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ABSTRACT
We consider the purely sequential procedure for estimating the scale parameter of a gamma distribution with known shape
parameter, when the risk function is bounded by the known preassigned number. In this paper, we provide asymptotic formulas
for the expectation of the total sample size. Also, we propose how to adjust the stopping variable so that the risk is uniformly
bounded by a known preassigned number. In the end, the performances of the proposed methodology are investigated with the
help of simulations and also by using a real data set.
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1. INTRODUCTION

The problem of sequential estimation refers to any estimation technique for which the total number of observations used is not a degenerate
random variable. In some statistical problems, especially in estimation fields, the sequential estimation must be used because no procedure
based on fixed sample size can achieve the desired objective.Working with a sequential sampling procedure is necessary for some estimation
problems with unknown parameters.

Sequential estimation of the scale parameter of a gamma distribution was first considered by Woodroofe [1], but this problem has not
attracted attention from authors. Only Takada and Nagata [2] and Zacks and Khan [3] studied the confidence intervals of the mean and
scale parameter of a gamma distribution. Also, Isogai and Uno [4] considered the sequential procedure for estimating the mean of a gamma
distribution when the loss function is squared error plus linear cost.

Recently, Mahmoudi and Roughani [5] studied the two-stage sampling procedure for estimating the scale parameter of a gamma distribu-
tion with known shape parameter. They provided explicit formulas for the distribution and expected value of the stopping variable. Also,
Roughani and Mahmoudi [6] continued and completed the study of the two-stage sampling procedure for estimating the scale parame-
ter of a gamma distribution that have been proposed by Mahmoudi and Roughani [5]. They provided explicit formulas for the expected
value and risk of the estimator of a gamma scale parameter, where the shape parameter is known. In spite of a little work has been done
on gamma distribution, many investigators focused on exponential distribution. Starr and Woodroofe [7], Mukhopadhyay [8], Isogai and
Uno [9], Mukhopadhyay [10], Mukhopadhyay and Datta [11], Uno et al. [12], Zacks andMukhopadhyay [13,14], Mukhopadhyay and Pepe
[15], Zacks [16], Mahmoudi and Lalehzari [17], Lalehzari et al. [18] and some others introduced many methods for sequential estimation
of the scale parameter of an exponential distribution.

Survival and reliability analysis are two important scientific fields of study where the gamma distribution is most often used to model data.
In survival analysis, variables such as lifespan of organisms as well as time till a treatment takes effect can be modelled with the gamma
distribution. In reliability studies, lifespan of a system or systems components as well as chemical corrosion, e.g. can be modelled with
the gamma distribution. The information gained by these two statistical models, is used to develop life insurance plans, pertinent drug
information, warranty information, quality control information, etc. A parameter often studied in these fields is Mean Time to Failure
(MTTF) that is very useful for systems used on a regular basis (see, e.g., Amero and Bayarri [19]; Choe and Shroff [20]).
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The study about the scale parameter of a gamma distribution with known shape parameter is important because of (i) one can check the
robustness of an exponential distribution when the shape parameter in gamma distribution is known. (ii) To avoid very long computational
time in detecting multiple change points in a gamma-distributed sample, previous change point detection algorithms usually assume a
known shape parameter 𝛼 (Killick and Eckley [21]). (iii) Whenmodelling failure times with a known number of failures andmissing values
are present, the time between one failure and the last record is gamma with known shape. This happens often when data are recorded
periodically and not after each failure. MTTF is often estimated as an exponential random variable, however in many cases, MTTF is
modeledwith a gammadistributionwhen the shape is known andnot equal to one.Dopke [22] andCoit and Jin [23] discussed the estimation
of the MTTF as a gamma random variable. The example given by Coit and Jin is when the time between each failure is not recorded. If
there are k failures in a span t, then the MTTF is gamma distributed with known shape k and unknown scale. (iv) There are particular
instances where the shape parameter is either known or can be assumed as known. These situations occur with modelling times and normal
distribution; there are modelling times when the shape parameter is assumed known just as there are instances in the normal distribution
when variance is assumed known. This can happen for a number of reasons; either there is so much historical evidence that the shape is
consistent, there exists some mathematical theory for the shapes value, or the actual shape is of little concern as long as it is within reason.
For example,Mareuil et al. [24] in precipitationmodels, discussed the actual unimportant of knowing the exact shape. They stated that since
the data is right skewed, it is important to model the data with a low shape value. In this dissertation, they simply modelled precipitation
intensity with 𝛼 = 2. (v) One cannot reduce the case ofGamma (𝛼, 1) to that ofGamma (1, 1) if 𝛼 is arbitrary, if 𝛼 = 1/2 then one could base
the procedure on sums of two independent random variables and reduce the case to that of exponential jumps. But, this is not efficient and
can be done only if 𝛼 = 1/i, for i = 1, 2,⋯, (Zacks and Khan, [3], p. 298). For more explanation about this item, consider the arrival process
where the random variable Si denotes the time until the ith outcome is occurred, Xi is the time between i − 1 and ith outcome and N (t) as
the Poisson process with rate 𝜆 denotes the number of outcomes until time t. We know that Xi = Si− Si−1 has exponential distribution with
mean 𝛽 = 1/𝜆, Si = ∑i

j=1 Xj ∼ Gamma (i, 𝛽), i ∈ ℕ and N (t) ∼ Poisson (𝜆t). The random variable Xi, i ∈ ℕ, with Gamma (1, 𝛽) can be

denoted as sum Xi = ∑i
j=1 Xij, where Xij’s are independent random variables with Gamma (1/i, 𝛽) distribution.

In this paper, we consider the purely sequential procedure for estimating the scale parameter of a gamma distribution, with known shape
parameter, when the risk function is bounded by the known preassigned number 𝜔 (> 0). Also, we provide asymptotic formulas for the
expected value of the total sample size, i.e., E [N]. We propose how to adjust the stopping variable N, so that the risk is uniformly bounded
by a known preassigned number 𝜔 (> 0). In the end, the performances of the proposed methodology are investigated with the help of
simulations and by using a real data set.

The reminder of the paper is organized as follows:

In Section 2, we introduce the purely sequential procedurewhich is used in this paper. The expected value and bias ofN and ̂𝛽N are calculated
in Section 3. To investigate the results of the previous sections, a simulation study is carried out in Section 4. In Section 5, the purely
sequential procedure based on adjusted N, i.e., Nadj, is introduced and its bias and expectation is obtained. We compare the two-stage and
purely sequential procedures in Section 6. To investigate the results of this sequential problem, we use one application of a real data set in
Section 7. Finally, Section 8 concludes the paper and discusses the results.

2. PURELY SEQUENTIAL PROCEDURE

Consider we observe a sequence of independent and identically distributed random variables X1,X2,⋯ from a gamma distribution, with
common probability density function

f (x; 𝛼, 𝛽) = 1
Γ (𝛼) 𝛽𝛼 x

𝛼−1e
− x
𝛽 I (x > 0) , (1)

where the scale parameter 𝛽 (> 0) is unknown, but the shape parameter 𝛼 (> 0) is known.

Having observed X1,X2,⋯ ,Xn, let 𝛽 is estimated by ̂𝛽n =
∑Xi
n𝛼 = Xn

𝛼 and the loss function in estimating 𝛽 by ̂𝛽n is given by

L
( ̂𝛽n, 𝛽

)
= A

( ̂𝛽n − 𝛽
)2 , (2)

where A is a positive known weight.

Our goal is to make the risk function associated with this loss function less than a preassigned number 𝜔 (> 0), i.e.,

AE [
( ̂𝛽n − 𝛽

)2] ≤ 𝜔.

The risk is R
( ̂𝛽n, 𝛽

)
= E [A

( ̂𝛽n − 𝛽
)2] = A𝛽2

𝛼n , and this will be at most 𝜔 if n ≥ A𝛽2

𝛼𝜔 = n∗. n∗ may not be an integer. It is called the
optimal fixed sample size and remains unknown since 𝛽 is unknown. Takada [25] showed that no procedure based on fixed sample size can
solve this problem.Pdf_Folio:223
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In the purely sequential procedure, n∗ is estimated successively in a sequential manner. One may begin withm (≥ 2) observations and then
continue to take one additional observation at a time, but terminate sampling when he has gathered enough observations. At each stage,
he estimates 𝛽 and translates it to estimate n∗, then checks whether the sample size exceeds the estimate of n∗. As soon as the sample size
exceeds the estimate of n∗, the sampling is terminated and final estimate of 𝛽 is offered.

The optimal sample size n∗ = A𝛽2

𝛼𝜔 is a function of unknown parameter 𝛽, hence we start with X1,X2,⋯ ,Xm, as pilot sample observations
following the gamma distribution in (1). Then, we will proceed with one additional observation at a time, and terminate sampling according
to the stopping time

N = inf {n ≥ m; n ≥ AX
2
n

𝛼3𝜔 } . (3)

This procedure is worked as follows. In the initial stage, we compute Xm based on X1,X2,⋯ ,Xm and check whetherm ≥ AX
2
m

𝛼3𝜔 . Note that

AX
2
m

𝛼3𝜔 is an estimatorof n∗ at this stage. If m ≥ AX
2
m

𝛼3𝜔 , then we stop sampling and our final sample size is m, i.e., N = m. But, if m < AX
2
m

𝛼3𝜔
we take one additional observation Xm+1 and update the sample mean by Xm+1 based on X1,X2,⋯ ,Xm,Xm+1. Again, we check whether

m+1 ≥ AX
2
m+1

𝛼3𝜔 as an estimate of n∗ at this stage. Ifm+1 ≥ AX
2
m+1

𝛼3𝜔 then sampling is terminated andN = m+1, else we must take another
observation. This continues until we arrive at the sample size n for the first time which is at least as large as the associated estimator of n∗,

namely AX
2
n

𝛼3𝜔 . Hence, the final sample size is n, i.e, N = n. Finally, we use X1,X2,⋯ ,XN and introduce ̂𝛽N =
XN
𝛼 as a final estimator of 𝛽.

3. THE EXPECTED VALUE AND BIAS OF N AND ̂𝛽N
If we consider (3), we find that the exact probability distribution of N is hard to compute. For example, let m = 20 and the sequential
sampling stopped withN = 24. This means that we did not stop with 20, 21, 22 or 23 observations, but we stopped with 24 observations. In
other words, the event {N = 24} is the same as the event

{20 < AX
2
20

𝛼3𝜔 ,⋯ , 23 < AX
2
23

𝛼3𝜔 and 24 ≥ AX
2
24

𝛼3𝜔 } ,

and finding the probability of this event is very hard. But, we can compute the approximate expected value of N.

Let G (x, 𝛼, 𝛽) denotes the cumulative distribution function (c.d.f.) of a gamma distribution with shape parameter 𝛼 and scale parameter 𝛽,
i.e., G (x, 𝛼, 𝛽) = P (X ≤ x) where X ∼ Gamma (𝛼, 𝛽) and G (x, 𝛼, 𝛽) = 1 − G (x, 𝛼, 𝛽).

Theorem 3.1. (The first moment of N) Suppose that m𝛼 > 2 and r > 2. If n∗ > m then

E (N) = n∗ − 1
𝛼 + 1

2 − 2∑∞
n=1 [G

(3
2n𝛼, n𝛼 + 1, 1

)
−3
2G

(3
2n𝛼, n𝛼, 1

)
] + o (1) , (4)

as 𝜔 → 0.

Proof. The proof of this theorem is a special case of Theorem 5.1 for L0 = 0, presented in Section 5 of the paper.

From (4), we can obtain that N is a bias estimator of n∗ and its bias is given by

Bias (N, n∗) = − 1
𝛼 + 1

2 − 2∑∞
n=1 [G

(3
2n𝛼, n𝛼 + 1, 1

)
−3
2G

(3
2n𝛼, n𝛼, 1

)
] + o (1) ,

as 𝜔 → 0. The bias is not always negative. Its negatively or positively depends on values of 𝛼. The values of
∞
∑
n=1

[G
(3
2n𝛼, n𝛼 + 1, 1

)
− 3

2G
(3
2n, n𝛼, 1

)
]
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is positive for each values of 𝛼 and is decreasing as a function of 𝛼. Thus, the values of

−2
∞
∑
n=1

[G
(3
2n𝛼, n𝛼 + 1, 1

)
− 3

2G
(3
2n𝛼, n𝛼, 1

)
]

is negative. Therefore, the bias of N, Bias (N, n∗), may be negative or positive which depends on the values of 𝛼. For example for 𝛼 = 2, we
have Bias (N, n∗) = −0.568 and for 𝛼 = 4, Bias (N, n∗) = 0.0524.

Theorem 3.2. The stopping time N in (3), satisfies the second order asymptotic efficiency results, i.e., E (N) − n∗ = O (1).

Proof. For proof this property, it is enough to show that∑∞
n=1 G

(3
2n𝛼, n𝛼, 1

)
< ∞ and∑∞

n=1 G
(3
2n𝛼, n𝛼 + 1, 1

)
< ∞.

For X ∼ Γ (n𝛼 + 1, 1) and t < 1, using Chernoff inequality, we have

G
(3
2n𝛼, n𝛼 + 1, 1

)
= P

(
X > 3

2n𝛼
)

≤ inft<0 e
−

3
2
n𝛼t

MX (t) = inft<0 e
−

3
2
n𝛼t

(1 − t)−n𝛼−1 ,

whereMX (t) denotes themoment generating function ofX and exists for t < 1. Using first derivative test, it is easy to check that the function

g (t) = e
−

3
2
n𝛼t

(1 − t)−n𝛼−1 attains its global minimum at t = (0.5n𝛼 − 1) /1.5n𝛼 which is less than 1 for all 𝛼. Hence,

G
(3
2n𝛼, n𝛼 + 1, 1

)
= P

(
X > 3

2n𝛼
)

≤ inft>0 g (t) =
( 1.5n𝛼
n𝛼 + 1

)n𝛼+1
e
−

1
2
n𝛼+1

≤
(1.5n𝛼

n𝛼
)n𝛼+1 e

√e
n𝛼 = 1.5e

(
1.5
√e

)n𝛼

.

Thus,∑∞
n=1 G

(3
2n𝛼, n𝛼 + 1, 1

)
< ∞, and hence,∑∞

n=1 G
(3
2n𝛼, n𝛼, 1

)
≤ ∑∞

n=1 G
(3
2n𝛼, n𝛼 + 1, 1

)
< ∞, since 1.5 < √e. The proof is

completed.

Theorem 3.3. If m𝛼 > 2 and r > 2 then the expectation of ̂𝛽N is

E
( ̂𝛽N

)
= 𝛽 − 2𝛽

𝛼n∗ + o (1) , (5)

and its bias as a function of 𝛽 is given by

Bias
( ̂𝛽N, 𝛽

)
= − 2𝛽

𝛼n∗ + o (1) , (6)

as 𝜔 → 0.

Proof. The proof of this theorem is a special case of Theorem 5.2 for L0 = 0, presented in Section 5 of the paper.

We can use the result of this theorem and introduce a corrected estimator of 𝛽 as follows:

̂𝛽c
N =

XN
𝛼 + 2XN

𝛼2N = XN
𝛼

(
1 + 2

𝛼N
)
. (7)

This is an estimator with negligible bias and therefore, is better than ̂𝛽N.

4. SIMULATION RESULTS

To investigate the results of the previous sections, a simulation study is carried out. We considered m = 20, A = 2, 𝛼 = 1 and 3.7 and

𝛽 = 1, 2,⋯ , 25. For each set of values of A, m, 𝛼 and 𝛽, we choose 𝜔 = 2, 1, 0.5, 0.25, 0.1 and 0.05, so that n∗ was determined by A𝛽2

𝛼𝜔 .
Then, for any combination ofm, 𝛼, 𝛽 and 𝜔, we ran h = 10000 replications by letting R-program draws random samples from the assigned

gamma population. Suppose that in the ith replication, we observe ni observations. Based on this data, the usual estimate of 𝛽 is ̂𝛽ni =
xni
𝛼

and its corrected estimate is ̂𝛽c
ni =

xni
𝛼

(
1 + 2

𝛼ni

)
.
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To summarize the results, we use the following notations:

1. Ê (N) shows the simulated value of E (N) and is computed by n = h−1∑h
i=1 ni.

2. Ê
( ̂𝛽N

)
shows the simulated value of E

( ̂𝛽N
)
and is computed by h−1∑h

i=1

xni
𝛼 .

3. The simulated bias of ̂𝛽N is shown by B̂
( ̂𝛽N, 𝛽

)
and its formula is Ê

( ̂𝛽N
)
− 𝛽.

4. The simulated risk of ̂𝛽N is shown by R̂
( ̂𝛽N, 𝛽

)
and its formula is r = Ah−1∑h

i=1

(
xni
𝛼 − 𝛽

)2

.

5. Ê
( ̂𝛽c

N
)
shows the simulated value of E

( ̂𝛽c
N
)
and is computed by h−1∑h

i=1
̂𝛽c
ni .

6. The simulated bias of ̂𝛽c
N is shown by B̂

( ̂𝛽c
N, 𝛽

)
and its formula is Ê

( ̂𝛽c
N
)
− 𝛽.

7. The simulated risk of ̂𝛽c
N is shown by R̂

( ̂𝛽c
N, 𝛽

)
and its formula is rc = Ah−1∑h

i=1

(
̂𝛽c
ni − 𝛽

)2
.

In Table 1, we present the results with 𝛽 = 5. Table 2 shows the results when 𝜔 expressed as a function of 𝛽. Fig. 1(a) compares R̂
( ̂𝛽N, 𝛽

)
and R̂

( ̂𝛽c
N, 𝛽

)
for different values of 𝛽. Also, Fig. 1(b) compares B̂

( ̂𝛽N, 𝛽
)
and B̂

(
𝛽c
N, 𝛽

)
for different values of 𝛽.

Figure 1 The curves of simulated risk and bias as functions of 𝛽, for 𝛼 = 1,A = 2,m = 20 and𝜔 = 0.5.

Some of important observed features of simulation results are as follows:

1. As we expect, the exact and estimated values of E (N) are less than n∗.

2. The negativity of B
( ̂𝛽N, 𝛽

)
is verified.

3. The smaller value of 𝜔, the better estimate of 𝛽.
4. The larger value of 𝛼, the better estimate of 𝛽 and the smaller final sample size.

5. As we expect by Theorem 3.3, when the parameter 𝛽 increases then B̂
( ̂𝛽N, 𝛽

)
decreases.

6. When 𝛽 is small, R̂
( ̂𝛽N, 𝛽

)
, simulated risk, is less than 𝜔, but this is not true at all and for some values 𝛽, we have R̂

( ̂𝛽N, 𝛽
)
> 𝜔.

7. When 𝛽 is increasing to large values, the risk decreases and converges to 𝜔.
8. As we expect, B̂

( ̂𝛽c
N, 𝛽

)
is less than B̂

( ̂𝛽N, 𝛽
)
and this verifies that, ̂𝛽c

N is better than ̂𝛽N as an estimator of 𝛽.

9. R̂
( ̂𝛽c

N, 𝛽
)
is less than R̂

( ̂𝛽c
N, 𝛽

)
, but still for some values 𝛽, the risk of ̂𝛽c

N is greater than 𝜔.

10. As we see, the two ratio R̂
( ̂𝛽N, 𝛽

)
/R̂

( ̂𝛽n∗ , 𝛽
)
and R̂

( ̂𝛽c
N, 𝛽

)
/R̂

( ̂𝛽n∗ , 𝛽
)
converge to 1 as w → 0.

11. The second order asymptotic efficiency result, E (N) − n∗ = O (1), is seen in tables.
Pdf_Folio:226
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Table 1 Simulations of purely sequential procedure under gamma distribution.

m = 5, A = 2, 𝜷 = 5, 𝜶 = 1

𝜔 2.000 1.000 0.500 0.250 0.100 0.050
n∗ 25.000 50.000 100.000 200.000 500.000 1000.000
E (N) 23.068 48.068 98.068 198.068 498.068 998.068
Ê (N) 21.872 45.896 96.401 197.400 497.440 998.222
E
(

̂𝛽N

)
4.600 4.800 4.900 4.950 4.980 4.990

Ê
(

̂𝛽N

)
4.363 4.616 4.833 4.936 4.976 4.990

R̂
(

̂𝛽N, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
2.160 2.522 2.016 1.427 1.202 0.993

Ê
(

̂𝛽c
N

)
4.822 4.841 4.939 4.987 4.996 5.000

R̂
(

̂𝛽c
N, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
1.478 1.995 1.776 1.345 1.171 0.986

m = 10, A = 2, 𝜷 = 5, 𝜶 = 1

𝜔 2.000 1.000 0.500 0.250 0.100 0.050
n∗ 25.000 50.000 100.000 200.000 500.000 1000.000
E (N) 23.068 48.068 98.068 198.068 498.068 998.068
Ê (N) 23.392 47.109 97.356 197.681 497.828 997.396
E
(

̂𝛽N

)
4.600 4.800 4.900 4.950 4.980 4.990

Ê
(

̂𝛽N

)
4.580 4.714 4.871 4.944 4.979 4.988

R̂
(

̂𝛽N, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
1.358 1.763 1.466 1.137 1.055 1.007

Ê
(

̂𝛽c
N

)
5.003 4.929 4.974 4.994 4.999 4.998

R̂
(

̂𝛽c
N, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
1.031 1.447 1.330 1.088 1.037 0.998

m = 5, A = 2, 𝜷 = 5, 𝜶 = 3.7

𝜔 2.000 1.000 0.500 0.250 0.100 0.010
n∗ 6.757 13.514 27.027 54.054 135.135 270.270
E (N) 6.762 13.519 27.032 54.059 135.140 270.275
Ê (N) 7.289 13.447 27.032 53.950 135.219 270.293
E
(

̂𝛽N

)
4.600 4.800 4.900 4.950 4.980 4.990

Ê
(

̂𝛽N

)
4.757 4.778 4.895 4.944 4.981 4.990

R̂
(

̂𝛽N, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
0.883 1.312 1.260 1.145 1.034 0.999

Ê
(

̂𝛽c
N

)
5.121 4.979 4.996 4.994 5.001 5.000

R̂
(

̂𝛽c
N, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
0.795 1.120 1.163 1.097 1.019 0.991

Table 2 Simulations of purely sequential procedure under gamma distribution when𝜔
expressed as a function of 𝛽.

m = 5, A = 2, 𝜷 = 0.5, 𝜶 = 1

𝜔 0.1𝛽 0.05𝛽 0.025𝛽 0.001𝛽
n∗ 10.000 20.000 40.000 1000.000
E (N) 8.068 18.068 38.068 998.068
Ê (N) 9.652 17.604 36.142 998.592
E
(

̂𝛽N

)
0.400 0.450 0.475 0.499

Ê
(

̂𝛽N

)
0.432 0.433 0.454 0.499

R̂
(

̂𝛽N, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
1.022 1.821 2.424 0.998

Ê
(

̂𝛽c
N

)
0.528 0.489 0.482 0.500

R̂
(

̂𝛽c
N, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
0.795 1.216 1.839 0.991
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5. PURELY SEQUENTIAL PROCEDURE USING ADJUSTED N

Recall that we want to introduce an estimator of parameter 𝛽 such that its associated risk is not greater than 𝜔, but ̂𝛽N and ̂𝛽c
N did not have

this property. Since the stopping time defined by (3) underestimates n∗, we believe that by adjusting N this problem can be solved.

To avoid underestimation at the termination, we consider the following stopping time

Nad j = inf {n ≥ m; Sn <√
𝛼3𝜔
A n1.5Ln} , (8)

where Ln = 1+ L0
n + o

( 1
n

)
as n →∞ and Ln > 1 for any n. This stopping time is the adjusted version of (3), and is obtained by adding Ln

to the right hand side of (3). Now, we can use (8) as a stopping time and run a purely sequential procedure. As soon as sampling terminate

with this procedure, we define ̂𝛽Nadj
=

X1 + X2 +⋯+ XNadj

𝛼Nadj
=

XNadj

𝛼 as an estimator of 𝛽. We will see that ̂𝛽Nadj
is a bias estimator of 𝛽.

Theorem 5.1. (The first moment of Nadj) Suppose that m𝛼 > 2 and r > 2. If n∗ > m then

E
(
Nadj

)
= n∗ − 1

𝛼 + 1
2 + L0 − 2∑∞

n=1 [G
(3
2n𝛼, n𝛼 + 1, 1

)
−3
2G

(3
2n𝛼, n𝛼, 1

)
] + o (1) , (9)

as 𝜔 → 0.

Proof. To proof this theorem, we use Theorem 2.4 of Woodroofe [1] (see Appendix).

After comparing Nadj with the stopping time in Theorem 2.4 of Woodroofe [1], we have a = 3
2 , b = 1

a − 1 = 2, 𝜇 = 𝛼𝛽, 𝜏2 = 𝛼𝛽2,

c =√
𝛼3𝜔
A and 𝜆 = 𝜇b

cb
= A𝛽2

𝛼𝜔 = n∗.

First, note that

F (x) = ∫
x

0

t𝛼−1e−t/𝛽

𝛽𝛼Γ (𝛼) dt ≤ 1
𝛽𝛼Γ (𝛼) ∫

x

0
t𝛼−1dt = x𝛼

𝛽𝛼Γ (𝛼 + 1)
.

Thus, putting p = 𝛼 and B = 1
𝛽𝛼Γ (𝛼 + 1)

, the conditions are hold. Also, E [Xr] < ∞ for all r > 2.

To obtain 𝜈, we must compute E {(Sn − na𝜇)+}. Since Xi ∼ Gamma (𝛼, 𝛽), we know that Sn𝛽 ∼ Gamma (n𝛼, 1). Hence,

E [(Sn − na𝜇)+] = E [
(
Sn −

3
2n𝛼𝛽

)+
]

= 𝛽E [
(
Sn
𝛽 − 3

2n𝛼
)+

]

= 𝛽 ∫
∞

3
2n𝛼

(
t − 3

2n𝛼
) 1
Γ (n𝛼) t

n𝛼−1e−tdt

= n𝛼𝛽 [G
(3
2n𝛼, n𝛼 + 1, 1

)
− G

(3
2n𝛼, n𝛼, 1

)
] . (10)

Thus, to obtain 𝜈 we have

𝜈 = b
2𝜇 [(a − 1)2𝜇2 + 𝜏2] − ∑∞

n=1
1
nE {(Sn − na𝜇)+}

= 𝛼𝛽 {14 +
1
𝛼 −∑∞

n=1 [G
(3
2n𝛼, n𝛼 + 1, 1

)
− G

(3
2n𝛼, n𝛼, 1

)
]} . (11)
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Finally, by substituting Eq. (11), a = 3
2 , b = 2, 𝜇 = 𝛼𝛽 and 𝜏2 = 𝛼𝛽2 into (14), the proof of this theorem is completed.

Theorem 5.2. If m𝛼 > 2, then the expectation of ̂𝛽Nadj
is

E
(

̂𝛽Nadj

)
= 𝛽 − 2𝛽

𝛼n∗ + o (1) , (12)

as 𝜔 → 0.

Proof. If we rewrite Nadj as

Nadj = inf
⎧
⎨
⎩
n ≥ m; n

LnX
2
n

𝛼2𝛽2

> n∗
⎫
⎬
⎭
= inf {n ≥ m; n

LnY
2
n

> n∗} = inf {n ≥ m;Zn > n∗} ,

where Yi =
Xi
𝛼𝛽 and Zn =

n

LnY
2
n

, the proof of this theorem is the same as proof of Theorem 2 of Takada and Nagata [2], thus we ignore to

give the details.

By Theorem 5.2, we can correct the bias and introduce a corrected estimator as follows:

̂𝛽c
Nadj

=
XNad j

𝛼

(
1 + 2

𝛼Nadj

)
. (13)

The bias of this estimator is negligible and hence, is better than (12).

To find an appropriateNadj, we have considered 𝛼 = 1, Ln = 1+ L0
n + o

( 1
n

)
and by empirical investigations saw that if we let L0 = 20 then

we get the satisfactory results. Unfortunately, attempts to calculate the risk analytically has not let to a conclusion. Therefore, to resolve this
captivity and to select a suitable value for L0, we use the simulation and empirical results with different values of the parameters involved in
the model. The result of these extensive studies shows that the most appropriate value for L0 is 20.

Table 3 shows the exact and simulated values of E
(
Nadj

)
, E

(
̂𝛽Nadj

)
, R̂

(
̂𝛽Nadj
, 𝛽

)
, Ê

(
̂𝛽c
Nadj

)
and R̂

(
̂𝛽c
Nadj

, 𝛽
)
. Table 4 shows the results with

adjusted N when 𝜔 expressed as a function of 𝛽. Also, Fig. 2 shows the curves of simulated biases and simulated risks as functions of 𝛽.
Since we want to compare the results of usual purely sequential procedure and purely sequential procedure with Nadj, all of the condi-
tions in two simulations are the same except that here we use adjusted N as stopping time. Hence, one can compare Table 1 with Table 3,
Table 2 with Table 4 and Fig. 1 with Fig. 2. This compare shows that when we useNad j, the results improve. Also, the simulated results verify
the superiority of ̂𝛽c

Nad j
.

Table 3 Simulations of purely sequential procedure with adjusted N under the gamma distribution.

m = 5, A = 2, 𝜷 = 5, 𝜶 = 1

𝜔 2.000 1.000 0.500 0.250 0.100 0.050

n∗ 25.000 50.000 100.000 200.000 500.000 1000.000

E
(
Nadj

)
43.068 68.068 118.068 218.068 518.068 1018.068

Ê
(
Nadj

)
36.996 63.841 115.344 216.719 517.556 1017.715

E
(

̂𝛽Nadj

)
4.600 4.800 4.900 4.950 4.980 4.990

Ê
(

̂𝛽Nadj

)
4.754 4.844 4.911 4.955 4.981 4.990

R̂
(

̂𝛽Nad j
, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
0.977 1.004 0.986 1.007 0.986 0.984

Ê
(

̂𝛽c
Nadj

)
5.017 4.999 4.997 5.001 5.001 5.000

R̂
(

̂𝛽c
Nad j

, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
0.874 0.918 0.930 0.976 0.973 0.977
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m = 10, A = 2, 𝜷 = 5, 𝜶 = 1

𝜔 2.000 1.000 0.500 0.250 0.100 0.050

n∗ 25.000 50.000 100.000 200.000 500.000 1000.000

E
(
Nadj

)
43.068 68.068 118.068 218.068 518.068 1018.068

Ê
(
Nadj

)
36.793 63.994 115.624 216.735 517.910 1018.271

E
(

̂𝛽Nadj

)
4.600 4.800 4.900 4.950 4.980 4.990

Ê
(

̂𝛽Nadj

)
4.741 4.853 4.918 4.956 4.983 4.992

R̂
(

̂𝛽Nad j
, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
0.894 0.963 0.960 0.992 0.977 0.977

Ê
(

̂𝛽c
Nadj

)
5.004 5.008 5.004 5.002 5.003 5.001

R̂
(

̂𝛽c
Nad j

, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
0.787 0.884 0.909 0.961 0.965 0.970

m = 5, A = 2, 𝜷 = 5, 𝜶 = 3.7

𝜔 2.000 1.000 0.500 0.250 0.100 0.050

n∗ 6.757 13.514 27.027 54.054 135.135 270.270

E
(
Nadj

)
26.762 33.519 47.032 74.059 155.140 290.275

Ê
(
Nadj

)
15.765 24.804 40.619 69.855 152.920 289.025

E
(

̂𝛽Nadj

)
4.600 4.800 4.900 4.950 4.980 4.990

Ê
(

̂𝛽Nadj

)
4.883 4.923 4.946 4.971 4.983 4.991

R̂
(

̂𝛽Nad j
, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
0.481 0.593 0.695 0.790 0.912 0.949

Ê
(

̂𝛽c
Nadj

)
5.052 5.030 5.013 5.010 5.001 5.000

R̂
(

̂𝛽c
Nad j

, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
0.463 0.574 0.676 0.777 0.901 0.942

Table 4 Simulations of purely sequential procedure with adjusted N
under the gamma distribution when𝜔 expressed as a function of 𝛽.

m = 5, A = 2, 𝜷 = 0.5, 𝜶 = 1

𝜔 1𝛽 0.05𝛽 0.025𝛽 0.001𝛽
n∗ 10.000 20.000 40.000 1000.000

E
(
Nadj

)
28.068 38.068 58.068 1018.068

Ê
(
Nadj

)
18.993 31.194 53.489 1018.625

E
(

̂𝛽Nadj

)
0.400 0.450 0.475 0.499

Ê
(

̂𝛽Nadj

)
0.456 0.470 0.483 0.499

R̂
(

̂𝛽Nad j
, 𝛽

)
/R

(
̂𝛽∗n , 𝛽

)
0.748 0.939 0.986 0.988

Ê
(

̂𝛽c
Nadj

)
0.505 0.501 0.501 0.500

R̂
(

̂𝛽c
Nadj

, 𝛽
)
/R

(
̂𝛽∗n , 𝛽

)
0.641 0.827 0.901 0.982

6. COMPARING PURELY SEQUENTIAL AND TWO-STAGE PROCEDURES

The two-stage procedure for estimating the scale parameter of a gamma distribution was introduced by Mahmoudi and Roughani [5]. The
most important weakness of this procedure is oversampling. To reduce this weakness, the two-stage procedure was improved by Roughani
and Mahmoudi [6], but the oversampling problem was not solved utterly. The purely sequential procedure reduces oversampling. Here, we
compare the results of the improved two-stage procedure (two-stage procedure with Bnew) and the results of the purely sequential procedure.
Table 5 shows the simulation results. The results show that for small values of 𝜔, final sample size of purely sequential procedure is less
than final sample size of two-stage procedure and this difference in size of samples is bolder for small values of 𝛼. In sequential estimation
problem, we may expect risk efficiency to lie in a close proximity of one if 𝜔 tend to zero, so simulated risk efficiency is shown in Fig. 3.Pdf_Folio:230
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Figure 2 The curves of simulated risk and bias as functions of 𝛽 for 𝛼 = 1,A = 2,m = 20 and𝜔 = 0.5 with adjusted N.

Figure 3 Simulated risk efficiency as a function of𝜔 for 𝛼 = 1,A = 2,m = 20.

Table 5 Comparing the results of purely sequential and two-stage procedures.

m = 20, A = 2, 𝜷 = 5, 𝜶 = 1

𝜔 2.0000 1.0000 0.5000 0.2500 0.1000 0.0500

n∗ 25.000 50.000 100.00 200.00 500.00 1000.0

Purely sequential Ê
(
Nadj

)
37.470 63.829 115.85 216.76 517.66 1018.5

Ê
(

̂𝛽Nadj

)
4.8038 4.8465 4.9236 4.9555 4.9820 4.9921

R̂
(

̂𝛽Nadj
, 𝛽

)
1.4925 0.9413 0.4784 0.2549 0.0982 0.0505

Two-stage Ê
(
Nm

)
37.461 73.431 145.87 292.39 729.96 1457.8

Ê
(

̂𝛽Nm

)
4.7558 4.8372 4.9157 4.9568 4.9839 4.9916

R̂
(

̂𝛽Nm
, 𝛽

)
1.5970 0.9782 0.4732 0.2240 0.0861 0.0427
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m = 20, A = 2, 𝜷 = 5, 𝜶 = 3.7

𝜔 0.5000 0.2500 0.1000 0.0500

n∗ 27.027 54.054 135.14 270.27

Purely sequential Ê
(
Nadj

)
40.692 69.846 153.12 289.21

Ê
(

̂𝛽Nadj

)
4.9506 4.9700 4.9871 4.9925

R̂
(

̂𝛽Nadj
, 𝛽

)
0.3544 0.1981 0.0913 0.0473

Two-stage Ê
(
Nm

)
31.469 62.191 155.07 309.30

Ê
(

̂𝛽Nm

)
4.9177 4.9547 4.9815 4.9914

R̂
(

̂𝛽Nm
, 𝛽

)
0.4778 0.2426 0.0937 0.0465

7. REAL DATA

Zacks and Khan [3] provided a method to produce a random sample from gamma distribution using a random sample from normal dis-
tribution. This paper states that if Y1,⋯ ,Yn is a random sample from a normal distribution with mean 𝜇 and variance 𝜎2, then the trans-

formation i − 1
i

(
Yi − Yi−1

)2
, i > 2 gives a random sample of size n − 1 from gamma distribution with 𝛼 = 1/2 and 𝛽 = 2𝜎2.

In this section, we consider a dataset that consists of 346 observations of weights of babies born between September 2014, 23, andNovember
2014, 21, in Imam Ali hospital of Shahrekord in Iran. This dataset is given in Roughani and Mahmoudi [6]. This dataset is used to obtain
real data from gamma population with known shape parameter 𝛼 = 1/2 and scale parameter 𝛽 = 2𝜎2. The mean and variance for the full
data are 3.147 and 0.198 kg, respectively. The associated P-values according to goodness of fit test for normal and gamma distributions are
0.29 and 0.40, which made us feel reasonably assured of an underlying gamma distribution for transmuted dataset.

Treating transformed data set as the universe, we implemented purely sequential procedure, drawing observations from the full set of data
as needed. Table 6 provides the results derived from implementing the stopping rules from (3), when the initial sample sizem = 5, 10, 20.
25, 𝜔 = 0.03 and A = 2 are chosen arbitrarily. Under purely sequential procedure, the final estimators ̂𝛽N tended to get closer to its true
value ̂𝛽 = 0.396 obtained from full data.

Table 6 An illustration of purely procedure with transformed data, when
m = 5, 10, 20, 25,𝜔 = 0.03 and A = 2.

m = 5

Pilot Data:
0.0658, 0.6411, 0.0903, 0.0162, 0.0316
̂𝛽m = 0.338

Samples:
0.0515, 0.4734, 0.3122, 0.0681, 0.4683,
0.0652, 0.1088, 0.0001, 0.0932, 0.0361,
0.1117
→ N = 16 ̂𝛽N = 0.3292

m = 10

Pilot Data:
1.1970, 0.1248, 0.0003, 0.0658, 0.0349,
0.4524, 0.0001, 0.0149, 0.1679, 0.0785
̂𝛽m = 0.4273

Samples:
0.0001, 0.2090, 0.3122, 0.1122, 0.0227,
0.0676, 0.1104
→ N = 17 ̂𝛽N = 0.3495

(continued)
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Table 6 An illustration of purely procedure with transformed data, when
m = 5, 10, 20, 25,𝜔 = 0.03 and A = 2. (Continued)

m = 20

Pilot Data:
0.5607, 0.0800, 0.2105, 0.0785, 0.0203,
0.7156, 0.1850, 0.0928, 0.5967, 0.0515,
0.5607, 0.1520, 0.1693, 0.0618, 0.0001,
0.1537, 0.2652, 0.1090, 0.0073, 0.1088
̂𝛽m = 0.4180

Samples:
0.3907, 0.1679, 0.3907, 0.0020, 0.0336
→ N = 25 ̂𝛽N = 0.4131

m = 25

Pilot Data:
0.2044, 0.0958, 0.0361, 0.3223, 0.0001,
0.1112, 0.0553, 1.5112, 0.1653, 0.0289,
0.1245, 0.1445, 0.4910, 0.0534, 0.0252,
0.2466, 0.0252, 0.0443, 0.0275, 0.1319,
0.3227, 0.2161, 0.0581, 0.2518, 0.0580
Samples: initial samples is enough
→ N = 25 ̂𝛽N = 0.3801

8. CONCLUSION

Purely sequential sampling procedure is developed for estimating the scale parameter 𝛽 in a gamma distribution with known shape param-
eter 𝛼. In this problem, the risk of an estimator ̂𝛽 of 𝛽 is less than from a preassigned number 𝜔 (> 0), i.e., R

( ̂𝛽, 𝛽
)
= AE𝛽 {

( ̂𝛽 − 𝛽
)2} ≤ 𝜔,

where 0 < A < ∞ is known. We compute asymptotic expressions for E [N], E [ ̂𝛽N] and the bias of ̂𝛽N. Also, we propose how to obtain the
adjusted stopping variableNadj so that the risk is uniformly bounded by a preassigned value𝜔. In the end, the performances of the proposed
methodology are investigated with the help of simulations.

The problem of sequential estimation of scale parameter 𝛽 where𝛼 is unknown is not easy to solve since theMaximumLikelihood Estimator
(MLE) of 𝛼 in a fixed sample size case, has not the explicit form. On the other hand, if one tries to use moment estimators of 𝛼 and 𝛽, the
problem is so hard because of the complexity of moments estimators of 𝛼 and 𝛽. Recently, I and my colleagues start a work where the shape
parameter 𝛼 is not known, but very explicit formulas that obtain for known 𝛼 can not be obtain in the case of unknown 𝛼.
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APPENDIX

Theorem 2.4 of Woodroofe [1]:

Suppose X1,X2,⋯ is a sequence of positive i.i.d random variables having cumulative distribution function F (x), mean 𝜇 and variance 𝜏2
where F (x) ≤ Bxp for all x > 0, some B and p. Also, E

(
Xr
1
)
< ∞ for some r. Let the stopping time be defined as

tc = inf {n ≥ m; Sn < cnaLn} ,

wherem ≥ 1, a > 1, Sn = ∑n
i=1 Xi and Ln = 1 + L0

n + o
( 1
n

)
as n →∞ (−∞ < L0 < ∞).

If r (2a − 1) > 4 andmp > 1
a − 1 then

E (tc) = 𝜆 + b𝜇−1𝜈 − bL0 −
1
2ab

2𝜏2𝜇−2 + o (1) , (A.1)

as c → 0, where 𝜈 = b
2𝜇 [(a − 1)2 𝜇2 + 𝜏2] −

∞
∑
n=1

1
nE {(Sn − na𝜇)+}, b = 1

a − 1 and 𝜆 = 𝜇b

cb
.
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