforementioned dataset into a fixed number of K data
chunks and analysed the chunks in sequence. We sim-
ulated the data stream by evaluating the performance,
on the data chunk at the current time interval Tk, with
k = 2..K, of the current classification model, trained
considering the stream of instances included into the
data chunks arrived until the time interval Tk−1. Dur-
ing the first time interval T1, the classification model
is just built using the first chunk of the dataset. In the
experiments, we set K = 50. Moreover, the class dis-
tribution was preserved in the chunks, thus resulting
into balanced training and test sets.

For the simulation tests we employed a machine featur-
ing an x86 64 architecture, 4 cores, Intel(R) Core(TM)
i7−2600 CPU @ 3.40GHz and 16GB RAM. The pro-
posed incremental procedure for learning SFDTs was
developed in JAVA and integrated into the WEKA
Toolkit for machine learning2, also exploiting the Weka
implementation of the classical HDT.

Achieving optimal performance from a stream classi-
fier is a challenging task and a fixed set of values of
critical parameters depends on the particular consid-
ered dataset [14]. Therefore, we have carried out an
intensive simulation campaign to optimize the main
parameters of the incremental learning procedures of
both SFDT and HDT. In Table 1, we summarize the
values of the main aforementioned parameters for both
classical HDT and the proposed SFDT. These values
have been obtained to concurrently increase the accu-
racy and reduce the tree depth. As regards the SFDT,
we achieved the best results, with the selected dataset,
using a fuzzy partition of three triangular fuzzy sets
for each input attribute.

The parameters influencing the growth of both trees
and their classification accuracy, are the following:

• Split Confidence, involved in the computation of
both fuzzy and classical Hoeffding Bound, and de-
termining the closeness of performance statistics
to those of a decision tree generated in batch.

• Tie Threshold specifying a threshold to break the
ties forcibly whenever the difference of informa-
tion gains, between the first two attributes with
the highest gains, is too small. Indeed, in this lat-
ter case, too much time may be required to reach
the splitting event.

• Grace Period determining, in the case of the clas-
sical HDT, the minimum number of instances (to-
tal crisp cardinality) that have to be contained by

2http://www.cs.waikato.ac.nz/ml/weka

a node before being considered for splitting. In
the case of SFDT, this threshold is compared, as
discussed in Section 3, with the value of the total
fuzzy cardinality.

• Minimum Fraction determining the minimum
percentage of instances in a branch after a pos-
sible split.

Parameter HDT SFDT
Split Confidence 10−7 10−7

Tie Threshold 2.5 2.5
Grace Period 30 25
Minimum Fraction 0.01 0.01

Table 1: Main parameters for both HDT and SFDT.

4.3 Experimental Results

In this section, we show some preliminary results
achieved by the proposed SFDT. Moreover, we com-
pare SFDT with the classical HDT. To this aim, the
following metrics are adopted for evaluating the two
models: the total accuracy over all classes, the tree
depth, computed as the maximum number of levels
reached by the tree after the training phase, and the
total number of leaves. For each of the two decision
trees, these metrics have been extracted in correspon-
dence of time interval Tk.

Figure 3: Trends of the total accuracy over all 10
classes for both HDT and SFDT.

Figure 3 shows the trends, along the different time in-
tervals, of the total accuracy. It is worth noticing that,
in most of the time intervals, the accuracy achieved by
SFDT is higher than the one achieved by HDT.

Figure 4 regards the depth of the trees, which is related
to the tree complexity. By analyzing the trends over
the time intervals, the SFDT grows up, in terms of
levels, slower than HDT. Since the GP for SFDT has
been set to a lower value than the one set for HDT, this
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Figure 4: Trends of the tree depth for both HDT and
SFDT.

result may appear quite strange. Indeed, in general,
the lower the value of GP the higher the probability of
allowing a split in a leaf and, thus, of generating deep
trees. However, we have to consider that the value of
the fuzzy cardinality is mostly lower than the classical
cardinality. For this reason, if we set the same value
for the GP for both HDT and SFDT, a split in a leaf of
an SFDT will be allowed with a lower probability than
in HDT. In conclusion, as shown by the experimental
results, setting the values of GP as in Table 1 does not
ensure that HDT will growth slower than SFDT.

Figure 5: Trends of the number of leaves for both HDT
and SFDT.

Finally, Figure 5 shows the tree growth trends in terms
of number of leaves. Also this metric is related to the
tree complexity. The reader can observe that the num-
ber of leaves in SFDT increases faster than in HDT.
This phenomenon is due to the fact that each split in
the SFDT can generate up to three leaves, while in the
classical HDT just binary splits are allowed. However,
the order of magnitude of the number of total leaves
for both SFDT and HDT is the same.

For the sake of completeness, in Table 2 we show some
of the obtained results for both SFDT and HDT in
terms of accuracy, tree depth and number of leaves.

The results are sampled at different time intervals,
from T5 to T50, with a step of five units. We high-
lighted in bold the best values of the accuracy. It is
worth noticing that, in most of the cases, SFDT out-
performs HDT in terms of accuracy. On the other
hand, as discussed above, the classical HDT is always
less complex, in terms of number of leaves, than SFDT.
However, the number of levels associated with SFDT
is always lower than the one of HDT.

In the following, we show some examples of the ob-
tained fuzzy rules, extracted from the SFDT generated
at T45, which is the one achieving the highest overall
accuracy. We extracted three different paths from the
SFDT, which generated three rules characterized by
different levels of complexity, in terms of number of
conditions in the antecedent. In the following, we show
a long rule (with 8 conditions), a medium rule (with 7
conditions) and a short rule (with 5 conditions). We
labeled the fuzzy sets, adopted in the partitioning of
the input attributes, as “Low”, “Medium”, and “High”
(L, M, and H, respectively). As a consequent of the
rules, we considered the class with the highest weight
in the specific leaf. In the antecedent, atti represents
the attribute describing the number of pixels contained
in the ith block of the image.

RLong : IF att43 is L AND att19 is H AND

att22 is L AND att6 is H AND

att11 is H AND att21 is L AND

att27 is H AND att23 is H

THEN Digit is 7

RMedium : IF att43 is L AND att11 is M AND

att44 is H AND att22 is L AND

att21 is L AND att62 is H AND

att30 is L THEN Digit is 6

RShort : IF att43 is L AND att29 is M AND

att38 is L AND att27 is L AND

att45 is L THEN Digit is 8

As the reader can appreciate, the linguistic rules shown
above are characterized by a very high level of inter-
pretability.
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HDT SFDT
Time Interval Accuracy Depth Leaves Accuracy Depth Leaves

T50 83.04% 13 139 85.71% 10 280
T45 75% 13 125 93.75% 9 248
T40 70.54% 12 113 76.78% 9 230
T35 84.82% 11 99 83.04% 9 194
T30 76.78% 10 87 85.71% 8 170
T25 85.71% 9 75 86.61% 7 136
T20 78.57% 9 60 83.93% 6 104
T15 75.89% 8 44 77.68% 5 5
T10 84.82% 7 30 68.75% 4 4
T5 50% 5 15 66.07% 3 3

Table 2: Accuracy, tree depth and number of leaves extracted at different time intervals.

5 Conclusions

In this paper, we have discussed a novel procedure
for incremental learning of a fuzzy decision tree from
streaming data. We have integrated some elements
of the fuzzy logic and fuzzy set theory into the clas-
sical incremental learning procedure of the Hoeffding
Decision Tree (HDT). Specifically, first, we have dis-
cretized each input attribute using a fuzzy strong uni-
form partition. Then, we have defined the fuzzy Ho-
effding bound for controlling the growth of the tree
while streams of instances arrive. Finally, we have
adopted the fuzzy information gain as a metric for se-
lecting the best input attribute for the splitting nodes.
We have experimented the proposed incremental learn-
ing procedure on a benchmark dataset for data stream
classification. We have compared the achieved results
with the ones achieved by the classical HDT. The re-
sults have shown that, even though the fuzzy decision
tree is a bit more complex than HDT, the accuracies
achieved by HDT are, in most of the cases, lower than
the ones obtained by the fuzzy approach. Moreover,
the rules that may be extracted from the fuzzy decision
tree are characterized by a high level of interpretabil-
ity.
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