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Abstract

The aim of this contribution is to establish
the interrelationship between L-fuzzifying
approximation spaces based on reflexive L-
fuzzy relations and L-fuzzifying pretopologi-
cal spaces. This connection is established in
the category theoretic setup.
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1 Introduction

The concept of rough set was firstly proposed by
Pawlak [11]. This theory attracted many researchers
due to its importance in the study of intelligent sys-
tems with insufficient and incomplete information. In
past decades the theory developed significantly be-
cause of usefulness in variety of applications. Several
generalizations of rough sets have been made by re-
placing the equivalence relation by an arbitrary re-
lation. After the introduction of fuzzy rough set by
Dubois and Prade [3], various interesting studies has
been carried on relating the theory of fuzzy rough sets
with fuzzy topologies (cf., [2, 7, 13, 16, 17, 18]). Fur-
ther, Ying [20] introduced a logical approach to study
the fuzzy topology and proposed the notion of fuzzi-
fying topology. A number of articles published based
on this new approach (cf., [4, 5, 9, 19, 23, 24]). Fang
[4, 5] showed the one to one correspondence between
fuzzifying topologies and fuzzy preorders and Shi [19]
discussed the relationship of fuzzifying topology and
specialization preorder in the sense of Lai & Zhang
[8]. In 1999, Zhang [22] studied the fuzzy pretopology
through the categorical point of view and Perfilieva
et al. in [12, 14] discussed its relationship with F-
transform. Further on following the approach of Ying

[20], Lowen and Xu [9], Zhang [24] discussed the cat-
egorical study of fuzzifying pretopology.

In the recent work of Pang [10] L-fuzzifying rough
sets has been studied through the constructive and ax-
iomatic approaches. So far, the relationship between
L-fuzzifying pretopological spaces and L-fuzzifying ap-
proximation spaces has not been studied yet.

This paper is focused on the interrelationship between
L-fuzzifying approximation spaces based on reflex-
ive L-fuzzy relation and L-fuzzifying pretopological
spaces. It is worth to mention that our motivation
is different from [15] in which the connection is estab-
lished in the sense of [22] rather than L-fuzzifying pre-
topological setting. Moreover, we show that if (X, θ)
is fuzzy preordered based L-fuzzifying approximation
space then an Alexandroff L-fuzzifying topology can
be induced.

The structure of the paper is organized as follows. In
section 2, we recall some necessary concepts and nota-
tions related to category theory, L-fuzzy relation and
L-fuzzifying topology. Section 3 is the main part of
this paper. We recall the notion of L-fuzzifying ap-
proximation spaces and discussed its properties. Fur-
ther, we introduce the concept of L-fuzzifying pretopo-
logical spaces and show that it induces a Čech L-fuzzy
interior operator. Specifically, we established the cat-
egorical relationship between L-fuzzifying approxima-
tion space based on the reflexive L-fuzzy relation and
L-fuzzifying pretopological spaces. Finally, we give the
conclusion in section 4.

2 Preliminaries

A De Morgan algebra (L,∨,∧,′ , 0, 1) is an algebra of
type (2, 2, 1, 0, 0), where (L,∨,∧, 0, 1) is a completely
distributive lattice with the least element 0 and great-
est element 1 and an order reversing involution “ ′ ”.
Throughout this paper, we consider the membership
values from a fixed completely De Morgan algebra L.
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Let X be a nonempty set. The set of all subsets of X
will be denoted by P(X). For each λ ∈ P(X), λc is
the complement of λ and characteristic function of λ
is 1λ.

Goguen [6] introduced the notion of L-fuzzy sets as a
generalization of Zadeh’s fuzzy sets. For a nonempty
set X, LX denotes the collection of all fuzzy subsets
of X. Also, for all a ∈ L, a(x) = a is a constant L-
fuzzy set on X. The greatest and least element of LX

is denoted by 1X and 0X respectively.

Definition 2.1 [6] Let X be a nonempty set. Then
for λ, µ ∈ LX and for each x ∈ X, the following are
induced operations on LX :

(i) (λ ∧ µ)(x) = λ(x) ∧ µ(x),

(ii) (λ ∨ µ)(x) = λ(x) ∨ µ(x),

(iii) (λ ≤ µ)⇔ λ(x) ≤ µ(x),

(iv) λ = µ⇔ λ(x) = µ(x).

Let I be a set of indices, λi ∈ LX , i ∈ I. The meet
and join of elements from {λi | i ∈ I} are defined as
follows:

• (
∧
i∈I λi)(x) =

∧
i∈I λi(x), x ∈ X,

• (
∨
i∈I λi)(x) =

∨
i∈I λi(x), x ∈ X.

Throughout this paper, all the considered categories
are concrete. A concrete category (or construct) [1]
is defined over Set. Specifically, it is a pair (C, U),
where C is a category and U : C → Set is a faithful
(forgetful) functor. We say that U(X) is an underlying
set for each C-object X. When a forgetful functor is
clear from the context, we write only C instead of pair
(C, U).

A concrete functor between concrete categories
(C, U) and (D, V ) is a functor F : C → D with
U = V ◦ F . It means, F only changes structures on
the underlying sets.

Definition 2.2 [1] Suppose that F : C → D, G :
D→ C are concrete functors. The pair (F,G) is called
a Galois connection if either of the following equiv-
alent conditions holds.

(1) {idY : F ◦ G(Y ) → Y |Y ∈ D} is a natural trans-
formation from the functor F ◦ G to the identity
functor on D, and {idX : X → G ◦ F (X)|X ∈ C}
is a natural transformation from the identity func-
tor on C to the functor G ◦ F .

(2) For each Y ∈ D, {idY : F ◦G(Y )→ Y |Y ∈ D} is
a D morphism, and for each X ∈ C, {idX : X →
G ◦ F (X)|X ∈ C} is a C morphism.

If (F,G) is a Galois connection, then it is easy to check
that F is a left adjoint of G, or equivalently G is a right
adjoint of F .

Now we recall the following definition of L-fuzzy rela-
tion from [21].

Definition 2.3 [21] Let X be a nonempty set. An L-
fuzzy relation θ on X is a fuzzy subset of X ×X. A
fuzzy relation θ is called

(i) reflexive if θ(x, x) = 1 ∀ x ∈ X,

(ii) transitive if
∨
y∈X θ(x, y) ∧ θ(y, z) ≤ θ(x, z),

∀ x, y, z ∈ X.

A reflexive and transitive L-fuzzy relation θ is called
an L-fuzzy preorder.

Now, let f : X → Y be a map. Then for µ ∈
LY , f−1(µ) is an inverse image of µ under f , i.e.
f−1(µ)(x) = µ(f(x)).

Definition 2.4 [20] An L-fuzzifying topology T on
universe X is a mapping T : P(X) → L, such that
for each λ, µ ∈ P(X), {λi | i ∈ I} ⊆ P(X), the fol-
lowing properties hold:

(i) T (φ) = T (X) = 1,

(ii) T (λ ∩ µ) ≥ T (λ) ∧ T (µ),

(iii) T (
⋃
i∈I λi) ≥

∧
i∈I T (λi).

For an L-fuzzifying topology T and nonempty set X,
the pair (X, T ) is called an L-fuzzifying topological
space.

Further, an L-fuzzifying topological space (X, T ) is
called Alexandroff, if

(iv) T (
⋂
i∈I λi) ≥

∧
i∈I T (λi).

For two L-fuzzifying topological space (X, TX) and
(Y, TY ) a map f : (X, TX) → (Y, TY ) is called con-
tinuous if for all x ∈ X and λ ∈ P(Y ), TX(f−1(λ)) ≥
TY (λ).

3 L-fuzzifying approximation space
and L-fuzzifying pretopology

In this section, first we remind the notion of L-
fuzzifying approximation space as it was introduced in
[10]. Further, by introducing the notion of L-fuzzifying
pretopological space, we discuss how to generate an
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L-fuzzifying pretopology by a reflexive L-fuzzy rela-
tion. Our idea is based on the L-fuzzifying approxi-
mation operator studied in L-fuzzifying rough set the-
ory. Moreover, as a categorical viewpoint we estab-
lish the Galois connection between the categories of L-
fuzzifying approximation space and L-fuzzifying pre-
topological space.

Definition 3.1 [10] Let θ be an L-fuzzy relation on
X. Then lower L-fuzzifying approximation of λ
is a map θ : P(X)→ LX defined by;

θ(λ)(x) =
∧
y/∈λ

θ(x, y)
′
, ∀λ ∈ P(X), ∀x ∈ X.

We call θ the lower L-fuzzifying approximation opera-
tor and the pair (X, θ) is called an L-fuzzifying ap-
proximation space based on L-fuzzy relation θ.

Remark 3.1 (a) Note that, if λ = X − {y} ∈ P(X)
for some y ∈ X, then we have the lower L-
fuzzifying approximation θ(X−{y})(x) = θ(x, y)

′

for each x ∈ X.

(b) The above definition of lower L-fuzzifying approx-
imation operator is a certain reduction of the def-
inition in [10].

In the next proposition we postulate some basic prop-
erties of L-fuzzifying lower approximation operator,
which will be used in the sequel.

Proposition 3.1 [10] Let (X, θ) be an L-fuzzifying
approximation space and θ be a reflexive L-fuzzy re-
lation on X. Then for λ ∈ P(X) and {λi | i ∈ I} ⊆
P(X), the following holds:

(i) θ(X) = 1X ,

(ii) θ(λ) ≤ 1λ,

(iii) θ(
⋂
i∈I λi) =

∧
i∈I θ(λi).

For given two L-fuzzifying approximation spaces
(X, θ) and (Y, ρ), the following is the notion of mor-
phism between them.

Definition 3.2 The morphism f : (X, θ) → (Y, ρ)
between two L-fuzzifying approximation spaces (X, θ)
and (Y, ρ) is given by

f−1(ρ(λ)) ≤ θ(f−1(λ)) ∀ λ ∈ P(Y ).

We denote by FYAPP, the category of L-fuzzifying
approximation space based on reflexive L-fuzzy rela-
tions and morphisms between them.

Now, we introduce the notion of L-fuzzifying pretopo-
logical space which is similar (but not identical) to
that in [9].

Definition 3.3 An L-fuzzifying pretopology on X
is a set of functions τX = {px : P(X) → L | x ∈ X}
such that for all λ, µ ∈ P(X), and x ∈ X,

(i) px(X) = 1,

(ii) px(λ) ≤ 1λ(x),

(iii) px(λ ∩ µ) = px(λ) ∧ px(µ).

The pair (X, τX) is called an L-fuzzifying pretopo-
logical space.

An L-fuzzifying pretopological space (X, τX) is called
Alexandroff, if

(iv) px(
⋂
i∈I λi) =

∧
i∈I px(λi).

Note that, for an L-fuzzifying pretopological space
(X, τX), where px ∈ τX and λ ∈ P(X), px(λ) is a de-
gree to which every crisp subset of X i.e., “x belongs
to the interior of λ”.

The notion of a continuous map between two set en-
dowed with L-fuzzifying pretopologies is given below.

Definition 3.4 Let (X, τX) and (Y, τY ) be two L-
fuzzifying pretopological spaces. Then a map f :
(X, τX) → (Y, τY ) is called continuous if for all
x ∈ X and λ ∈ P(Y ),

qf(x)(λ) ≤ px(f−1(λ)), where px ∈ τX , qf(x) ∈ τY .

Proposition 3.2 The L-fuzzifying pretopological
spaces and their continuous maps form a category.

We denote by FYPT, the category of L-fuzzifying pre-
topological space, and if it does not lead to a confusion,
the object-class of FYPT will be denoted by FYPT
as well.

Let τX = {px : P(X)→ L | x ∈ X} be an L-fuzzifying
pretopology on X, then τX induces a Čech L-fuzzy in-
terior operator înt : LX → LX in a following manner,
for all x ∈ X,A ∈ LX ,

înt(A)(x) =
∨
λ∈ẋ

(
px(λ) ∧

∧
y∈λ

A(y)

)
,

where, ẋ = {µ ∈ P(X)|x ∈ µ}.

Proposition 3.3 For every A,B ∈ LX , a ∈ L, the
operator înt : LX → LX , satisfies the following condi-
tions,

(i) înt(a) = a,

(ii) înt(A) ≤ A,
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(iii) înt(A ∧B) = înt(A) ∧ înt(B).

Proof: The proof for the properties (i)-(iii) are
straight forward and is similar to that of [24].

Proposition 3.4 Suppose that (X, θ) be an L-
fuzzifying approximation space and θ be reflexive L-
fuzzy relation on X. Let for all λ ∈ P(X), x ∈ X, we
denote

pθx(λ) = θ(λ)(x). (1)

Then τθ = {pθx : P(X)→ L|x ∈ X}, is an L-fuzzifying
pretopology on X.

Proof: For all x ∈ X and λ ∈ P(X), from Proposi-
tion 3.1, it can be easily verified that τθ defined above
satisfies the properties (i)-(iii) of lower L-fuzzifying ap-
proximation operator.

Proposition 3.5 Let (X, τX) be an L-fuzzifying pre-
topological space. Then for any x ∈ X, we define

ΘτX (x, y) = px(X − {y})
′
.

Then, ΘτX is a reflexive L-fuzzy relation and (X,ΘτX )
is an L-fuzzifying approximation space with reflexive
L-fuzzy relation ΘτX .

Proposition 3.6 If f : (X, θ)→ (Y, ρ) is a morphism
between two L-fuzzifying approximation spaces, then f
is continuous function between two L-fuzzifying pre-
topological spaces (X, τθ) and (Y, τρ).

Proof: The proof follows from Definitions 3.2, 3.4 and
Proposition 3.4.

The above proposition gives a concrete functor
τ : FYAPP → FYPT between the category of
L-fuzzifying approximation space and that of L-
fuzzifying pretopological space.

On the other hand, we prove a proposition, which gives
a concrete functor Θ : FYPT → FYAPP i.e. be-
tween the category of L-fuzzifying pretopological space
and that of L-fuzzifying approximation space.

Proposition 3.7 If f is a continuous function be-
tween two L-fuzzifying pretopological spaces (X, τX)
and (Y, τY ). Then f : (X,ΘτX ) → (Y,ΘτY ) is a mor-
phism between two L-fuzzifying approximation spaces.

Proof: Let λ ∈ P(Y ) and x ∈ X, we have

f−1(ΘτY (λ))(x) = ΘτY (λ)(f(x))

=
∧
t/∈λ

ΘτY (f(x), t)
′

=
∧
t/∈λ

qf(x)(Y − {t})

=
∧

f(y)/∈λ

qf(x)(Y − {f(y)})

≤
∧

y/∈f−1(λ)

px(f−1(Y − {f(y)}))

≤
∧

y/∈f−1(λ)

px(X − {y})

=
∧

y/∈f−1(λ)

ΘτX (x, y)
′

= ΘτX (f−1(λ))(x).

Hence, we have f : (X,ΘτX ) → (Y,ΘτY ) is a mor-
phism between two L-fuzzifying approximation spaces
(X,ΘτX ) and (Y,ΘτY ). In particular, for each L-
fuzzifying pretopological space (X, τX),Θ(X, τX) =
(X,ΘτX ).

In the next theorem we prove the adjointness between
the categories FYAPP and FYPT. Now we have the
following.

Proposition 3.8 Let (X, θ) be an L-fuzzifying ap-
proximation space and θ be reflexive L-fuzzy relation.
Then τ : FYAPP → FYPT is a left adjoint of Θ :
FYPT → FYAPP. Moreover Θ ◦ τ(X, θ) = (X, θ)
i.e., Θ is a left inverse of τ .

Proof: The proof is divided into two parts. On one
hand, we show that for any L-fuzzifying approximation
space (X, θ), idX : (X, θ) → (X,Θτθ ) is a morphism
between L-fuzzifying approximation spaces.

For any λ ∈ P(X) and x ∈ X, we have

Θτθ (λ)(x) =
∧
y/∈λ

Θτθ (x, y)
′

=
∧
y/∈λ

(pθx(X − {y})
′
)
′

(by Prop. 3.5)

=
∧
y/∈λ

pθx(X − {y}) (by involution of ′ )

=
∧
y/∈λ

θ(X − {y}))

=
∧
y/∈λ

θ(x, y)
′

= θ(λ)(x).

Hence, idX : (X, θ)→ (X,Θτθ ) is a morphism between
L-fuzzifying approximation spaces.
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On the other hand, for any λ ∈ P(X), x ∈ X, we have

p
ΘτX
x (λ) = ΘτX (λ)(x)

=
∧
y/∈λ

ΘτX (x, y)
′

=
∧
y/∈λ

(px(X − {y})
′
)
′

=
∧
y/∈λ

px(X − {y}) (by involution of ′ )

≥ px
⋂
y/∈λ

(X − {y})

= px(λ)

Hence, we show that idX : (X, τΘτX ) → (X, τX) is
continuous.

Therefore, τ : FYAPP → FYPT is a left adjoint
of Θ : FYPT → FYAPP.

Now we show that an Alexandroff L-fuzzifying topol-
ogy can be induced from an Alexandroff L-fuzzifying
pretopology in the following manner.

Lemma 3.1 [10] Let (X, θ) be an L-fuzzifying approx-
imation space based on L-fuzzy preorder relation θ.
Then pθx defined in Equation (1), satisfies

pθx(λ) =
∨

x∈µ⊆λ

∧
y∈µ

pθy(µ).

Remark 3.2 An L-fuzzifying pretopology τθ = {pθx :
P(X) → L|x ∈ X} which satisfies Lemma 3.1, is
called topological.

Proposition 3.9 Let (X, θ) be an L-fuzzifying ap-
proximation space and θ be L-fuzzy preorder relation.
Then for all λ ∈ P(X), T θ : P(X) → L defined as
following

T θ(λ) =
∧
x∈λ

pθx(λ)(x),

is an Alexandroff L-fuzzifying topology on X.

Proof: To prove the result we need to show that T θ,
satisfies the properties (i), (iii) and (iv) listed in Defi-
nition 2.4.

(i) Since from Equation (1), (pθx(λ) = θ(λ)(x)). Hence,
T θ(φ) = T θ(X) = 1, can be easily verified by the
definition of θ.

(iii) For each {λi | i ∈ I} ⊆ P(X),

T θ(
⋂
i∈I

λi) =
∧

x∈∩i∈Iλi

pθx(
⋂
i∈I

λi)(x)

=
∧

x∈∩i∈Iλi

∧
i∈I

pθx(λi)(x)

=
∧
i∈I

∧
x∈∩i∈Iλi

pθx(λi)(x)

≥
∧
i∈I

∧
x∈λi

pθx(λi)(x)

=
∧
i∈I
T θ(λi).

(iv) For each {λi | i ∈ I} ⊆ P(X),

T θ(
⋃
i∈I

λi) =
∧

x∈∪i∈Iλi

pθx(
⋃
i∈I

λi)(x)

=
∧
i∈I

∧
x∈λi

pθx(
⋃
i∈I

λi)(x)

≥
∧
i∈I

∧
x∈λi

pθx(λi)(x)

=
∧
i∈I
T θ(λi).

Hence, T θ is an Alexandroff L-fuzzifying topology on
X.

4 Conclusion

This paper contributes to the theory of L-fuzzifying
topology originated from [20]. We have shown that
an L-fuzzifying pretopology can be generated by a
reflexive L-fuzzy relation using the concept of lower
L-fuzzifying approximation operator. Further, we
have established the adjointness between category of
L-fuzzifying approximation spaces based on reflexive
L-fuzzy relations and L-fuzzifying pretopological
spaces. Moreover, we proved that if we consider
an L-fuzzifying approximation space with L-fuzzy
preorder, then we can induce an Alexandroff L-
fuzzifying topology from an Alexandroff L-fuzzifying
pretopology.
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