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Abstract

In this paper, we develop a topological view-
point on the subject of mathematical mor-
phology. We show that erosion can be in-
terpreted as a certain “remote” interior op-
erator; in its turn dilation can be inter-
preted as a “remote” closure operator. Two
categories are constructed, whose objects
are “topological-type” structures obtained by
combining operations of erosion and dilation.

Keywords: Mathematical morphology; ero-
sion; dilation; interior; closure; upper and
lower image and preimage operators.

Introduction

Mathematical morphology has its origins in geologi-
cal problems centered in the processes of erosion and
dilation. The founders of the mathematical morphol-
ogy are a civil engineer Jean Serra [27] and a min-
ing engineer Georges Matheron [19]. At the present
stage the mathematical morphology can be character-
ized as a mathematical theory that focuses on studying
transformations, especially non-linear, of geometrical
objects. Mathematical morphology has applications
in different areas of theoretical and applied science,
in particular in pattern recognition, image processing,
digital topology, etc. Problems related to mathemati-
cal morphology were studied by many authors, see e.g.
[4, 5, 2, 3, 26, 20] just to mention some of them Of the
various directions where mathematical morphology is
being developed, we distinguish two of them: Alge-
braic mathematical morphology and L-fuzzy relational
mathematical morphology, see e.g. [20].

The algebraic mathematical morphology takes erosion
ε and dilation δ as basic concepts. They are defined
as mappings on complete lattices ε : L1 → L2 and
δ : L2 → L1 such that ε (

∧
A) =

∧
a∈Aε(a) ∀A ⊆ L1,

δ (
∨
B) =

∨
b∈Bδ(b) ∀B ⊆ L2, and focuses on the

adjunction properties of the pair (ε, δ).

The other approach, so called L-fuzzy relational math-
ematical morphology, as its basis has a complete resid-
uated lattice (L,∨,∧, ∗, 7→) where conjunction ∗ is
used to define dilation and residuation 7→ is used to
define erosion. We deal only with L-fuzzy relational
mathematical morphology in this work. Our main in-
terest here concerns topological properties of operators
of dilation and erosion.

The paper consists of four sections. In the first sec-
tion we introduce some special properties of L-fuzzy
relations used in the sequel. In the second section we
consider two kinds of L-fuzzy image operators and two
kinds of L-fuzzy preimage operators. We describe ba-
sic properties of these operators, in particular their
relations with operators of erosion and dilation. The
third section is devoted to topological properties of
erosion and dilation and to the categories whose ob-
jects are obtained by their combination. In the last
section, Conclusion we discuss some directions for the
further work.

1 Operators of erosion and dilation

Let L = (L,≤L,∧L,∨L, ∗) be a commutative complete
lattice monoid with bottom and top elements 0L and
1L respectively see e.g. [15]. Further, let 7→: L → L
be the residuum related to ∗ via Galois connection,
that is a ∗ b ≤ c ⇐⇒ a ≤ b 7→ c for all a, b, c ∈ L. A
complete commutative lattice monoid is called integral
if a ∗ 1L = a for all a ∈ L. In this work L is always an
integral complete commutative lattice monoid.

Further, let X and Y be sets and R : X × Y → L be
an L-fuzzy relation.

We will need special properties of L-fuzzy relations
introduced in the next two definitions:

Definition 1.1 L-fuzzy relation R is called left con-
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nected if
∧

y∈Y
∨

x∈X R(x, y) = 1. If for every y ∈
there exists x ∈ X such that R(x, y) = 1L, then R is
called strongly left connected.

Definition 1.2 L-fuzzy relation R is called right con-
nected if

∧
x∈X

∨
y∈Y R(x, y) = 1. If for every x ∈ X

there exists y ∈ Y such that R(x, y) = 1L, then R is
called strongly right connected.

Remark 1.3 Properties of left connectedness and
strong left connectedness were used in our papers
[28, 29] under the names of surjectivity and strong
surjectivity respectively. Properties of right and strong
right connectedness appear in [28, 29] under the names
of soundness and strong soundness, respectively.

1.1 Erosion

Definition 1.4 [20] Given A ∈ LX its erosion
εR(A) ∈ LY is defined by

εR(A)(y) =
∧

x∈X
(R(x, y) 7→ A(x)).

Considering erosion for all A ∈ LX , we get the oper-
ator of erosion εR : LX → LY .

In the next proposition we collect some properties of
erosion operator that will be important for us.

Proposition 1.5 (1) Let aX : X → L denote a con-
stant function with value a ∈ L. Then εR(1X) =
1Y and if R is left connected, then εR(aX) = aY ,
and in particular εR(0X) = 0Y

(2) Operator ε : LX → LY is non-decreasing, that is
A1 ≤ A2 ∈ LX =⇒ εR(A1) ≤ εR(A2).

(3) Given a family of L-fuzzy sets {Ai | i ∈ I} ⊆ LX ,
we have εR

(∧
i∈IAi

)
=
∧

i∈IεR(Ai).

Proof. (1) From the definition it is clear that for ev-
ery y ∈ Y we have εR(aX)(y) =

∧
x∈X(R(x, y) 7→ a)

=
∨

x∈X R(x, y) 7→ a. In case a = 1L, we have
εR(1X)(y) 7→ 1L for every y ∈ Y that is εR(1X) =
1Y . In its turn, if R(x, y) is left connected, then∨

x∈X R(x, y) = 1L for every y ∈ Y and hence
εR(aX)(y) = 1L 7→ a = a.

(2) Obvious.

(3). Given a family of L-fuzzy sets {Ai | i ∈ I} and
y ∈ Y , we have

εR

(∧
i∈I
Ai

)
(y) =

∧
x∈X

(∧
i∈I

(R(x, y) 7→ Ai(y))
)

=

∧
i∈I

(∧
x∈X

(R(x, y) 7→ Ai(y))
)

=
∧

i∈I
εR(Ai)(y).

2

1.2 Dilation

Definition 1.6 [20] Given B ∈ LY , its dilation
δR(B) ∈ LX is defined by

δR(B)(x) =
∨

y∈Y
R(x, y) ∗B(y).

Considering dilation for all B ∈ LY , we get the oper-
ator of dilation δR : LY → LX .

In the next proposition we collect some properties of
dilation operator that will be important for us.

Proposition 1.7 (1) Let bY : Y → L denote a con-
stant function with value b ∈ L. Then δR(0Y ) =
0X and if R is right connected, then δR(bY ) = bX ,
and in particular δR(1Y ) = 1X

(2) Operator δ : LY → LX is non-decreasing, that is
B1 ≤ B2 ∈ LY =⇒ δR(B1) ≤ δR(B2).

(3) Given a family of L-fuzzy sets {Bi | i ∈ I} ⊆ LY ,
we have δR

(∨
i∈IAi

)
=
∨

i∈IδR(Ai).

Proof (1) For every x ∈ X we have δR(bY )(x) =∨
y∈Y

R(x, y) ∗ bY (y) =
(∨

y∈Y
R(x, y)

)
∗ b.

Hence, δR(0Y )(x) = 0L for every x ∈ X, that
is δR(0Y ) = 0X . If R is right connected, then
δR(bY )(x) = b for all x ∈ X, that is δR(bY ) = bX .

(2) Obvious.

(3) Given a family of L-fuzzy sets {Bi | i ∈ I} ⊆ LY

and x ∈ X, we have

δR

(∨
i∈I
Bi

)
(x) =

∨
y∈Y

(
R(x, y) ∗

∨
i
Bi(y)

)
=

∨
y∈Y

(∨
i
R(x, y) ∗Bi(y)

)
=∨

i∈I

(∨
y∈Y

R(x, y) ∗Bi(y)
)

=
∨

i∈I
δR(Bi)(x).

2

1.3 Adjunction (εR, δR)

It is know that the pair (εR, δR) is an adjunction, see
e.g. [20]. For completeness we reproduce here the
proof of this statement in a form convenient for our
exposition.

Given A ∈ LX , and x ∈ X we have

δR(εR(A))(x) =
∨

y∈Y
R(x, y) ∗ εR(A)(y) =∨

y∈Y
R(x, y) ∗

∧
x′∈X

(R(x′, y)) 7→ A(x′)) ≤∨
y∈Y

R(x, y) ∗ (R(x, y)) 7→ A(x)) ≤ A(x).
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Further, given B ∈ LY , and y ∈ Y , we have

εR(δR(B))(y) =
∧

x∈X
(R(x, y) 7→ δR(B)(x)) =∧

x∈X

(
R(x, y) 7→

∨
y′∈Y

R(x, y′) ∗B(y′)
)
≥∧

x∈X
(R(x, y) 7→ (R(x, y) ∗B(y))) ≥ B(y).

2 Image and preimage operators on
L-fuzzy powersets induced by
L-fuzzy relations

The subject of this section are, what we call, upper
and lower image and preimage operators induced by
L-fuzzy relation R : X × Y → L. As we will see,
they are closely related to the operations of erosion
and dillation.

2.1 Upper image and preimage operators

Let X, Y be sets and R : X × Y → L.

Definition 2.1 The upper image of the fuzzy set A ∈
LX under the L-relation R : X × Y → L is defined by

R→(A)(y) =
∨

x
R(x, y) ∗A(x) ∀A ∈ LX , ∀y ∈ Y.

Definition 2.2 The upper preimage of the L-fuzzy set
B ∈ LY under L-fuzzy relation R : X × Y → L is
defined by

R←(B)(x) =
∨

y
R(x, y) ∗B(y) ∀B ∈ LY , ∀x ∈ X.

Remark 2.3 Thus, dilation δR : LY → LX as it is
introduced in Definition 1.6, is in fact upper L-fuzzy
preimage operator R← : LY → LX .

Remark 2.4 If the fuzzy relation R represents an or-
dinary function f : X → Y , then the above defini-
tions reduce respectively, to the definitions of a for-
ward and backward L-powerset operators f→ and f←,
as they are defined by S.E. Rodabaugh [25]. Specifi-
cally f→(A) is the image f(A) of A ∈ LX and f←(B)
is the preimage f−1(B) of B ∈ LY . The properties
of these operators, specifically from the point of view
of category theory where thoroughly studied by S.E.
Rodabaugh in [25].

In the following proposition we collect basic properties
of upper image and preimage operators..

Proposition 2.5 Given sets X,Y , let R : X×Y → L
be an L-fuzzy relation, {Ai | i ∈ I} ⊆ LX , {Bi : i ∈
I} ⊆ LY . Then

(1) R→
(∨

i∈I(Ai)
)

=
∨

i∈I R
→(Ai);

(2) R→
(∧

i∈I(Ai)
)
≤
∧

i∈I R
→(Ai),

(3) R←
(∨

i∈IBi

)
=
∨

i∈I(R←Bi);

(4) R←(bY ) = bX whenever R is right connected.

(5) If R is strongly left connected, then for every B ∈
LX it holds R→(R←(B)) ≥ B.

(6) If R is left connected, then R→(aX) = aY .

Proof The proofs of the properties (1) - (3) can be
found in the literature. We prove the remaining three
properties.

(4) R←(bY )(y) =
∨

y∈Y R(x, y) ∗ bY (y) =∨
y∈Y R(x, y) ∗ b = bX , and hence R←(bY ) = bX .

(5) Let B ∈ LY . Then for every y ∈ Y
R→(R←(B))(y) =

∨
xR(x, y) ∗R←(B)(x)

=
∨

xR(x, y) ∗
(∨

y′ R(x, y′) ∗B(y′)
)

≥
∨

x(R(x, y) ∗R(x, y) ∗B(y)) ≥ 1L ∗B(y) = B(y).

(6) R→(aX)(y) =
∨

x∈X R(x, y) ∗ aX(x) =∨
x∈X R(x, y) ∗ a = a, and hence R→(aX) = aY .

2.2 Lower image and preimage operators

The operators considered in the previous subsection
were obtained by applying the idea of Zadeh extension
principle [34] and rely on interpretation of operation ∗
as a logical conjunction. On the other hand, here we
consider alternative definitions of image and preimage
relying on the interpretation of IF-THEN rule as a
logical residuation.

Definition 2.6 The lower image of an L-fuzzy set
A ∈ LX is an L-fuzzy set R⇒(A) ∈ LY defined by

R⇒(A)(y) =
∧

x∈X
R(x, y) 7→ A(x).

Remark 2.7 Thus the lower L-fuzzy image operator
R⇒ : LX → LY is just the erosion operator εR : LX →
LY

Definition 2.8 The lower preimage of an L-fuzzy set
B ∈ LY is the L-fuzzy set R⇐(B) ∈ LX defined by

R⇐(B)(x) =
∧

y∈Y
R(x, y) 7→ B(y).

Proposition 2.9 If L-fuzzy relation is strongly left
connected, then R⇒(A) ≤ R→(A) for every A ∈ LX .

Proof Given y ∈ Y , we take xy such that R(xy, y) =
1L. Then

∧
x∈X R(x, y) 7→ A(x) ≤ R(xy, y) 7→

A(xy) = A(xy). On the other hand,
∨

x∈X R(x, y) ∗
A(x) ≥ R(xy, y) ∗A(xy). 2
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Remark 2.10 In case when L-fuzzy relation R is re-
alised by an ordinary function f : X → Y , then
R⇒(A) consists of all y ∈ Y such that y = f(x) for
some x ∈ A and y 6= f(x) if x 6∈ A. In particular, this
property holds if f is injective.

Proposition 2.11 In case R : X×Y → L is strongly
right connected, then R← ≥ R⇐

Proof Let x ∈ X be fixed and let yx ∈ Y sat-
isfy R(x, yx) = 1L. Then R←(B)(x) =

∨
y(R(x, y) ∗

B(y) ≥ R(x, yx) ∗ B(yx) = B(yx). In its turn,
R⇐(B)(x) =

∧
y(R(x, y) 7→ B(y)) ≤ R(x, yx) →

B(yx) = B(yx). 2.

Remark 2.12 Note that in case when L-fuzzy rela-
tion R is realized by an ordinary function f , then
R←(B) = R⇐(B) = f−1(B), that is the preimage
of B under function f . Strong right connectedness in
this case just means that the function f is surjective.

In the next proposition we collect some properties of
lower image and preimage operators.

Proposition 2.13 Let R : X × Y → L be an L-fuzzy
relation, A ∈ LX , B ∈ LY , {Ai | i ∈ I} ⊆ LX and
{Bi | i ∈ I} ⊆ LY . Then

(1) If A1 ≤ A2 then R⇒(A1) ≤ R⇒(A2);

(2) If B1 ≤ B2 then R⇐(B1) ≤ R⇐(B2);

(3) R⇒(
∧

i∈I Ai) =
∧

i∈I R
⇒(Ai)

(4) R⇐(
∧

i∈I Bi) =
∧

i∈I R
⇐(Bi)

(5) If R is left connected, then R⇒(aX) = aY

(6) If R is right connected R⇐(bY ) = bY

Proof The proof of the properties (1) - (4) can be
found in the literature. We prove the remaining two
properties.

To prove (5) we fix y ∈ Y and, taking into account
that R is left connected, are reasoning as follows:
R⇒(aX)(y) =

∧
x∈XR(x, y) 7→ aX(x) = 1L 7→ a =

aY (y). The proof of (6) is similar to the proof of (5)
and omitted. 2

3 Topological structures in the
context of mathematical
morphology

3.1 Some remarks concerning terminology

Before we start to consider the operators of erosion and
dilation from the topological point of view, we have to

specify terminology to which we stick here. Of several
equivalent approaches to a definition of a topology, we
use here the interior-closure approach. Besides, since
we are working with L-fuzzy sets, we speak about L-
fuzzy interior and L-fuzzy closure operators. However,
we give here also references to their classic prototypes.

Recall that an L-fuzzy interior operator on a set X is
a mapping int :LX → LX such that

(1) int(1X) = 1L;

(2) int(A) ≤ A for every A ∈ LX ;

(3) int(A1 ∧A2) = int(A1) ∧ int(A1) ∀ A1, A2 ∈ LX ,

(4) int(int(A)) =int(A) for every A ∈ LX .

see e.g. [11], [17], [31]. In case int satisfies a stronger
version of axiom (1)

(1′) int(aX) = aL for each constant a ∈ L,

int is called stratified, see e.g. [17], [16], but in case
int satisfies a stronger version of axiom (3)

(3′) int
(∧

i∈I Ai

)
=
∧

i∈I int(Ai),

operator int is called Alexandroff L-fuzzy interior. [1].
In case the axiom (3) is omitted, we come to the con-
cept of an L-fuzzy pre-interior operator (stratified and
Alexandroff pre-interior operator, respectively.)

An L-fuzzy (pre-)interior operator gives rise to an L-
fuzzy (pre-)topology T by setting

T = {A ∈ LX | int(A) = A}.

An L-fuzzy closure operator on a set X is a mapping
cl :LX → LX such that

(1) cl(0X) = 0L;

(2) cl(A) ≥ A for every A ∈ LX

(3) cl(A1 ∨A2) = cl(A1) ∨ cl(A1) ∀A1, A2 ∈ LX ,

(4) cl(cl(A)) =cl(A) for every A ∈ LX

see e.g. [11], [17], [31]. In case cl satisfies a stronger
version of axiom ( 1)

(1’) cl(aX) = aL for each constant a ∈ L,

cl is called co-stratified, see e.g. [16], but in case cl
satisfies a stronger version of axiom (3 cl)

(3′) cl
(∨

i∈I Ai

)
=
∨

i∈I cl(Ai),
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operator cl is called Alexandroff L-fuzzy closure, see
[1, 7]. In case the axiom (3 cl) is omitted, we come to
the concept of L-fuzzy pre-closure operator (stratified
and Alexandroff pre-closure resp.)

An L-fuzzy (pre-)closure operator gives rise to an L-
fuzzy (pre-)co-topology T by setting

C = {A ∈ LX | cl(A) = A}.

In case when the lattice is endowed with an order re-
versing involution c : L → L the closure and interior
operators are usually considered as a pair mutually re-
lated operators connected by the following equalities

cl(Ac) = (int(A))c; int(Ac) = (cl(A))c ∀A ∈ LX ,

and hence cl : LX → LX and int : LX → LX present
equivalent approaches to an L-fuzzy (pre)-topology.
However, there are situations when either the lattice
L does not have a natural order reversing involution
or interior and closure operators base on different in-
formation in their definitions. In this case the term
a (fuzzy) di(pre)topology is used, see e.g. [6]. This is
just the case in our situation: the L-fuzzy pre-interior
and L-fuzzy pre-closure operators which appear in our
work will be generally independent.

3.2 Pair (εR, δR−1) as an L-fuzzy
di-pretopology transformed from LX to
LY

Let R : X ×Y → L be an L-fuzzy relation interpreted
as a relation from X to Y and let R−1 : Y ×X → L
defined by R−1(y, x) = R(x, y) and hence interpreted
as a relation from Y to X.

The properties of erosion operator εR collected in
Proposition 1.5 remind the properties of a stratified
Alexandroff fuzzy pre-interior operator defined on the
L-powerset LX but taking values in LY . On the other
hand, the properties of the operator of dilation δR col-
lected in Proposition 2.3 and reformulated for δR−1 re-
mind the properties of the stratified Alexandroff fuzzy
pre-closure operator defined on the L-powerset LX

and taking values in LY . From the definitions it is
clear that εR(A) = R⇒(A), (see Remark 2.7) and
δR−1(A) = R→(A) (see Remark 2.3). Now, referring
to Proposition 2.9 we know that if R is strongly right
connected, then R⇒(A) ≤ R→(A). These observa-
tions lead us to the interpretation of εR(A) as the L-
fuzzy pre-interior of A ∈ LX transferred to LY and
δR−1(A) as the L-fuzzy pre-closure of A transferred to
LY . In the result we interpret the pair (εR, δR−1) as an
Alexandroff L-fuzzy di-pretopology transformed from
LX to LY .

3.3 Pair (εR−1 , δR) as an L-fuzzy
di-pretopology transformed from LY to
LX

As above, let R : X × Y → L be an L-fuzzy relation
and let R−1 : Y × X → L defined by R−1(y, x) =
R(x, y) and hence interpreted as relation from Y to
X. The properties of dilation operator δR collected in
Proposition 1.7 remind the properties of an Alexan-
droff pre-closure operator defined on the L-powerset
LY but taking values in LX . On the other hand the
properties of operator εR collected in Proposition 1.5
and reformulated for εR−1 remind the properties of
Alexandroff L-fuzzy fuzzy closure operator defined on
the L-powerset LY but taking values in LX .. Reason-
ing in a similar way as in the previous subsection, we
notice that εR−1(B) = R⇐(B), and δR(B) = R←(B)
for every B ∈ LY . Further, referring to Proposition
2.11, we know that if R is strongly left connected, then
R⇐(B) ≤ R←(B). These observations lead us to the
interpretation of εR−1(B) as the Alexandroff L-fuzzy
pre-interior of B ∈ LY transferred to LX and δR(B)
as the Alexandroff L-fuzzy pre-closure of B ∈ LY

transferred to LX . In the result we interpret the pair
(εR−1 , δR) as an L-fuzzy di-pretopology transformed
from LY to LX .

3.4 Remark: the case X = Y

In case when X = Y and R : X×X → L is a reflexive
transitive L-fuzzy relation, operator εR : LX → LX is
the L-fuzzy closure operator and operator δR : LX →
LX is an L-fuzzy interior operator. This situation
was studied from different points of view by many
authors, see e.g. [9, 21, 12, 14, 23, 24] et al. How-
ever in all these works the L-fuzzy relation was on
the same set X, that is R : X × X → L and hence
the image and preimage operators where of the form
R→ : LX → LX , R← : LX → LX , R⇒ : LX → LX ,
R⇐ : LX → LX . On the other hand the context
of the mathematical morphology focuses on the sit-
uation when the image and preimage can take their
values in different universies, that is when the ob-
tained image and preimage operators are of the form
R→ : LX → LY , R← : LY → LX , R⇒ : LX → LY ,
R⇐ : LY → LX that is the subject of this paper.

Note also that in this case, according to the terminol-
ogy accepted in mathematical morphology, composi-
tion εR ◦ δR : LX → LX is called an opening operator
and composition δR ◦ εR : LX → LX is a closing oper-
ator.

3.5 Category of (ε, δ−1)-spaces

Definition 3.1 An (ε, δ−1)-space is the tuple
(X,Y, L,R, εR, δR−1) where X,Y are sets, L is a fixed
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integral complete lattice monoid, R : X×Y → L is an
L-fuzzy relation and εR, δR−1 are erosion and dilation
operators.

To view (ε, δ−1)-spaces as a category we must spec-
ify its morphisms. We do it in the next definition
justified by the topological interpretation of the pairs
(εR, δR−1) given above:

Definition 3.2 A continuous transformation from an
(ε, δ−1)-space (X1, Y1, L,R1, εR1 , δR−1

1
) to an (ε, δ−1)-

space (X2, Y2, L,R2, εR2
, δR−1

2
), is a pair of mappings

(ϕ,ψ) where ϕ : X1 → X2, ψ : Y1 → Y2 satsfying the
following conditions:

(1) εR2
(ϕ(A)) ≤ ψ (εR1

(A)) ∀A ∈ LX1 ;

(2) δR−1
2

(ϕ(A)) ≤ ψ
(
δR−1

1
(A)
)
∀A ∈ LX1 .

Given three (ε, δ−1)-spaces and continuous transfor-
mations
(ϕ,ψ) :
(X1, Y1, L,R1, εR1

, δR−1
1

)→ (X2, Y2, L,R2, εR2
, δR−1

2
),

(ϕ′, ψ′) :
(X2, Y2, L,R2, εR2 , δR−1

2
) → (X3, Y3, L,R3, εR3 , δR−1

3
)

we define their composition as (ϕ′ ◦ ϕ,ψ′ ◦ ψ) :
(X1, Y1, L,R1, εR1 , δR−1

1
)→ (X3, Y3, L,R3, εR3 , δR−1

3
).

The proof of the next proposition is straightforward
and omitted:

Proposition 3.3 (ε, δ−1)-spaces and their continu-
ous transformations with composition defined above
form a category.

3.6 Category of (ε−1, δ)-spaces

Definition 3.4 An (ε−1, δ)-space is a tuple
(X,Y, L,R, εR−1 , δR)) where X,Y are sets, L is
a fixed integral comutative complete lattice monoid,
R : X × Y → L is an L-fuzzy relation and εR−1 , δR
are erosion and dilation operators.

To view (εR−1 , δR) -spaces as a category we must spec-
ify its morphisms. We do it in the next definition
justified by the topological interpretation of the pairs
(ε−1, δ)-spaces given above:

Definition 3.5 A continuous transformation from
a space (X1, Y1, L,R1, εR−1

1
, δR1

)) to a space

(X2, Y2, L,R2, εR−1
2
, δR2

), is a pair of mappings

(ϕ,ψ) where ϕ : X1 → X2, ψ : Y1 → Y2 satisfying the
following conditions:

(1) ϕ(εR−1
1

(B))) ≤ εR−1
2

(ψ(B)) ∀B ∈ LY1 ;

(2) ϕ(δR1
(B)) ≤ δR2

(ψ(B)) ∀B ∈ LY1 .

Composition of continuous transformations is defined
similar as it was done in case of the category of
(ε, δ−1)-spaces.

The proof of the following proposition is straightfor-
ward and therefore omitted:

Proposition 3.6 (ε−1, δ) -spaces and their continu-
ous transformations form a category.

4 Conclusions

In this paper, we have developed a certain topologi-
cal interpretation of basic concepts of fuzzy relational
mathematical morphology. We have showed that the
erosion operator εR : LX × LY induced by an L-
fuzzy relation R : X × Y → L can be realized as
a certain L-fuzzy pre-interior operator assigning to
an L-fuzzy subset A ∈ LX its “transferred” L-fuzzy
pre-interior εR(A) ∈ LY , while the dilation operator
δR−1 : LX → LY induced by the inverse L-fuzzy re-
lation R−1 : Y × X → L can be realized as a cer-
tain L-fuzzy pre-closure operator assigning to an L-
fuzzy subset A ∈ LX its “transferred” L-fuzzy pre-
interior εR(A) ∈ LY . In its turn, the erosion op-
erator εR−1 : LY → LX and the dilation operator
δR : LY → LX can be realized as certain L-fuzzy pre-
interior and L-fuzzy pre-closure operators defined on
LY and taking values in LX . The operators of ero-
sion and dilation were compared with the upper and
lower images and preimages operators induced by L-
fuzzy relations. We have initiated also the study of
the topological-type structures obtained here from the
categorical point of view.

Concerning the prospectives for the future work, as
the most chalenging we see the following.

• In this paper we just sketched the ideas for the
categorical approach to the pre-topological struc-
tures in the context of fuzzy relational mathemat-
ical morphology. In future, we plan to develop a
“full-boded” categorical approach to such struc-
tures.

• The pairs (εR, δR−1) and (εR−1 , δR) were used
here to develop a certain “topological viewpoint”
on the operators of erosion and dilation. How-
ever, probably even more interesting especially
from the point of possible application will be to
apply these pairs for description of certain “re-
mote” fuzzy rough approximation models (cf [22],
[8], [10], [33]). In particular, it could be useful in
the study of big volumes of transformed data.
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• In [20] the authors have extended the subject of
mathematical morphology for adjoint triples. We
guess that this theory can have important rela-
tions with the so called ”non-commutative” topol-
ogy that we are going to explore in future.
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[32] Šostak, A., Eļkins, A.: LM -valued equalities,
LM -rough approximation operators and ML-
graded ditopologies. Hacettepe J. Math. Stat. 46
(2017), 15–32.

[33] Yao Y., She Y.: Rough set models in multigran-
ulationl spaces. Inform. Sci. 327 (2016), 40–56.

[34] Zadeh, L.A.: The concept of linguistic variable
and its application to approximate reasoning. In-
form. Sci. 8 (1975), 193–249, 301–357.

783




