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Abstract

In fuzzy cognitive maps (FCMs) based mod-
elling paradigm, the complex system’s be-
haviour is gathered by the causal connec-
tions acting between its main characteristics
or subsystems. The system is represented
by a weighted, directed digraph, where the
nodes represent specific subsystems or fea-
tures, while the weighted and directed edges
express the direction and strength of causal
relations between them. The state of the
complex system represented by the so-called
activation values of the nodes, that is com-
puted by an iterative method. The FCM
based decision-making relies on the assump-
tion that this iteration reaches an equilib-
rium point (fixed point), but other types of
behaviour, namely limit cycles and chaotic
patterns may also show up. In practice,
the weights of connections are estimated by
human experts or machine learning meth-
ods. Both cases have their own uncertainty,
which can be represented by using intervals
as weights instead of crisp numbers. In this
paper, sufficient conditions are provided for
the existence and uniqueness of fixed points
of fuzzy cognitive maps that are equipped
with interval weights, which also ensure the
global asymptotic stability of the system.

Keywords: Fuzzy cognitive maps, Interval-
valued fuzzy cognitive maps, Convergence of
fuzzy cognitive maps, Stability, Equilibrium

1 Introduction

Fuzzy cognitive maps (FCMs) are network-based mod-
els [12] that are able to simulate the behaviour of com-
plex systems, especially, when many interrelating fac-
tors should be considered by the decision maker [1].

These techniques form an effective way of interpreting
and representing expert knowledge about complex sys-
tems [14], [3], including causalities and uncertainties.

1.1 Classical Fuzzy Cognitive Maps

The base of an FCM model is a directed digraph in
which causal weights are assigned to the edges from
the interval [—1, 1]. These weights are devoted to rep-
resenting the strength and direction of causal relation-
ships. The nodes (called concepts in the FCM liter-
ature) represent subsystems or specific factors of the
modelled system. The current states (activation val-
ues) of the concepts are described by numbers from
a given set, which is usually the [0,1] or the [—1,1]
interval [15].

Formally a fuzzy cognitive map is a 4-tuple
(C,W, A, f). Here C is the set of concepts C' =
{C1,C4,...,C,}, W is the weight matrix, which as-
signs a causal value w;; (-1 < w;; < 1) to each
edge connecting the nodes C; and C}, describing how
strongly influenced is concept C; by concept C; The
sign of w;; indicates whether the relationship between
C; and C; is direct or inverse. Consequently, weight
matrix W € R™*" gathers the system causality. The
function A : C' — R assigns an activation value 4; € R
to each node C; at each time step during the simula-
tion. A transformation or threshold function f calcu-
lates the activation value of concepts and keeps them
in the allowed range, which is usually the [0, 1] or the
[-1,1] interval. The iteration which calculates the
values of the concept may or may not include self-
feedback. Self-feedbacks were not allowed in early
FCMs, but there are many examples, where a concept
has some kind of ‘memory’. The intensity of that mem-
ory can be expressed by the weight of the self-feedback.
The theoretical background of self-feedbacks is already
laid down [29, 30], and several real-life examples can
be found for their application [31, 32, 33] as well.

In general form, the iteration rule can be written as
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Z wijAgk) + diAgk)
J=1,j#i

Al = (1)

where AZ(-k) is the value of concept C; at discrete time
k, w;; is the weight of the connection from concept
C; to concept C; and d; expresses the strength of the
self-feedback (0 < d; <1).

If we include the self-feedback into the weight matrix
W (so w;; = d;) then the equation can be rewritten in
a more compact form:

AP = [ D wy AP | = fwia®), (@)
j=1

where w; = [wj1,...,wy] is the ith row of W and
A = [Agk), . ,Aslk)]T is the concept vector after k
iterations, so w; A®) is a real number.

Moreover, if we couple the coordinates of the concept
vector together and denote by G the mapping R" —
R” that generates the concept vector A1) from AK),
then we have that:

flw AR

A+ — = G(AW), (3)

Fw, A®)

From the mathematical point of view, the analysis of
the long term behaviour of the fuzzy cognitive map
means the analysis of the iteration A+ = G(A®),
that is a nonlinear, multivariate difference (not dif-
ferential) equation, a.k.a. nonlinear, multivariate dis-
crete dynamical system (the term ‘discrete’ means that
the time is discrete). A fuzzy cognitive map with con-
tinuous threshold function may produce one of the fol-
lowing long-term behaviours [15],[10], [11]:

e It may reache a fixed point, so the state vector
stabilizes after a certain number of iterations.

e It may produce limit cycles, which means that a
certain number of consecutive state vectors turn
up repeatedly.

e It may show chaotic behaviour. Chaotic be-
haviour means that the activation vector never
stabilizes.

The behaviour of an FCM may be influenced by the
following factors:

e threshold function and its parameter(s);

e clements (weights) of the weight matrix and the
topology of the map;

e initial state vector.

1.2 Fuzzy Cognitive Maps with Uncertain

Weights

The weights of the causal connections in the fuzzy
cognitive map are usually determined by human ex-
perts or computed by machine learning techniques us-
ing historical data. Although classical FCMs apply
crisp weight values, in both cases there is some uncer-
tainty about the precise value of the weights. Several
extensions of FCMs have been introduced to handle
these uncertainties, below we list a few of them.

Fuzzy grey cognitive maps (FGCMs) apply grey sys-
tem theory for representing uncertainties [20]. This
modelling paradigm was successfully applied in real-
life problems, for example in reliability engineering
[22], radiotherapy [21] and supplier selection [28].

Intuitionistic FCMs employ membership degree and
non-membership degree, expressing the hesitancy of
the decision maker [26], [27].

Interval-valued FCMs (IVFCMs) was introduced in
[16] with a business decision problem and has many
different applications: prediction of corporate financial
distress [19], stock return prediction [18]. A synthesis
of intuitionistic and interval-valued FCMs was applied
in group decision making [17].

The inference provided by an IVFCM applies the usual
threshold function, but instead of ordinary addition
and multiplication, it applies the arithmetic operators
of interval-valued fuzzy set theory [24], which differ
from the standard interval arithmetic operations [25].

In the present article, we examine the case when the
uncertainties of the weights are represented by inter-
vals, but as a difference to IVFCMs, for addition and
multiplication, we apply the standard interval arith-
metic operations. Although this model is also an
interval-valued fuzzy cognitive map, to avoid confusion
we are going to use an ad-hoc name: fuzzy cognitive
map with interval weights.

The dynamics of fuzzy cognitive maps with interval
weights are similar to the dynamics of the classical
FCMs: they may reach a fixed point attractor, may
arrive at a limit cycle or may produce chaotic be-
haviour. Most of the applications rely on the assump-
tion that the system converges to an equilibrium point.
Moreover, systems’ robustness and stability are also
important features, which means that perturbations
on the initial concept values should not cause differ-
ent outputs. Consequently, the global stability, the
existence and uniqueness of stable equilibrium points
(fixed points) are essential problems of FCMs and its
extensions, too.

The rest of the paper is organized as follows: In Sec-
tion 2 we shortly summarize the notion of contraction
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mapping, stability and interval arithmetic. In Sec-
tion 3 theorems and proofs are presented about the
existence and uniqueness of fixed points of fuzzy cog-
nitive maps with interval weights, which ensure the
stability of the FCM model. Finally, in Section 4 we
provide a short summary of the results.

2 Mathematical Tools

Fuzzy cognitive maps have a wide variety of ap-
plications, but the exact mathematical investigation
of their behaviour has much more weaker literature.
According to our knowledge, Boutalis, Kottas and
Christodoulou [2] were the first, who studied the exis-
tence and uniqueness of fixed points of sigmoid FCM,
namely for the case when the parameter of the log-
sigmoid threshold function is A = 1. Knight, Lloyd
and Penn examined the possible number of fixed points
of sigmoid FCMs [7]. Lyapunov stability of FCMs was
also discussed by Lee and Kwon [8], [9]. Analytical
conditions for the existence and uniqueness of fixed
points of FCMs were introduced in [4]. The problem
of fixed points of FCMs with fuzzy set weights was
studied in [6], while the convergence of fuzzy grey cog-
nitive maps was discussed in [5].

2.1 Contraction Mapping

The proofs of theorems of Section 3 are based on the
so-called contraction property of the mapping that
generates the iteration. Here we recall the definition
of contraction mapping [34]:

Definition 1 Let (X,d) be a metric space. A map-
ping G: X — X is a contraction mapping or contrac-
tion if there exists a constant ¢ (independent from x
and y), with 0 < ¢ < 1, such that

d(G(x), Gy)) < cd(z,y). (4)

The notion of contraction is related to the distance
metric d applied. It may happen that a function is a
contraction w.r.t. one distance metric, but not a con-
traction w.r.t. another distance metric. The iterative
process of an FCM may end at an equilibrium point,
which is a so-called fixed point. Let G: X — X, then
a point z* € X such that G(z*) = z* is a fixed point of
G. The following theorem provides sufficient condition
for the existence and uniqueness of a fixed point [34].
Moreover, if mapping that generates the iteration is a
contraction, it ensures the stability of the iteration.

Theorem 2 (Banach’s fized point theorem) If
G: X — X is a contraction mapping on a nonempty
complete metric space (X,d), then G has only one
fizxed point x*. Moreover, x* can be found as follows:

start with an arbitrary ro € X and define the sequence
Tn1 = G(l‘n), then hmnHOO Ty = x*.

Definition 3 Let x* be a fixed point of the iteration
Znt1 = G(x,). x* is locally asymptotically stable if
there exist a neighborhood U of x*, such that for each
starting value x¢g € U we get that
lim z, = z*. (5)
n—oo

If this neighborhood U is the entire domain of G, then
x* is a globally asymptotically stable fized point.

Corollary 4 If G: X — X is a contraction mapping
on a nonempty complete metric space (X,d), then its
unique fized point x* is globally asymptotically stable.

Moreover, in the proofs of Section 3 the following well-
known statement will be applied:

Lemma 5 The derivative of the sigmoid function
[TR=R, f(z) =1/(1+e ), (A > 0) is bounded
by A\/4. Moreover, for every xz,y € R the following
inequality holds

|f(x) = fy)] < A/4-|z—y].

2.2 Interval arithmetic

Let us have two intervals, A = [a,a] and B = [b,b].
The standard rules of interval arithmetic between A
and B are the following [25]:

4. A x B = [min(S), max(S)]
where S = {Q~Q,g-b,6-b,6-b}

5. If @ >0, « € R, then a- A = [ag, a@]

The Hausdorff distance between intervals A = [a,q)

and B = [b,b] is defined as (see [13]):
dy (A, B) = max{|a — b, [a — b[} (6)

Note that this distance of intervals is also known as
Moore metric, since it was introduced by R. E. Moore
[25]. Let K. be the space of nonempty compact and
convex sets of R

K.={la,a]: a,a e R and a < a} (7)

Space K. with distance metric dg (A, B) form a com-
plete metric space [13].
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3 Stability Conditions of Fuzzy
Cognitive Maps with Interval
Weights

As we have seen, the updating (iteration) process of
an FCM can be viewed as a discrete dynamical system
generated by a mapping G (that is defined coordinate-
wise by the updating rules), which acts from the set
of concept vectors to itself:

A = GAW) = [f(wr AD), ..., f(w, AT

(8)
In applications, the iteration stops when the concept
vector reaches an equilibrium point or the number of
iterations reaches the pre-defined maximum number of
steps. Let us assume that the values of the concepts
do not change any more after a number of iterations.
It means that the iteration arrived to an equilibrium
point A*. For this point (concept vector) the following
equality holds:

G(A*) = A, (9)

so it is a fixed point (equilibrium point, stationary
point, steady-state point) of mapping G.

If the weights are intervals, then the updating rules
ensure that the concept values will be also intervals,
regardless of nature (crisp or interval) of the initial
concept values. Consequently, the concept vector A
has interval coordinates. The long-term dynamical be-
haviour of a fuzzy cognitive map with interval weights
is similar to the behaviour of the classical FCM: it may
reach an equilibrium point, may arrive at a limit cycle
or may show a chaotic pattern. Of course, the fixed
point is a vector with interval coordinates, but these
coordinates (i.e. the endpoints of the intervals) are
stabilized during the iteration (similarly to the clas-
sical FCM’s fixed point). In other words, the fixed
point still carries uncertainties in its coordinates, but
the limits of uncertainty (endpoints of the intervals)
become stabilized, do not change after a few (or large)
number of iteration steps. So the equality

G(A*) = A%, (10)

holds with A* = |[A], A7], ..., [4},, A}]

Theorem 2 states that if G is a contraction, then it has
only one fixed point, i.e. if G is a contraction, then the
FCM with interval weights has exactly one equilibrium
point. Moreover, it ensures the model’s stability in
the sense that the iteration will converge to this fixed
point, regardless of the initial concept values. In the
following, we provide two theorems about the existence
and uniqueness of fixed points of FCMs with interval
weights. The philosophy of the theorems are the same:
if the weights of the FCM with interval weights fulfil

some conditions, then mapping G is a contraction, so
it has one and only one equilibrium point.

We apply the assumption that the weights have their
proper sign, which means that the expert knows the
sign of the relationship, but uncertain about the mag-
nitude. Let w;; be a weight describing the connection
between concepts C; and C;. Due to our assumptions,
w;; is an interval, which is subset of the interval [—1, 0]
or the interval [0, 1]. Let us introduce the following no-
tation:

wi; = max { Jwyl, [7751} (11)
Le. wj; is the Hausdorff distance between w;; and the
crips 0, or in other words, it is the absolute value of
the interval [w;j, w;;] as it was defined by Moore [25].
Theorem 6 Let W be the weight matrix of the fuzzy
cognitive map (including possible feedback), where the
weights w;; are monnegative or nonpositive intervals
and let A > 0 be the parameter of the sigmoid function
f(x) =1/(1+e=?*) applied for the iteration. Let w;;
be defined as in Eq. 11. If the inequality

n . 4
;mjax {w”} < X (12)

holds, then the FCM has one and only one fized point,
regardless of the initial concept values.

Proof:

We are going to show that for a suitable distance met-
ric d and under certain conditions the inequality

d(G(A),G(A")) < c-d(A, A) (13)
holds for every A and A’ with ¢ < 1 (independent
from A and A’), so mapping G is a contraction, con-
sequently it has one and only one fixed point. In this

case for metric d we apply the sum of the Hausdorff
distances of the coordinates, i.e. :

AAA) =3 dig(As A7) = (1)

zzn:max{‘&—ig
i=1

i

b

)

Note that in the degenerated case, when all of the
intervals are real numbers, so if A; = A; for A and
A’ and for all of the coordinates, then it becomes the
sum of the absolute differences of the coordinates, so
it gives the so-called 1-norm or Manhattan norm of

vector A— A’. Using this distance metric, the distance
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of G(A) and G(A’) is the following:
d(G(A),G(A")
= Zmax{ ‘G(A)Z -
i=1

The left and right (lower and upper) endpoints of the
interval G(A); can be expressed by the threshold func-
tion. The threshold function is strictly monotone in-
creasing, which implies that:

G(A)i = f(wiA) = f(wiA) (17)
G(A)i = f(wiA) = f(w;A) (18)

Moreover, according to Lemma 5, the following in-
equalities hold:

o), — G| < 2 fwd —wx|  (19)

‘G(A)i G| < 2 [wi A —wiAT|  (20)

The next step is to provide an upper estimation for
the distance of G(A) and G(A’), applying the previous
inequalities:

d(G(A),G(A)

= 3 masx { |G(4), - G,

G(A)i — G(A);

}

)

< %m {|w1A w; A |wA wlA’|}
i=1
i%max{wa A; A’ Zw” A A’ }
=1
(21)
Since
iw; A= A5 < 3wy max{[4, - A5} (22)
j=1
;wfj A73 Aig <;wfjmjax{‘zﬁlj—A’} (23)

% ax{wlj}jmax{p a1 -7}
i=1 j=1
= Xn:%max{wi 1d(A, A) (24)

Finally, we get that

d(G(A),G(A)) <

vl>\>/

d(A, A" Z mjax{w;‘j} (25)

If 300 max;{wf;} < 4/A, then the coefficient of
d(A, A") is less than one, consequently mapping G is
a contraction. It implies that it has exactly one fixed
point, which completes the proof.

Remark 7 In other words, Theorem 6 states that if
A<4/37" | max; {w;‘j}, then the FCM whose weights
are intervals has one and only one fized point.

Different choice of the distance between concept vec-
tors yields different and sometimes better conditions
for the existence and uniqueness of fixed points of
FCMs with interval weights. One condition is bet-
ter than the other, if it ensures the convergence for a
larger set of parameter .

Theorem 8 Let W be the weight matriz of a fuzzy
cognitive map (including possible feedback), where the
weights w;; are monnegative or nonpositive intervals
and let A > 0 be the parameter of the sigmoid function
f(z) =1/(1 4+ e~ applied for the iteration. Let wy;
be defined as in Eq. 11. If the inequality

. 4
max waj <3 (26)
j=1

holds, then the FCM has one and only one fixed point,
regardless of the initial concept values.
Proof:

Similarly to the proof of Theorem 6, we are going to
show that for a suitable distance metric d and under
the conditions stated in the theorem the inequality

d(G(A),G(A)) < c-d(A,A) (27)

holds for every A and A’ with ¢ < 1 (independent
from A and A’), so mapping G is a contraction, con-
sequently it has one and only one fixed point.

Let the distance of the concept vectors A and A’ be
defined as the maximum of Hausdorfl distances of the
coordinates:

d(A, A) = maxdy (4;, A) = (28)

@)

Using this metric, the distance of G(A)and G(A') is
the following:

d(G(A),G(A))
= mzaxmax{’% - G(A);

= maxmax {
)

)

G(A)i — G(A);

}
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As we have seen previously, the following upper esti-
mation can be given for the distance:

A(G(A), G(A))
A NoA— —
< maxmax § — ‘wiA —w; A | = |wl-A - wiA/|
i 4'— ——1"4
(30)

Applying similar upper estimations as in the proof of
the previous theorem, we get that

max {[wiA — wid'| [wid — w; A'|}

< iwfjmax{‘ﬁ—i;
j=1

57

JRNEIY

b

Coupling these inequalities together we arrive to the
following upper estimation of d(G(A4),G(A")):

S%maxmax{|w17A—wiA’|,|m—wiA’|}
A "o o
< 7 max ;wijmax{’Aj—A;,Aj—Ag}
)\ n . L L
< 7 max ;w” m?xmax{’ﬁ—i; ; Aj—A;}
)\ n

> wy; g d(A, A

j=1

(32)

Here the last equality comes from the definition of the
distance between concept vectors A and A’. The co-
efficient of d(A, A’) is less than one in the inequalty

above if and only if max; {Z?Zl wfj} < 4/X and this
completes the proof.

4 Summary

Fuzzy cognitive maps with interval weights are modi-
fications of the original FCM model, that are able to
represent the uncertainties in the estimation of weights
of causal connections between the concepts. Just like
the original FCMs, these models may produce stable
or unstable behaviour. In a large class of applications,
stability is an important and required property of the
model. In this paper, mathematical conditions have
been introduced that ensure the stability of fuzzy cog-
nitive maps when the weights are represented by in-
tervals. Roughly speaking, without formulae, these
statements tell that if the weights of connections are
not so large, then the fuzzy cognitive map equipped
with interval weights with given parameter A will con-
verge to a unique fixed point (activation vector with

interval coordinates). In other words, it means that
if the parameter of the threshold function remains un-
der a limit computed from the weight matrix, then the
FCM will converge to a unique concept vector, whose
coordinates are intervals, but the endpoints of these in-
tervals are stabilized. In this case, the system is stable
since it converges to a unique fixed point (equilibrium
point) and perturbations on the initial values (initial
concept vector) are not able to cause deviations in the
final behaviour of the system.

The operation rules applied for computation with in-
tervals do matters: different arithmetic rules yield
different FCM models with different properties. In
this paper, we applied the standard interval arith-
metic. Among other features, it means that (just like
in the case of the classical FCM) in-between compu-
tational values may fall outside the interval [0, 1], but
the threshold function f transforms the result into the
required range.

We should emphasize that the model examined here
is different from that was introduced by Hajek and
Prochazka [16] under the name of interval-valued fuzzy
cognitive maps (IVFCMs) since they applied the arith-
metic rules of interval-valued fuzzy sets [24].

Sufficient conditions have been introduced for the exis-
tence and uniqueness of fixed points of fuzzy cognitive
maps with interval weights. These are sufficient, but
not necessary conditions: if at least one of them is ful-
filled, then the FCM has exactly one fixed point, which
means that the model is globally asymptotically sta-
ble. On the other hand, there may exist cases, when
the conditions do not hold, but the FCM has exactly
one (globally asymptotically stable) fixed point.
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