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Abstract

Convexity of preferences is a canonical as-
sumption in economic theory. In this paper
we consider a generalized definition of convex
preferences that relies on the abstract notion
of convex space.
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1 Introduction

In economic theory it is often assumed for analytical
convenience, but also in accordance with common in-
tuition that consumer preferences are convex. More-
over convexity of preference is a conditions considered
in other fields (see for example [3]).
The standard Euclidean notion of convex preferences
is an algebraic property used to express the notion that
agents exhibit an inclination for diversification and so
they prefer a more balanced bundle to bundles with a
more extreme composition.
Then a preference in a set X is convex if whenever
x, y ∈ X and x � y then

tx + (1− t)y � y for all t, 0 ≤ t ≤ 1.

This definition relies on the algebraic structure of the
Euclidean space that is used to define a betweenness
relation. When we say that a point z is “between” x
and y in an Euclidean space we mean that z is a con-
vex combination of x and y.
In this paper we consider abstract convex structures
that are objects studied in various areas of mathemat-
ics and an abstract notion of betweenness. Then we
propose a general definition of convex preferences in
our setting and we study this notion when the convex-
ity is a lattice convexity.
The paper is organized as follows. In section 2, we col-
lect definitions and basic results about abstract con-
vex spaces and we propose some examples of convex

spaces. In section 3 we propose a definition of con-
vex preference in our framework while in section 4 we
study convex preferences in a lattice considered as a
convex space.

2 Abstract convex structures

The general notion of abstract convexity structure
studied in [10] is considered.
A family C of subsets of a set X is a convexity on a set
X if ∅ and X belong to C and C is closed under arbi-
trary intersections and closed under unions of chains.
The elements of C are called convex sets of X and the
pair (X, C) is called a convex space. A convex set with
a convex complement is called a half-space.
The convexity notion allows us to define the notion of
the convex hull operator, which is similar to that of
the closure operator in topology. If X is a set with a
convexity C and A is a subset of X, then the convex
hull of A ⊆ X is the set

co(A) =
⋂
{C ∈ C : A ⊆ C}.

A convex structure is completely determined by its
hull operator, or even by its effect on finite sets (see
Proposition 2.1 of [10]). This operator enjoys certain
properties that are identical to those of usual convex-
ity: for instance co(A) is the smallest convex set that
contains set A. It is easy to prove that C is convex if
and only if co(C) = C.
The convex hull of a set {x1, ..., xn}is called an n-
polytope and is denoted by [x1, ..., xn]. A 2-polytope
[a, b] is called the segment joining a, b.
A convexity C is called N-ary (N ∈ N) if A ⊆ C when-
ever co(F ) ⊆ A for all F ⊆ A where F has at most
N elements. A 2-ary convexity is called an interval
convexity. We can also consider biconvex spaces i.e.
triples of the form (X,A,B) where A,B are two con-
vexities on a set X, called the lower and the upper
convexity. Obviously every convex space (X, C) can
be viewed as a biconvex space (X, C, C). For a general
theory of convexity we refer to [5] and [10].
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2.1 Some examples

We present some examples and classes of convex
spaces. First of all we note that every real vector
space together with the collection of all convex sets in
the usual meaning, is a 2-arity convex space.

Ordered spaces The usual convexity on R can
be defined in terms of ordering as follows: a set
C is convex if and only if when a, b ∈ C and
a ≤ x ≤ b implies x ∈ C. We can define in the same
way a convexity on a partially ordered set (see [10],
pag 6 ). Such a convexity is called the order convexity.

Convexity generated by orderings Let X be a
non empty set and P a set of orderings (reflexive,
complete and transitive relations) on X. We refer
[10] p.10 for a definition of a base and a subbase of a
convexity. Then we define the convexity generated by
the sets {x ∈ X : x �i z} where z ∈ X and �i is an
element of P and the complement sets of these sets
that are the sets {x ∈ X : x ≺i z} where z ∈ X and
�i is an element of P. So this convexity is generated
by half-spaces.

Median spaces A median space is a convexity
space X with a 2-arity convexity such that for
each a, b, c ∈ X there exists a unique point in
[a, b]∩ [a, c]∩ [b, c]. We call it the median of a, b, c and
denote by m(a, b, c). This defines a map m : X3 → X,
called the median operator on X. In any convexity
space, every point in [a, b] ∩ [a, c] ∩ [b, c] is called a
median of a, b, c. There is a natural way to define the
structure of a median space by means of the median
operator (see [10]).

Property-based domains A property-based do-
main (as defined in [1]) is a pair (X,H) where X is
a non-empty set and H is a collection of non-empty
subsets of X and if x, y ∈ X and x 6= y there exists
H ∈ H such that x ∈ H and y /∈ H. The elements
of H are referred to as properties and if x ∈ H we
say that x has property represented by the subset H.
This definition is slightly more general than that of
[4], [7] and of [8], in fact it is not assumed that the
set X is finite and we do not consider that the set Hc

is a property if H is a property.
The “property space” model provides a very general
framework for representing preferences and then
aggregation of preferences. In every property-based
domain we can define a convexity defined as follows.
A subset S ⊆ X is said to be convex if it is intersection
of properties.

2.2 Betweenness

The notion of a point lying between two given points
on a geometric line has been generalized in a number
of directions. In all of these, betweenness is taken to
be a ternary relation that satises certain conditions.
The ternary relation of betweenness comes up in a
large variety of structures on a given set as it is
well known reflecting intuitions that range from order-
theorethic to the geometrical and topological.
These relations have been introduced in the context of
abstract convexity in [10], in the context of property
spaces (see for example [7] and [8]).
A convex space (X, C) induces a ternary betweenness
relation B ⊆ X3 according to

B(x, z, y) ⇐⇒ for all C ∈ C : {x, y} ⊆ C =⇒ z ∈ C.

Thus z is between x and y of B if z possess all basic
properties that are common to x and y and possibly
some more. This ternary relation satisfies the follow-
ing properties.
[B1] (Reflexivity) If z ∈ {x, y} then B(x, z, y).
[B2] (Symmetry) If B(x, z, y) then B(y, z, x).
[B3] (Transitivity) If B(x, x′, y), B(x, y′, y) and
B(x′, z, y′) then B(x, z, y).

2.3 Separation axioms

Two sets are separated by a set A if one is contained
in A and the other one is disjoint from A.
We shall consider the following separation axioms (see
[10] p.53):
S0: For every two distinct points there exists a convex
set which contains exactly one of them.
S1: Every one-point subset is convex.
S2: Distinct points are separated by half-spaces
S3: Every convex set is an intersection of half-spaces
S4: For every two disjoint convex sets there exists a
half- space which contains exactly one of them.
A S1 convex space is called point convex while axiom
S4 is called the Kakutani separation property. In fact
the classical theorem of Kakutani says that each two
disjoint in a real vector space can be separated by a
half-space.
It is also clear that S4 =⇒ S3, S2 =⇒ S1 =⇒ S0,
and S1 + S3 =⇒ S2.
We denote by H ⊆ C the set of half-spaces of the
convex space (X, C).

3 Convex preferences

In this section we consider convex spaces (X, C) that
satisfy axioms S1 and S4. The following definition
extends the definition of convex preferences proposed
in [9]. We propose a definition of convex preferences
in abstract convex structures and we do not consider
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only complete relations as in [9].
We consider preorders on a nonempty set X i.e. tran-
sitive and reflexive binary relations on X and we use
the term “preorder” and “preference” interchangeably
throughout the present paper.
A preference relation on a convex space (X, C) is � on
X is said to be a convex preference if {x ∈ X : x � z}
is a convex set for every z ∈ X.

Remark 1 If the convex space is an Euclidean space
our definition is the well known definition of convexity
of a preference.

Remark 2 Consider the definition of preference
relation proposed in [9]. The set X is a convex space
with respect to the convexity generated by the a set
of orderings P. Then if x � z for every �i∈ P there
exists zi ∈ X such that z ∈ {x ∈ X : x �i zi} and
then x is an element of a convex sets contained in
{x ∈ X : x � z}. Then we can easily prove that the
convex order as defined in [9] are convex also with
respect to our definition.

Remark 3 If (X, C) is a convex space we consider the
relation � in X such that x � y if and only if

{H ∈ H′ : x ∈ H} ⊇ {H ∈ H′ : y ∈ H}.

where H′ ⊆ H. This relation is transitive and com-
plete and it can be proved that the set {x ∈ X : x � z}
is an intersection of half-spaces and so is a convex set
for every z ∈ X. Hence the considered relation is a
convex preference.

The following result generalizes in our framework the
well known property of convex preferences in Eu-
clidean spaces.

Proposition 1. Let (X, C) be a convex space. If � is
a convex preference in X then for every x, y ∈ X

if x � y and B(x, z, y) then z � y.

If C is an interval convexity a transitive and complete
relation � in X such that for every x, y ∈ X

if x � y and B(x, z, y) then z � y

is a convex preference.

Proof. If we consider a convex preference � in (X, C)
and two elements x, y of X such that x � y then ob-
viously x, y belong to the convex set {t ∈ X : t � y}.
Moreover if B(x, z, y) is satisfied for an an element
of X z is if and only if z ∈ co{x, y} that is the
smallest convex set that contains x and y. Then if
B(x, z, y) is satisfied z is an element of the convex set

{t ∈ X : t � y} and then we get z � y.
Conversely let C be an interval convexity on X and �
a transitive and reflexive relation in X such that for
every x, y ∈ X, if x � y and B(x, z, y) then z � y.
Then if x1, x2 are elements of X such that x1 � y and
x2 � y we can suppose that x1 � x2. Hence [x1, x2] is
contained in the set {t ∈ X : t � y} since if z ∈ [x1, x2]
then z � x2 � x.

4 Convex preferences in lattices

An element z of a lattice L is called join irreducible if
z = x∨y for x, y ∈ L implies that z = x or z = y. The
notion of meet-irreducible element is defined dually.
The set of join-irreducible elements of a lattice L is
denoted by J(L).
An element z of a lattice L is called join prime i if
z ≤ x∨y for x, y ∈ L implies that z ≤ x or z ≤ y. The
notion of meet-prime element is defined dually. The
set of join-prime elements of a lattice L is denoted by
JI(L). It can be proved that a join-prime element is
join-irreducible and if L is a finite distributive lattice
we have that J(L) = JI(L).
A filter of a lattice L is a nonempty subset F such
that

(i) if x ∈ F and x ≤ y then y ∈ F ,

(ii) x, y ∈ F then x ∧ y ∈ F .

Sets satisfying Condition (i) of a filter are called up-
sets. The dual notation is that of an ideal. If x ∈ L we
define the principal filter generated by x as ↑ x = {y ∈
L : y ≥ x}. It is easy to prove that ↑ x is a filter for
every x ∈ L. It can be proved that in a finite lattice
each filter and each ideal are principal.
A proper filter is a filter that is neither empty nor the
whole lattice while a prime filter is a proper filter P
such that if x ∨ y ∈ P then x ∈ P or y ∈ P . An
element x of a lattice L is join-prime if and only if ↑ x
is prime. A filter F is prime if and only if L \ F is an
ideal, which is then a prime ideal.
Throughout this paper lattice means bounded and dis-
tributive lattice. We note that if L is a bounded and
distributive lattice every element is characterized by
the set of prime filters which contain the given element
since a duality between the lattice and the power set
of the s et of prime filters of L ordered by inclusion
can be defined as is proved in [6].
If 〈L,∧,∨〉 is a lattice we denote by L and U the collec-
tions of all ideals and all filters respectively (the empty
set and the whole lattice are treated as (non-proper)
ideals and filters). Since the union of a chain of filters
(ideals) is a filter (ideal), these are two convexities on L
that will be called the lower and the upper lattice con-
vexity respectively. Moreover there exists a convexity
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C generated by L
⋃
U the least convexity containing

all ideals and filters. This convexity will be called the
lattice convexity on L.
Note that if L is linearly ordered then C equals the
order convexity. The convexity of the dual lattice is
the same as the original one.
It is possible to consider lattices as convex spaces (with
the lattice convexity) as well as bi-convex spaces (with
the lower and upper lattice convexities). It is easy to
check that a proper half-space is either a prime filter
or a prime ideal. It can be proved also that

[x, y] = {z ∈ L : x ∧ y ≤ z ≤ x ∨ y}

and that in a lattice L the ternary betweenness relation
is defined by

B(x, z, y) ⇐⇒ x ∧ y ≤ z ≤ x ∨ y

(see [5] and [10]).
A lattice satisfies Kakutani property if and only if it
is a distributive lattice (see [10]). The following result
characterizes lattice convexity as a convexity defined
by orderings.

Proposition 2. If 〈L,∧,∨〉 is a bounded and distribu-
tive lattice, the lattice convexity is a convexity gener-
ated by a set of orderings on L.

Proof. We consider the set L of prime filter of L (that
are half-spaces of the lattice convexity) and we define
an equivalence relation in L defined by

F1 ∼ F2 if F1 ⊆ F2 or F2 ⊆ F1

where F1, F2 ∈ L. If E is an equivalence class with
respect to the equivalence relation defined above E is
a chain ordered by inclusion. Then the relation �E

such that x �E y if and only if

{F ∈ L : x ∈ E} ⊇ {F ∈ L : y ∈ F}

is a complete and transitive relation. Let E the set
of orderings �E where E is an equivalence class with
respect to the equivalence relation defined above.
Observe that the set {x ∈ L : x �E z} where z ∈ L
and �E is an element of E is a prime filter and every
filter can be represented as {x ∈ L : x �E z} where
z ∈ L and �E is an element of E . So we have proved
that the lattice convexity is defined by the orderings
in E .

A relation � in a lattice L is said to be compatible
with the order ≥ of L if

if x, y ∈ L and x ≥ y then x � y.

We introduce a property of a reflexive and transitive
relation in a lattice that in [2] is named meet domi-
nance and we prove that this property characterizes
convex preferences defined on a lattice.

Proposition 3. If 〈L,∧,∨〉 is a bounded and distribu-
tive lattice a reflexive and transitive relation � in L is
a convex preference with respect to the lattice convex-
ity if and only is a compatible relation such that for all
x, y ∈ L if x � y then x ∧ y � y.

Proof. Note that by Proposition 8.2 in [5] the lattice
convexity is an interval convexity and then a set A is
convex if and only if if x, y are elements of A then the
segment [x, y] = {z ∈ L : x ∧ y ≤ z ≤ x ∨ y}.
Let � a convex preference in a lattice L.
By Priestley duality (see [6]) we get that � is compat-
ible with ≥ that is

if x ≥ y then y ∈ F implies that x ∈ F

for every prime filter of L. Then if x, y ∈ L and x � y
then x, y belong to the convex set {z ∈ L : z � y}.
Then also x∧ y is an element of {z ∈ L : z � y} hence
x ∧ y � y.
Conversely assume that � is a compatible relation in
a lattice L that satisfies the property above.
If x1, x2 are two elements of L that belong to the set
{x ∈ L : x � z} then, since � is a compatible and
transitive relation, we have that x2 � z � x1 ∧ z and
so x2 � x1∧z. By meet dominance x1∧x2∧z � x1∧z.
Hence we can prove that x1 ∧ x2 � x1 ∧ x2 ∧ z �
x1∧z � z. Then we can easily prove that the segment
[x1, x2] is contained in {x ∈ L : x � z}, so the set
{x ∈ L : x � z} is convex for every z ∈ L and � is a
convex preference.

5 Concluding remarks

This paper is a first step toward the study of a general
notion of convex preferences. We consider an abstract
notion of convexity in a base set and we study this
notion when the convexity is a lattice convexity.
We prove that in a lattice a convex structure is gene-
rated by a set of orderings that in some sense play a
role of linear functions in Euclidean spaces and then
we characterize convex preferences in a lattice.
There are many examples of economic models that
consider convex spaces (see [9]). We plan to study
convex preferences in general convex spaces, and to
find more applications of our results in future work.
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