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Abstract

Fuzzy Clustering is one of the mining tech-
niques that have been used to extract in-
formation from Data Streams. The d-
FuzzStream algorithm is a fuzzy version of
the Online-Offline Framework, which con-
sists of two steps: an online step, where a
summary structure formed by fuzzy micro-
clusters is built and an offline step, where the
micro-clusters are clustered in batch mode.
The quality of the data summary depends on
the criteria used to decide whether an exam-
ple starts a new micro-cluster or is absorbed
by the existing ones; and whether two micro-
clusters became similar enough to be merged.
In d-FuzzStream algorithm such decisions are
based on concepts of fuzzy dispersion and a
distance-based fuzzy clusters similarity. In
this paper we investigate the behavior of dif-
ferent fuzzy similarity measures on the deci-
sion of merging two fuzzy micro-clusters dur-
ing the online step. Experiments were run
using five synthetic data sets and four fuzzy
similarity measures. The results obtained are
analyzed and discussed through informative
and purity measures.

Keywords: Data stream clustering, Data
summary, Fuzzy similarity measures, Fuzzy
clustering.

1 Introduction

The availability of data that are generated in form
of streams is continuously increasing in several do-
mains and stimulating research on methods dedicated
to extract useful information from this source of data.
Fuzzy Clustering is one of the mining techniques that
have been used for mining Data Streams. In this con-
text, methods must take into account particular fea-

tures of the stream, such as the continuous arrival of
large volumes of data and the possibility of change in
data distribution. In our previous research we have de-
veloped an algorithm called d-FuzzStream[18], a fuzzy
version of the Online-Offline Framework, which con-
sists of two steps: an online step, where data instances
are seen one by one as they arrive in the stream and
a summary structure formed by Fuzzy Micro-Clusters
(FMiC) is built to store statistical information on the
data; an offline step, where the FMiCs are clustered in
a user-required basis.

The quality of the data summary depends on the oper-
ations that are performed when each example arrives.
The algorithm must decide whether a new incoming
data is to be absorbed by the existing structure or car-
ries enough novelty to start a new FMiC; and whether
two FMiCs became similar enough to be merged. In d-
FuzzStream algorithm such decisions are based on con-
cepts of fuzzy dispersion and a distance-based fuzzy
clusters similarity measure.

Ever since the advent of fuzzy sets, different measures
to evaluate the similarity between fuzzy sets have ap-
peared, under different sets of properties. These mea-
sures are defined based on operations on fuzzy sets [17]
[7], distance measures between fuzzy sets or implica-
tion operators [21]. Applications of this measures in-
clude image processing [22], fuzzy reasoning [20] and
pattern recognition [5]. A review of fuzzy similarity
measures and applications to classification and recog-
nition problems have been reported in [3].

In this paper we investigate the behaviour of four dif-
ferent fuzzy similarity measures when used to decide
whether or not two FMiCs are to be merged during the
maintenance of the summary structure in the online
step. The main point to be considered when apply-
ing fuzzy similarity measures for the purpose exposed
here is that, since the arriving examples themselves
are not stored and the summary structure stores only
some selected statistics, the similarity measure must
be defined in such a way that it can be calculated
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incrementally, as each example arrives. Experiments
were run using five synthetic data sets. The results
obtained are used to analyze the impact of each mea-
sure in the quality of the summary structure based on
the number of FMiCs creations, removals and merges
as well as the purity measure.

This paper is organized as follows. In section 2 related
work found in the literature is presented. In section
3, the d-FuzzStream algorithm is briefly reviewed. In
section 4 the fuzzy similarity measures used in this
study are presented and the design of experiments is
described. Results are presented and discussed in sec-
tion 5 and conclusions are addressed in section 6.

2 Related Work

Most fuzzy alternatives to Data Stream clustering are
based on the Single Pass Fuzzy C-Means (SPFCM)
[12]. This algorithm divides the data set into
chunks and clusters each chunk in sequence using the
Weighted Fuzzy C-Means algorithm (WFCM) [4]. The
weighted FCM - Adaptive Cluster [15] and Online
Fuzzy C-Means [11] are examples of algorithms based
on this approach. A survey on fuzzy methods for data
streams clustering can be found in [1].

The Online-Offline Framework (OOF) approach was
originally proposed with the CluStream algorithm in
[2]. OFF divides the learning process into two steps:
online step (or data abstraction) and offline step (or
clustering). While the online step continuously sum-
marizes the data stream with the help of a summary
structure, the offline step is initiated explicitly by the
user, generating the data partition by clustering the
summary structure.

The summary structure is composed of a set of Micro-
Clusters (MiCs), which are cluster feature vectors
composed by statistics that can be used to calculate
the radius and the centroid of clusters, while also stor-
ing a timestamp to represent their time relevance.
When the offline step is applied, the set of MiCs is
converted into a set of weighted examples (one for each
MiC), and is then clustered by a variant of the k-means
algorithm, resulting in Macro-Clusters (MaC). Many
algorithms are based on the OOF, employing differ-
ent summary structures and different clustering tech-
niques for both online and offline steps [6], [10], [8],
[13].

FuzzStream [14] is, to the best of our knowledge, the
first fuzzy clustering algorithm proposed as a fuzzy
extension of the OOF, introducing concepts of the
fuzzy set theory to all steps of the framework. This
new proposal, called Fuzzy Online-Offline Framework
(FOOF), is depicted in Figure 1.

In FuzzStream, a set of Fuzzy Micro-Clusters (FMiCs)
is maintained during the online step and clustered in
the offline step using the WFCM algorithm.

Fuzzy
Abstraction
Online Step

Fuzzy
Clustering

Offline Step

Fuzzy
Summary
Structure

Fuzzy Partition

Data Stream

......

Figure 1: Fuzzy Online-Offline Framework [14].

A cluster feature has the properties of being incremen-
tal and additive. The incremental property allows a
cluster feature to summarize an example by updating
its statistics, while the additive property means that
two cluster features can be merged by simply adding
their statistics [19].

For every new Data Stream example, FuzzStream ei-
ther assigns the example to the existing FMiCs or cre-
ates a new FMiC. In this work, we call the example
assignment to the existing set of FMiCs as example
absorption. The summary structure has a maximum
size, and in case the structure reaches this size, the
oldest FMiCs are deleted to give place to new ones.
To minimize even further the size of this structure, af-
ter processing each new example, the algorithm tries
to identify overlapping FMiCs (which may represent
redundant information) and merge them.

When execution of the offline step is triggered, the set
of FMiCs is converted into a set of weighted examples
and clustered using WFCM.

Despite its robustness, the example absorption and
FMiC merging rates in FuzzStream tend to be very
low, which hinders the data summarization to retain
much information about past examples. d-FuzzStream
was developed as an improved version of FuzzStream
aiming at avoiding the aforementioned problem.

3 Dispersion-Based Fuzzy Data
Stream Clustering

The d-FuzzStream uses the fuzzy dispersion and fuzzy
similarity measures to identify outliers and overlap-
ping FMiCs. The FMiC structure is defined as the
vector (CF, SSD,M,N, t), whose components are de-
fined in Table 1.
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CF
linear sum of examples weighted by their
membership to the FMiC

SSD
quadratic sum of distances between the ex-
amples and the FMiC prototype weighted
by examples membership to the FMiC

N number of examples assigned to the FMiC

t
timestamp of last example assigned to the
FMiC

M
sum of memberships of the examples as-
signed to the FMiC

Table 1: FMiC Structure

The following sections detail the concepts of fuzzy dis-
persion and similarity-driven merging (3.1), the FMiC
maintenance (3.2) and the data partition generation
process (3.3).

3.1 Fuzzy Dispersion and Similarity-Driven
Merging Criterion

The fuzzy dispersion of a cluster is a measure based
on the Root-Mean-Square Deviation (RMSD) and can
be used to represent the radius of a fuzzy cluster [24].

Let xj be an example in the stream (x1, ..., xn),
{C1, ..., Ck} a set of k FMiCs and Ni the number of ex-
amples assigned to FMiC Ci. The fuzzy dispersion for
cluster Ci (dispi) is calculated as shown in (1) where
µ(xj) is the membership value of example xj to clus-
ter Ci, m ∈ [0,∞) is a fuzziness parameter, ci is the
prototype of Ci and ‖xj − ci‖ represents the distance
between example xj and prototype ci.

dispi =

√∑
xj∈Ci

µ(xj)m ‖xj − ci‖2

Ni
(1)

Since the statistics SSD and N are already stored in
the FMiC, they can be used to calculate dispi as shown
in (2).

dispi =

√
SSDi

Ni
(2)

Using the concept of fuzzy dispersion it is possible to
evaluate whether an example xj should be absorbed
by the summary structure or initiate a new FMiC.

Additionally, the fuzzy dispersion is employed to cal-
culate a Fuzzy Cluster Similarity matrix R [24],
which can be used to represent the similarity be-
tween pairs of FMiCs. Each cell of matrix R =
{Rij , (i, j) = 1, 2, ..., k} reflects the ratio of the sum
of the fuzzy dispersion of two FMiCs to the distance
between their prototypes as detailed in (3). Note that
the principle behind the similarity measure Rij is very

similar to the concept of the clustering validation index
Xie-Beni [23], with a slightly different form of calcula-
tion.

Rij =
dispi + dispj
‖ci − cj‖

(3)

The Similarity-Driven Merging Criterion [24] uses the
R matrix and a threshold τ to identify overlapping
clusters. If the Rij value is greater than τ , the two
FMiCs can be merged. If not, the two FMiCs are
considered to be completely separated and not similar
enough to be merged.

The threshold τ can assume values in the inter-
val [0,+∞[, where τ < 1 considers non-overlapping
FMiCs and τ >= 1 considers only overlapping FMiCs.
The greater the value of τ , the more overlapped the
FMiCs must be for a merge to occur. On the other
hand, the lower the value of τ , the less similar the
FMiCs have to be for a merge to occur.

The two concepts defined in this section are used in the
online step of the d-FuzzStream algorithm for identi-
fication of outliers and possible merges of overlapping
FMiCs.

3.2 Online Step: FMiC Maintenance

The maintenance for a set of FMiC requires as en-
tries the Data Stream, the fuzzification parameter for
the FCM algorithm(m), the minimum and maximum
number of FMiCs allowed in the structure (minMiC,
maxMiC) and the merge threshold (τ).

The summary structure is initially empty. The first ex-
amples in the Data Stream are used to create FMiCs
until the structure reaches the minimum number of
FMiCs. If the summary structure already has the
minimum number of FMiCs, the algorithm proceeds
to evaluate whether the example is an outlier or not:
the Euclidean distances between the example and all
FMiCs prototypes, as well as the radius for each FMiC,
are calculated.

When an example falls into a FMiC radius, the ex-
ample is not considered an outlier. In such case, the
structure must be updated to absorb the example. The
memberships between the example and all FMiCs are
calculated, like in the traditional FCM algorithm, and
all FMiCs are updated. The timestamp for the FMiCs
for which the example falls into their radius are also
updated. If the example is an outlier, a new FMiC has
to be created and added to the summary structure. In
this case, if the structure is full, the oldest FMiC is re-
placed by the new one. This strategy provides a drift
detection capability to the summary structure.

Finally, the merge step is initiated. The fuzzy similar-
ity matrix R between all FMiCs is calculated and pairs
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of FMiCs with the highest fuzzy similarity among the
ones with fuzzy similarity greater than the parameter
τ are merged.

3.3 Offline Step: Weighted Fuzzy C-Means
Clustering

The offline step is executed when required by the user.
The set of FMiCs is turned into a set of weighted
examples to be clustered in batch mode. For each
FMiC in the summary structure, a prototype is ob-
tained dividing CF by M and its weight is M itself.
The weighted prototypes are then clustered using the
WFCM algorithm [4] to generate the fuzzy partition.
The initial clusters’ prototypes are the examples with
greatest weights.

Since the objective of this paper is to analyze the be-
havior of fuzzy similarity measures in the online step,
the offline step will not be executed in the experiments.

4 Fuzzy Measures for Fuzzy
Micro-clusters Merge

The objective of this study is to experiment differ-
ent similarity measures between fuzzy clusters, be-
sides the one used in the original implementation of
d-FuzzStream described in Section 3, to decide whether
they are to be merged or not. This strategy requires
the definition of a threshold above which the merging
is done. In the following subsections, the fuzzy sim-
ilarity measures used are defined. From now on, the
similarity measure used in the original version of d-
FuzzStream will be denoted as S1, that is, assuming
that A and B are two FMiCs, S1(A,B) = RAB where
RAB is defined in (3).

4.1 Fuzzy Similarity Measures

Two Fuzzy Similarity Measures (FSM) based on oper-
ations on fuzzy sets and two based on distance mea-
sures were selected. In all equations it is assumed that
µA(xi) and µB(xi) denote the membership degree of
element xi in fuzzy sets A and B, respectively.

4.1.1 Measures Based on Operations on
Fuzzy Sets

These measures are based on intersection and union
operations and cardinality of fuzzy sets. S2 was pro-
posed in [17] and S3 was proposed in [7].

S2(A,B) =

∑n
i=1min(µA(xi), µB(xi))∑n
i=1max(µA(xi), µB(xi))

(4)

S3(A,B) = maxi(min(µA(xi), µB(xi))) (5)

4.1.2 Measures Based on Difference and
Sums of Fuzzy Values

In the equations that follow, |x| denotes the absolute
value of x. Measure S4 was proposed in [16] and mea-
sure S5 was defined in [17].

S4(A,B) = 1−maxi(|µA(xi)− µB(xi)|) (6)

S5(A,B) = 1−
∑n

i=1 |µA(xi)− µB(xi)|∑n
i=1 |µA(xi) + µB(xi)|

(7)

4.2 Design of the Approach and Experiments

The data sets used in the experiments are de-
scribed in Table 2. These are synthetic data sets
with two attributes, generated using the stream and
streamMOA packages in R and simulated as data
streams. As long as the data sets have been created
specifically to evaluate the method proposed, they
have a clear predefined clustering structure. Addi-
tional information on these data is available at [9].

Identifier # Instances # Clusters Noise? Stationary?
BG 10k 10,000 4 No Yes

Bench1 11k 11,000 2 Yes No
Bench2 20k 20,000 2 No No
RBF3 40k 40,000 7 Yes No
RBF4 40k 40,000 7 Yes No

Table 2: Data sets features

The online step of the algorithm was run using the
parameters values MinFMiC = 5, MaxFMiC = 100
and m = 2 for all datasets. These values have been
defined empirically, based on previous experiments.

In d-FuzzStream algorithm, the decision to merge two
FMiCs is based on the parameter τ . When Rij > τ ,
FMiCs i and j are merged. In this study, two im-
portant changes are made. First, each one of the se-
lected FSM are used to calculate the similarity matrix
R. Then, a threshold σ is defined to decide when the
FMiCs are to be merged. While τ varies in the range
[0,+∞[, the FSM varies in [0, 1]. We ran three sets of
experiments (Ex 1, Ex 2, Ex 3) varying the τ and σ
values. The values for each experiment are shown in
Table 3.

The evaluation measures were calculated at five differ-
ent time moments, defined after the arrival of certain

Experiment τ σ

Ex 1 1 0.9

Ex 2 0.9 0.8

Ex 3 0.8 0.7

Table 3: Parameters value for experiments.
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amount of examples, which we called windows. Each
data set have its own window size, shown in Table 4.
We refer to each evaluation moment as an observation.

Dataset Window Size

BG 10k 2000

Bench1 11k 2200

Bench2 20k 4000

RBF3 40k 8000

RBF4 40k 8000

Table 4: Window Size for each data set

5 Results and Analysis

The results obtained were analysed by means of infor-
mative measures such as numbers of creations, elimi-
nations, absorptions and merges of FMiCs, as well as
the purity measure. It is important to recall that only
the results of the online step are been evaluated. All
three experiments demonstrated very similar tenden-
cies in the results. Tables 5, 6 and 7 contain the mean
purity value of all 5 observations for each data set in
Ex 1, Ex 2 and Ex 3, respectively, with best values
in bold. The values show that FSM S3 obtained bet-
ter results than the original measure S1 and both, S1

and S3 generated higher values than the other three
measures.

The numbers of creations, removals, absorptions and
merges for each data set are depicted in Table 8. Since
these values follow a very similar tendency through all
three experiments, only the values for Ex 1 are shown.
The values demonstrate that S1 and S3 lead to a much
lower number of merges and absorptions and a larger
number of creations and removals than the other mea-
sures, what makes the structure as a whole to change
faster. This may explain the results concerning pu-
rity. With a low number of merges and absorptions,
the structure tend to have a larger number of FMiCs
and consequently a better purity value. This behavior
of FSMs can be justified by the fact that S3, as well
as S1 have a very simple form of calculation, involving
the maximum degree of membership in the min inter-
section of FMiCs. This causes a low number of pairs of
FMiCs to reach the similarity threshold to be merged.
On the other side, the other three FSM S2, S4 and S5

take into account the membership of all examples in
the FMiCs, tending to increase the number of merges.

S1 S2 S3 S4 S5

BG 0.9943 0.7873 0.9946 0.7331 0.7878
Bench1 0.9977 0.9713 0.9975 0.9067 0.9720
Bench2 0.9839 0.9005 0.9924 0.8494 0.8913
RBF3 0.9929 0.7843 0.9962 0.7050 0.7972
RBF4 0.9829 0.7926 0.9938 0.6997 0.7549

Table 5: Purity - Experiment 1

S1 S2 S3 S4 S5

BG 0.9927 0.7619 0.9947 0.7352 0.7685
Bench1 0.9991 0.9408 0.9993 0.8930 0.9431
Bench2 0.9833 0.8639 0.9940 0.8265 0.8738
RBF3 0.9951 0.7517 0.9962 0.6876 0.7617
RBF4 0.9791 0.7549 0.9940 0.6686 0.7617

Table 6: Purity - Experiment 2

S1 S2 S3 S4 S5

BG 0.9929 0.7456 0.9946 0.7240 0.7535
Bench1 0.9964 0.9288 0.9993 0.8861 0.9280
Bench2 0.9760 0.8630 0.9927 0.8382 0.8768
RBF3 0.9910 0.7280 0.9964 0.6735 0.7424
RBF4 0.9789 0.7362 0.9933 0.6513 0.7360

Table 7: Purity - Experiment 3

The analysis can be confirmed by the Figures pre-
sented here. In Figures 2-5 and 7-10, which are plot-
ted in the space of data attributes, the FMiCs are
represented by circles of different colors, according to
their real clusters and the light blue circles represent
the weight of each FMiC. Comparing Figures 2 and 4,
which show the FMiCs obtained by S1 and S4 in Ob-
servation 1 for data set BENCH1 11, one can see that
the FMiCs generated by S1 are more concentrated and
similar in shape to the real data, which contains at this
point two well separated clusters. On the other hand,
FMiCs generated by S4 have an elongated shape, be-
cause the old data remain in the structure for a longer
time, due to the larger number of merges and absorp-
tions and lower numbers of creations and removals.
Figures 3 and 5, show the FMiCs in Observation 4,
when the groups are very close to each other. S1

still maintains a regular structure with a good den-
sity while S4 gets confused, causing a decrease in the
purity value (Figure 6).

S1 S2 S3 S4 S5

B
G

Creations 8687 8193 8615 7828 8162
Removals 6160 860 7811 248 907

Absorptions 1313 1807 1385 2172 1838
Merges 2427 7233 704 7483 7156

B
en

ch
1 Creations 8333 7901 8189 7598 8020

Removals 3589 2005 6534 691 2125
Absorptions 2667 3099 2811 3402 2980

Merges 4676 5796 1555 6815 5800

B
en

ch
2 Creations 17334 16391 17230 15602 16419

Removals 12030 2008 15797 521 2246
Absorptions 2666 3609 2770 4398 3581

Merges 5204 14291 1334 14988 14078

R
B

F
3

Creations 33311 31900 33012 31370 31851
Removals 20392 4577 28616 1687 4987

Absorptions 6689 8100 6988 8630 8149
Merges 12819 27224 4296 29587 26767

R
B

F
4

Creations 32924 32100 32863 31162 31931
Removals 19487 4744 28455 1598 5175

Absorptions 7076 7900 7137 8838 8069
Merges 13337 27263 4308 29467 26659

Table 8: Informative measures - Experiment 1

Figures 7 and 9 show the FMiCs generated by S2
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and S3, respectively, in Observation 2 for data set
RBF4 40k. This data set contains groups that change
very fast, and some groups can appear and disappear
along time. In Observation 2, there are four groups. In
a visual analysis, it is possible to note that the struc-
ture generated by S3 is able to identify the four groups,
while the one generated by S2 presents a higher mix-
ture (overlapping) of FMiCs. As shown in Figure 11,
the purity value for S2 is good, even though lower than
the one for S3. Figures 8 and 10 illustrate the sum-
mary structure at Observation 3 for the same data set.
At this moment, a new group starts to appear. While
S3 generated a structure that reflects the real struc-
ture of data with five groups, S2 generated a structure
with a visible larger overlapping among FMiCs. This
situation provokes a large decrease in the purity value
for S2 (Figure 11), while the value for S3 remains high.
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Figure 2: BENCH1 11k, Measure S1, Observation 1
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Figure 3: BENCH1 11k, Measure S1, Observation 4
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Figure 4: BENCH1 11k, Measure S4, Observation 1
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Figure 5: BENCH1 11k, Measure S4, Observation 4
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Figure 6: BENCH1 11k - Purity for each Observation

6 Conclusions

The work presented here was designed to explore the
use of different fuzzy similarity measures in the merg-
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Figure 7: RBF4 40k,Measure S2, Observation 2
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Figure 8: RBF4 40k,Measure S2, Observation 3
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Figure 9: RBF4 40k,Measure S3, Observation 2

ing operation of the online step of d-FuzzStream algo-
rithm. The fuzzy measures were selected based on the
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Figure 10: RBF4 40k,Measure S3, Observation 3
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Figure 11: RBF4 40k - Purity for each Observation

incremental and additive properties, due to the form
of calculation involved. This way, the fuzzy similar-
ity matrix between every pair of FMiCs can be easily
updated when two of them are merged. The results
obtained evidenced that FSM S1 and S3 obtained sim-
ilar behavior in all evaluations with a larger number of
creations and removals and a lower number of merg-
ers and absorptions when compared to the other three
FSM, S2, S4 and S5. These last three measures, on the
other hand, have demonstrated to be more sensitive to
the fuzziness of the set of data. In our future work we
plan to evaluate the performance of the method on real
data sets as well as to investigate, in a deeper way, the
causes for the different results obtained, including dif-
ferent internal and external fuzzy clustering measures.
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