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Abstract

The aim of this contribution is to connect
two techniques: the F-transform on a space
with a fuzzy partition and dimensionality re-
duction. We show how a space with a fuzzy
partition can be characterized in terms of the
graph Laplacian. After making the spectral
analysis of the corresponding Laplacian ma-
trix we compute its eigenvectors and show
their relevance to the F-transform basic func-
tions.

Keywords: F-transform, Graph Laplacian,
Dimensionality reduction.

1 Introduction

It is a very challenging task to analyze and process
“big data”. In particular, a problem is how to work
with a dataset with more than say, a thousand fea-
tures? Having a high number of variables is both a
godsend and a curse. It might take days or months to
perform any meaningful analysis with reasonable com-
putational power. There should exist a better way to
deal with high dimensional data for quick pattern ex-
traction and further insights.

It seems that the only solution is using dimensional-
ity reduction techniques. This concept helps to reduce
the number of features without having to lose much in-
formation. Below are listed some benefits of applying
dimensionality reduction to a dataset:

• Space required to store the data is reduced,

• Less dimensions lead to less computation/training
time,

• Performance of algorithms is better,

• It helps in visualizing data.

Dimensionality reduction per se can be done in two
different ways: by keeping the most relevant variables
from the original dataset (feature selection); by find-
ing a smaller set of new variables, containing basically
the same information as the input variables (dimen-
sionality reduction).

In this contribution we follow the second way and pro-
pose a new technique for the dimensionality reduc-
tion based on the F(fuzzy)-transforms. In this re-
spect, the reduction is performed by dividing data into
uniformly distributed observable pieces (fuzzy parti-
tion) and then, projecting each piece on eigenvectors
of the corresponding Laplacian. The latter indicates
importance of this particular region with respect to
the whole dataset.

We use [1] for a general description of a dimensionality
reduction technique, that is based on the graph Lapla-
cian. We stem from [2, 3] for the detailed description
of a higher order F-transform. Finally, we are based
on [4, 5] where initial steps towards the F-transform
based dimensionality reduction were attempted.

In this contribution, we give necessary technical de-
tails of the proposed approach. By this we mean a
description of a fuzzy partition of data, establishing a
characterization of a uniform fuzzy partition in terms
of closeness matrix, computation of the correspond-
ing Laplacian matrices and characterization of their
eigenvalues and eigenvectors. The latter are used for
specifying principal F-transform components. The re-
duced representation is then comprised of F-transform
components.

The structure of this contribution is as follows. In
Section 2, we give necessary details of dimensionality
reduction based on a graph Laplacian. In Section 3,
we remind the basics of the F-transform. In Section 4,
we show a connection between a fuzzy partition and
the dimensionality reduction.
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2 Dimensionality Reduction Formally

We start with a formal presentation of the problem of
dimensionality reduction as it appeared in [1]:
For a given set of points ~x1, . . . , ~xq from the space Rl,
find a set of corresponding representatives (images)
~y1, . . . , ~yq from the space Rm, where m� l, such that
the following cost function (case m = 1) is minimized:

q∑
i,j=1

(yi − yj)2wij , (1)

where wij is a measure of closeness between the proto-
types ~xi and ~xj.

The meaning of the cost function consists in preserving
local similarities among the prototypes.

2.1 Graph-based approach to the assignment
of weights

In this section, we give necessary details regarding the
assignment of weights as measures of closeness. We
use the graph-based semantics following [1].

Let G = (V,E) be a weighted graph where each single
vertex corresponds to a data point from {~x1, . . . , ~xq ∈
Rl}, so that |V | = q. The edges are assigned weights
according to a certain measure of closeness between
the vertices connected by them. In [1], the two op-
tions for weighting the connections between vertices
are considered:

a) Heat kernel. If vertices i and j are connected,
then

wij = e−
‖~xi−~xj‖

2

t ,

otherwise wij = 0. Parameter t ∈ R should be
specified beforehand.

b) Simple-minded assignment. wij = 1, if vertices
i and j are connected by an edge, and wij = 0,
otherwise.

We assume that graph G is connected, otherwise we
treat each component in the same manner separately.

2.2 Dimensionality reduction algorithm

For simplicity, we consider the reduction mapping (em-
bedding) onto R1, i.e., the case m = 1. The algorithm
[1, 4] runs as follows:

Step 1. Compute the generalized eigenvalues and
eigenvectors for the Laplacian matrix L in accordance
with

L~f = λD~f , (2)

where D is the diagonal matrix such that

dii =

q∑
j=1

wij ,

and L = D −W .

Step 2. If ~f0, . . . , ~fq−1 are the solutions of equation (2),
ordered according to their eigenvalues, then, we leave
out the eigenvector ~f0, corresponding to the eigenvalue
0, and use the eigenvector ~f1 corresponding to the sec-
ond smallest eigenvalue. The solution (embedding in
1-dimensional Euclidean space) is given by

~xi 7→ ~f1(i) , i = 1, . . . , q . (3)

We remark that by preserving local information in the
embedding, the algorithm naturally emphasizes the
data clusters. Below, we propose a justification to the
above given algorithm.

Because the matrix W is symmetric, the cost function
in (1) can be rewritten as follows [1]:

1

2

q∑
i,j=1

(yi − yj)2wij = ~y>L~y . (4)

Hence, L is symmetric and positive semidefinite ma-
trix. It is known that vector ~y that minimizes ~y>L~y
corresponds to the minimal eigenvalue solution to the
generalized eigenvalue problem (2), i.e.,

L~y = λD~y .

Therefore,

min
~y(λ)

~y>L~y = min
~y(λ)

λ~y>D~y .

Because any eigenvector is determined up to a nonzero
multiplier, we can add the normalization requirement
~y>D~y = 1 to (2), so that the considered problem re-
duces to

min
~y>D~y=1

~y>L~y ,

and the normalized solution is determined by the min-
imal generalized eigenvalue.

By (4), this minimum eigenvalue solution minimizes
the cost function in (1). By [1], the minimal eigenvalue
of the generalized eigenvalue problem (2) is equal to 0,
and the constant vector ~y = ~1 is the only (up to a mul-
tiplier) eigenvector for λ = 0 (provided that the graph
G is connected). Therefore, in Step 2, we select as a

non-trivial solution the eigenvector ~f1, corresponding
to the second smallest eigenvalue.

836



3 Fuzzy Transform

The substantial characterization of the technique of
F-transform (originally, fuzzy transform, [2]) is that
it is an integral transform that uses a fuzzy partition
of a universe of discourse (usually, a bounded inter-
val of reals [a, b]). The F-transform has two phases:
direct and inverse. The direct F-transform (FzT) is
applied to functions from L2([a, b]) and maps them
linearly onto (finite) sequences of numeric/functional
components. Each component is a weighted orthogo-
nal projection of a given function on a certain linear
subspace of L2([a, b]). Dimensionality reduction by the
F-transform is thought as a projection of original data
onto the set of the F-transform components, see [2] for
the details.

Below, we recall some definitions from [2, 3].

3.1 Fuzzy Partition

Let [a, b] be an interval on the real line R. Fuzzy sets
on [a, b] are identified by their membership functions;
i.e., they are mappings from [a, b] into [0, 1].

Definition 1. Let [a, b] be an interval on R, n ≥ 2,
and let x0, x1, . . . , xn, xn+1 be nodes such that a =
x0 ≤ x1 < . . . < xn ≤ xn+1 = b. We say that fuzzy
sets A1, . . . , An : [a, b] → [0, 1], which are identified
with their membership functions, constitute a fuzzy
partition of [a, b] if for k = 1, . . . , n, they fulfill the
following conditions:

1. (locality) - Ak(x) = 0 if x ∈ [a, xk−1] ∪ [xk+1, b],

2. (continuity) - Ak(x) is continuous,

3. (covering) - Ak(x) > 0 if x ∈ (xk−1, xk+1)

The membership functions A1, . . . , An are called basic
functions.

In the case of discrete data P = {p1, . . . , pl} ⊂ [a, b],
we call the set P sufficiently dense with respect to the
given partition, if

∀k ∃j : Ak(pj) > 0 .

This means that each partition unit covers at least one
point.

3.2 Hilbert Space with Weighted Inner
Product

Let us fix [a, b] and its fuzzy partition A1, . . . , An, with
nodes x0, x1, . . . , xn, xn+1, n ≥ 2. Let k be a fixed inte-
ger from {1, . . . , n}, and let L2(Ak) (L2([a, b])) be a set

of square-integrable functions on [xk−1, xk+1] ([a, b])
with inner products

〈f, g〉k =

∫ xk+1

xk−1

f(x)g(x)Ak(x)dx ,

〈f, g〉 =

∫ b

a

f(x)g(x)dx .

Spaces L2(Ak), k = 1, . . . , n, and L2([a, b]) are Hilbert
spaces on the corresponding domains. The functions
f, g ∈ L2(Ak) are orthogonal in L2(Ak), if 〈f, g〉k = 0.
The function f ∈ L2(Ak) is orthogonal to a subspace
B of L2(Ak) if 〈f, g〉k = 0 for all g ∈ B.

Let us denote by Lm2 (Ak) a linear subspace of
L2(Ak) with the basis given by orthogonal polynomials
P 0
k , P

1
k , P

2
k . . . , P

m
k . For simplicity, we consider

P 0
k = 1|[xk−1,xk+1], P 1

k = x− xk|[xk−1,xk+1] ,

according to [3]. The orthogonality of the considered
basis polynomials gives

〈P 0
k , P

1
k 〉 =

∫ xk+1

xk−1

(x− xk)Ak(x)dx = 0 . (5)

The following lemma gives analytic representation of
the orthogonal projection on the subspace Lm2 (Ak).

Lemma 1 ([3]). Let function Fmk be the orthogonal
projection of f ∈ L2(Ak) on Lm2 (Ak). Then,

Fmk = ck,0P
0
k + ck,1P

1
k + · · ·+ ck,mP

m
k , (6)

where for all i = 0, 1, . . . ,m,

ck,i =
〈f, P ik〉k
〈P ik, P ik〉k

=

∫ xk+1

xk−1
f(x)P ik(x)Ak(x)dx∫ xk+1

xk−1
P ik(x)P ik(x)Ak(x)dx

. (7)

The n-tuple (Fm1 , . . . , F
m
n ) is the Fm-transform of f

with respect to A1, . . . , An, or formally,

Fm[f ] = (Fm1 , . . . , F
m
n ) .

Fmk is called the kth Fm-transform component of f .

4 Dimensionality Reduction
Determined by a Fuzzy Partition

In this section, we show that the direct F -transform
fully agrees with the dimensionality reduction strat-
egy. In more detail, we show that discrete (vector) ver-
sions of the basis functions in Lm2 (Ak) correspond to
eigenvectors of the proper selected Laplacian matrix.
Therefore, the Fm-transform components are projec-
tions on these eigenvectors.
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At first, we specify a dataset that will be character-
ized by the F -transform-based low-dimensional repre-
sentation in the form of embedding maps and finally,
by components. This dataset will be connected with
a discrete representation of a function, say f on some
domain (subset of the Euclidean Rl). For simplicity,
we assume that the domain is an interval [a, b] of the
real line, and the function f is given on a discrete set,
say P of points where P ⊆ [a, b]. Then, we assume
that [a, b] is partitioned into the collection of fuzzy sets
A1, . . . , An, and the set P is sufficiently dense with re-
spect to this partition.

Moreover, we assume that for every k, 1 ≤ k ≤ n,
there is one point xk ∈ P (we call it node) such that
Ak(xk) = 1 and Aj(xk) = 0, j 6= k. Further on, we
distinguish between points (denoted by using letter p)
and nodes (denoted by using letter x).

4.1 Matrix representation of a fuzzy
partition

The chosen partition determines a geometry of the
set P , given by the following directed weighted graph
D = (V (D), A(D)). Each vertex from V (D) corre-
sponds to one point in P , and if a point pi ∈ P is
covered by basic function Ak, i.e. Ak(pi) > 0, then
the vertex i corresponding to pi is connected by the
directed edge (k, i) with the vertex k, corresponding
to the node xk. Let us emphasize that there is no
connection between points, if there is no node among
them. The weight of the directed edge (k, i) is equal
to Ak(pi). It is easy to see that graph D is covered by
n weakly connected components D1, . . . , Dn, each has
a “star” shape. In more detail, Dk = (V (Dk), A(Dk))
is a subgraph of D associated with a “central” ver-
tex (node) k. Then, the vertex set V (Dk) contains
vertex k and moreover, vertex i belongs to V (Dk), if
(k, i) ∈ A(Dk). Therefore, the set of directed edges
A(Dk) consists of the edges (k, i) where i ∈ V (Dk)
containing also the loop (k, k). We will continue with
each connected component Dk separately, and con-
struct the low-dimensional representation of the part
of the dataset corresponding to it (covered by the Ak).

Let a finite set of points {p1, · · · , plk} be covered by Ak
(a fuzzy partition unit). Let us remark that the node
xk is among these points. Let fi = f(pi), 1 ≤ i ≤ lk.
The set Xk of data points allocated for the low-
dimensional representation is {(p1, f1), . . . , (plk , flk)}.
Let Dk be the corresponding directed subgraph of D
and Gk = (V (Gk), E(Gk)) be the corresponding ordi-
nary weighted graph derived from Dk after removing
edge directions. Therefore, V (Gk) = V (Dk), and if
(k, i) ∈ A(Dk), then {k, i} ∈ E(Gk). In the weight
matrix W corresponding to Gk, each edge, connecting
i and k, is represented by the two symmetrical ele-

ments wik = wki = Ak(pi), the loop is represented by
one diagonal entry wkk = Ak(xk) = 1. Therefore, W
is a symmetrical lk × lk matrix:

W =



a1
a2
...

ak−1
a1 . . . ak−1 1 ak+1 . . . alk

ak+1

...
alk


,

where ai = Ak(pi). In the above given representation,
the matrix blanks are considered as zeros.

The corresponding Laplacian matrix L = D −W has
the form:

L =

a1 −a1
. . .

...
ak−1 −ak−1

−a1 . . . −ak−1 sk − 1 −ak+1 . . . −alk
−ak+1 ak+1

...
. . .

−alk alk


,

where D is a diagonal matrix such that

dii =
k∑
j=1

wij ,

and

D =



a1
. . .

ak−1
lk∑
i=1

ai

ak+1

. . .

alk


.

Theorem 1. Let the component Gk be fixed and the
corresponding matrices W,D,L are as above. Then,
the generalized spectrum of Laplacian matrix L con-

sists of 0, 1 and 2 − 1
sk

, where sk =
lk∑
i=1

Ak(pi). The

multiplicity of the spectral eigenvalue 1 is lk − 2.

Proof. The adjacency matrix W has the form written
above. To analyze the spectrum of the Laplacian ma-
trix L, used in the algorithm, we need to transform
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the generalized eigenvalue problem

L~y = λD~y

into a standard one in the simplest way possible –
starting with the equality

L = D −W ,

to avoid computations with the matrix L:

L~y = D~y −W~y = λD~y ,

that gives
W~y = (1− λ)D~y .

After the multiplication by the matrix D−1 from the
left, we get

D−1W~y = (1− λ)~y .

Substituting
µ = 1− λ ,

we obtain the standard eigenvalue problem

D−1W~y = µ~y ,

that is
(D−1W − µI)~y = ~0 ,

requiring that

det(D−1W − µI) = 0 ,

where I is the identity matrix and ~y 6= ~0 is the
eigenvector of the matrix D−1W corresponding to the
eigenvalue µ.

Let A0,...,h;0,...,h denote the minor of the matrix
D−1W − µI (the determinant of its square submatrix
such that the columns and rows 0, . . . , h are deleted),
then, expanding the determinant along the first rows,
for all h = 0, . . . , k − 2, it holds:

A0,...,h;0,...,h =

− µ
(
A0,...,h+1;0,...,h+1 −

ah+1

sk
(−µ)k−h−2

)
,

and

A0,...,k−1;0,...,k−1 =

(−µ)lk−k−1 ·

( 1

sk
− µ

)
(−µ)−

lk∑
j=k+1

aj
sk

 ,
where

aj = Ak(pj) .

Then we can see that det(D−1W−µI) can be rewritten
in the form

(−µ)lk−2 ·R′(µ) , (8)

which implies that there are lk−2 eigenvalues (denoted
as µ2) equal to 0 and thatR′(µ) has two more algebraic
roots to be determined.

For simplicity, let us suppose that the vertex with the
index 1 was assigned to the node xk (the graph remains
the same but we regulate the index assignment). Then
k = 1 and

det(D−1W − µI) = A0,...,0;0,...,0 =

(−µ)lk−2 ·

( 1

sk
− µ

)
(−µ)−

lk∑
j=2

aj
sk

 =

(−µ)lk−2 ·R′(µ) ,

implying

R′(µ) =

(
1

sk
− µ

)
(−µ)−

lk∑
j=2

aj
sk

=

µ2 − µ

sk
−

lk∑
j=2

aj
sk

= 0 ,

being a quadratic equation with two roots: µ1 = 1 and
µ3 = 1

sk
− 1. Recall that µ2 = 0. Now we know all the

eigenvalues of the matrix D−1W .

Substituting λ = 1 − µ, we get all generalized eigen-
values of the Laplacian matrix L: λ1 = 0, λ2 = 1 and
λ3 = 2 − 1

sk
. In the meaningful case lk > 2, sk > 1

and λ3 ∈ (1, 2), hence λ2 < λ3.

4.2 Eigenvectors of Laplacian matrix

The eigenvector ~y1, corresponding to the generalized
eigenvalue λ1 = 0, is trivially equal to ~1. Therefore,
we will be focused on the eigenvectors corresponding
to the generalized eigenvalues λ2 = 1 and λ3 = 2− 1

sk
.

Lemma 2. For the fixed component Gk, the
eigenspace, corresponding to the second smallest gen-
eralized eigenvalue λ2 = 1, is as follows:

S2 =

{
~y ∈ Rlk

∣∣∣∣∣
lk∑
i=1

aiyi = 0 & yk = 0

}
. (9)

Proof. It holds:

L~y = 1 ·D~y ,

that is

(D −W )~y = D~y ,

which gives

W~y = ~0 .
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It means that 

a1yk
a2yk

...
ak−1yk
lk∑
i=1

aiyi

ak+1yk
...

alkyk


= ~0 ,

where ai = Ak(pi) > 0 and ak = 1. From that, we
deduce that

∀i = 1, . . . , k − 1, k + 1, . . . , lk : aiyk = 0 ,

and hence
yk = 0 .

From the k-th row we deduce that

lk∑
i=1
i6=k

aiyi =

lk∑
i=1
i6=k

aiyi + 1 · 0 =

lk∑
i=1
i6=k

aiyi + akyk =

=

lk∑
i=1

aiyi = 0 .

The last equality describes a hyperplane in the space
Rlk , that is a subspace of the dimension lk − 1, con-
taining the origin. But the constraint yk = 0 reduces
the dimension of that space to lk−2 (there is only the
trivial intersection with the k-th coordinate axis), be-
cause the algebraic multiplicity of λ is lk − 2 and due
to symmetry of the matrix L, it equals to its geometric
multiplicity as well.

To summarize: the eigenspace of the generalized eigen-
value 1 is characterized as follows:

S2 =

{
~y ∈ Rlk

∣∣∣∣∣
lk∑
i=1

aiyi = 0 & yk = 0

}
.

Lemma 3. For the fixed component Gk, the eigenvec-
tor, corresponding to the largest generalized eigenvalue
λ3 = 2− 1

sk
, has the form

~y3 =



1
...
1

1
sk
− 1

1
...
1


. (10)

Proof. It holds:

L~y =

(
2− 1

sk

)
D~y ,

that is

D~y −W~y =

(
2− 1

sk

)
D~y ,

which gives

W~y =

(
1

sk
− 1

)
D~y ,

that can be, after multiplication by D−1 from the left,
rearranged into the form:(

D−1W −
(

1

sk
− 1

)
I

)
~y = ~0 ,

where I is the identity matrix. The matrix D−1W −(
1
sk
− 1
)
I has the form:

1− 1
sk

1

. . .
...

1− 1
sk

1
a1
sk

. . . ak−1

sk
1 ak+1

sk
. . .

alk
sk

1 1− 1
sk

...
. . .

1 1− 1
sk


,

which gives 

(
1− 1

sk

)
y1 + yk

...(
1− 1

sk

)
yk−1 + yk

lk∑
i=1
i6=k

aiyi
sk

+ yk(
1− 1

sk

)
yk+1 + yk
...(

1− 1
sk

)
ylk + yk


= ~0 .

From that, we deduce that

∀i, j 6= k :

(
1− 1

sk

)
yi + yk = 0 =

(
1− 1

sk

)
yj + yk ,

and hence, yi = yj . Every eigenvector is determined
up to any non-zero multiple, so without loss of gener-
ality, yi = 1. Note that this conclusion depends on the
meaningful assumption that lk > 1 and hence sk > 1,
but if it is not satisfied, then there is no generalized
eigenvalue λ = 2 − 1

sk
. From the k-th row we deduce

that

yk = −
lk∑
i=1
i6=k

aiyi
sk

= −
lk∑
i=1
i6=k

ai
sk

=
1

sk
− 1 ,
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because
lk∑
i=1

ai = sk and ak = 1. This completes the

proof.

Lemma 4. Any two eigenvectors ~x, ~y of the matrix L,
corresponding to different generalized eigenvalues λ, ν,
are orthogonal w.r.t. D, i.e.,

~x>D~y = 0 .

Proof. It holds:

L~x = νD~x and L~y = λD~y ,

implying that

λ~x>D~y = ~x>L~y = ~y>L~x = ν~y>D~x = ν~x>D~y ,

because the matrices L and D are symmetric and all
expressions above are 1-dimensional. Utilizing the as-
sumption λ 6= ν, we deduce that ~x>D~y = 0.

We demonstrate the statement in Lemma 4 by the
following valid equalities where ~y1 = ~1, ~y ∈ S2 and ~y3
is in (10) :

1. ~y>D~1 =
lk∑
i=1
i6=k

aiyi = 0,

2. ~y>D~y3 =
lk∑
i=1
i6=k

aiyi = 0.

If we take an arbitrary basis of the space S2, we get the
set of lk−2 eigenvectors corresponding to the general-
ized eigenvalue 1. They can be used for the realization
of the embedding algorithm.

Theorem 2. For the fixed component Gk, the set of
eigenvectors of the matrix L, orthogonal w.r.t. D, is

formed by the vector ~1, the vector



1
...
1

1
sk
− 1

1
...
1


and by the

corresponding basis of the eigenspace

S2 =

{
~y ∈ Rlk

∣∣∣∣∣
lk∑
i=1

aiyi = 0 & yk = 0

}
.

The proof follows from the lemmas 2 and 3.

4.3 Basis of eigenvectors

Due to the fixed representation of eigenvectors, cor-
responding to the least and the greatest generalized
eigenvalues of the problem in (2), the selection of a
basis reduces to the space S2 (see (9)) – the eigenspace
determined by eigenvalue λ = 1. Below, we propose
one meaningful example.

For simplicity, we will use the index k with respect
to the order of the points covered by the given parti-
tion unit (that is k = lk+1

2 ). Let the basic function
Ak be covering a set of points P = {p1, . . . , p2k−1} =
{p1, . . . , plk} with the node pk = xk and with the sym-
metric distribution of the data points, that is

∀i = 1, . . . , k − 1: pk−i − pk = pk − pk+1 ,

let the function Ak(x) be generated be an even func-
tion, that is

∀h ∈ [0, pk − p0] : Ak(xk − h) = Ak(xk + h) ,

where p0 = xk−1 is the preceeding node in the primary
partition, let the shape of the basic function and the
distribution of the data points P satisfy

∀i = 1, . . . , 2k − 2: ai+1 − ai =

{
1
k i ≤ k − 1

− 1
k i ≥ k

,

where ai = Ak(pi) and let the function Ak(x) be
strictly increasing on [p0, pk] and strictly decreasing
on [pk, p2k], where p2k = xk+1 is the succesive node in
the primary partition. Then an eigenvector

~y =



1− 1
k

1− 2
k

...
1
k
0
− 1
k

...
−1 + 1

k


=



lk−1
lk+1
lk−3
lk+1

...
2

lk+1

0
− 2
lk+1
...

1−lk
lk+1


,

corresponds to the generalized eigenvalue λ = 1 and
thus belongs to the space S2. This can be easily seen
from

∀i = 0, . . . , k − 1: ak−i = ak+i & yk−i = −yk+i .

We observe that this vector is a discrete version of
a line segment, that is its coordinates form a part
of an arithmetic sequence with the difference 1

k =
2

lk+1 . Note that the conditions above ensure that

sk =
2k−1∑
i=1

ai = k = lk+1
2 . This particular eigenvec-

tor agrees with the second polynomial basis function
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k of Lm2 (Ak). This example confirms our conjecture

regarding the F-tranform realization of a dimensional-
ity reduction technique.

Because the spectrum of the matrix L, corresponding
to P , consists of the values 0, 1 (with the multiplicity
lk − 2) and 2k−1

k = 2lk
lk+1 , the set of all eigenvectors,

spanning the space Rlk , can be written in the form

~1,



lk − 1
lk − 3

...
2
0
−2
...

1− lk


, . . . and



1
1
...
1

1−lk
lk+1

1
...
1


.

5 Conclusion

By the proposed contribution, we justified the fact
that the direct F-transform technique is a part of the
data reduction process. We gave an example of the
graph Laplacian generalized eigenvector basis that can
be used for the dimensionality reduction embedding.
This example corresponds to the choice of the orthog-
onal polynomial basis, used by the F 1-transform.

Beside the scope of the pure dimensionality reduction,
the presented theory can also be used in the area of
image processing, namely in the image segmentation
problem, as it was proposed e.g. by Shi and Malik.
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