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ABSTRACT
On one hand, a large class of inequality measures, which includes the generalized entropy, the Atkinson, the Gini, etc., for
example, has been introduced in P.D. Mergane, G.S. Lo, Appl. Math. 4 (2013), 986–1000. On the other hand, the influence
function (IF) of statistics is an important tool in the asymptotics of a nonparametric statistic. This function has been and is being
determined and analyzed in various aspects for a large number of statistics. We proceed to a unifying study of the IF of all the
members of the so-called Theil-like family and regroup those IF’s in one formula. Comparative studies become easier.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Over the years, a number of measures of inequality have been developed. Examples include the generalized entropy, the Atkinson, the Gini,
the quintile share ratio (QSR) and the Zenga measures (see e.g. [1−5]). Recently, [6] gathered a significant number of inequality measures
under the name of Theil-like family. Such inequality measures are very important in capturing inequality in income distributions. They also
have applications in many other branches of Science, e.g., in ecology (see e.g. [7]), sociology (see e.g. [8]), demography (see e.g. [9]) and
information science (see e.g. [10]).

In order to make the above mentioned measures applicable, one often makes use of estimation. Classical methods unfortunately rely heavily
on assumptionswhich are not alwaysmet in practice. For example, when there are outliers in the data, classicalmethods often have very poor
performance. The idea in robust Statistics is to develop estimators that are not unduly affected by small departures frommodel assumptions,
and so, in order to measure the sensitivity of estimators to outliers, the influence function (IF) was introduced (see [11,12]).

Let us begin by precising the objects and notation of our study, in particular the IF. To make the reading of what follows easier, we suppose
that we have a probability space (Ω,𝒜, 𝔼) holding a random variable X associated with the cumulative distribution function (cdf ) F (x) =
ℙ (X ≤ x), x ∈ ℝ, and a sequence of independent copies of X: X1, X2, etc. This random variable is considered as an income variable so that
it is nonnegative and F (0) = 0. The absolute density distribution function (with respect to the Lebesgue measure on ℝ) of X (pdf ), if it
exists, is denoted by f. Its mean, we suppose finite and nonzero, and moments of order 𝛼 ≥ 1 are denoted by

𝜇F = ∫
+∞

0
y dF

(
y
)
∈ (0,∞) and𝜇F,𝛼 = ∫

+∞

0
y𝛼 dF

(
y
)
, 𝜇F,1 = 𝜇F.
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The quantile function associated to F, also called generalized inverse function is defined by

Q
(
p
)
≡ F−1 (z) = inf {z ∈ ℝ, F (z) ≤ x} , p ∈ [0, 1]

and the Lorentz curve of F is given by

L
(
F, p

)
=

q
(
p
)

𝜇F
, with q

(
p
)
= ∫

p

0
Q (s) ds, 0 ≤ s ≤ 1.

Anonparametric estimation T (F)will studied as well as its plug-in nonparametric estimator of the form T (Fn)which is based on the sample
X1,..., Xn, n ≥ 1.

The IF (∘,T (F)) of T (F) is the Gateaux derivative of T at F in the direction of Dirac measures in the form

IF (z,T (F)) = lim
𝜖→0

T
(
F(z)𝜖

)
− T (F)

𝜖 = 𝜕
𝜕𝜖T

(
F(z)𝜖

)
|𝜖=0, (1)

where

F(z)𝜖 (u) = (1 − 𝜖) F (u) + 𝜖ΔZ (u) , 𝜖 ∈ [0; 1] ,

Δz is the cdf of the 𝛿z, the Dirac measure with mass one at z and z is in the value domain of F.

It is known that the asymptotic variance of the plug-in estimator T (Fn) of statistic T (F) is of the form 𝜎2 = ∫ IF (x,T (F))2 dF (x) under
specific condition, among them the Hadamard differentiability (see [13], Theorem 2.27, p. 19). So the IF gives an idea of what might be the
variance of the Gaussian limit of the estimator if it exists. At the same time, the behavior of its tails (lower and upper) give indications on
how lower extreme and/or upper extreme values impact on the quality of the estimation. For example, recently, the sensitivity of a statistic
T (F) and the impact of extreme observations of some IFs have been studied by, e.g. [1].

Another interesting fact is that the IF behaves in nonparametric estimation as the score function does in the parametric setting (see [13],
p. 19).

An area of application of the IF is that of measures of inequality (see, e.g. [14−16]). Due to the importance of that key element in nonpara-
metric estimation in Econometric and welfare studies, a collection of inequality measures is being actively made. To cite a few, the IF’s of
the following measures are given in the Appendix section: the generalized entropy class of measures of inequality GE(𝛼), where 𝛼 > 0,
the mean logarithmic deviation (MDL), the Theil Measure, the Atkinson Class of Inequality Measures of parameter 𝛼 ∈ (0, 1], the Gini
Coefficient, the QSR Measure of Inequality.

Fortunately, [6] introduced the so-called Theil-like family, in which are gathered the Generalized Entropy Measure, the MDL [17−19], the
different inequality measures of Atkinson [20], Champernowne [21] and Kolm [22] in the following form:

Tn (F) = 𝜏
(

1
h1 (𝜇n)

1
n

n

∑
j=1

h
(
Xj
)
− h2 (𝜇n)

)
, (2)

where 𝜇n =
1
n
∑n

j=1 Xj denotes the empirical mean while h, h1, h2, and 𝜏 are measurable functions.

The inequalitymeasuresmentioned above are derived from (2) with the particular values of𝛼, 𝜏, h, h1 and h2 as described below for all s > 0:

a. Generalized entropy

𝛼 ≠ 0, 𝛼 ≠ 1, 𝜏 (s) = s − 1
𝛼 (𝛼 − 1) , h (s) = h1 (s) = s𝛼, h2 (s) ≡ 0;

b. Theil’s measure

𝜏 (s) = s, h (s) = s log (s) , h1 (s) = s, h2 (s) = log (s) ;

c. Mean logarithmic deviation

𝜏 (s) = s, h (s) = h2 (s) = log
(
s−1) , h1 (s) ≡ 1;

d. Atkinson’s measure

𝛼 < 1 and𝛼 ≠ 0, 𝜏 (s) = 1 − s1/𝛼, h (s) = h1 (s) = s𝛼, h2 (s) ≡ 0;
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e. Champernowne’s measure

𝜏 (s) = 1 − exp (s) , h (s) = h2 (s) = log (s) , h1 (s) ≡ 1;

f. Kolm’s measure

𝛼 > 0, 𝜏 (s) = 1
𝛼 log (s) , h (s) = h1 (s) = exp (−𝛼s) , h2 (s) ≡ 0.

This is simply the plug-in estimator of

T (F) = 𝜏
(
𝔼h (X)
h1 (𝜇F)

− h2 (𝜇F)
)
= 𝜏 (I) . (3)

The following conditions are required for the asymptotic theory.

B1 The functions 𝜏 admits a derivative 𝜏′ which is continuous at I and 𝜏′ (I) ≠ 0.

B2. The functions h1 and h2 admit derivatives h′1 and h′2 which are continuous at 𝜇F with h1 (𝜇F) ≠ 0.

B3. 𝔼hj (X) < +∞, j = 1, 2.
This offers an opportunity to present a significant number of IF’s in a unified approach. This may be an asset for inequality measures
comparison. By the way, it constitutes the main goal of this paper.

Let us add more notation. The lower endpoint and upper endpoint of cdf F are denoted by

lep (F) = inf {y ∈ F, F (x) > 0} and uep (F) = sup {y ∈ F, F (x) < 1} .

So the domain of admissible values for X, denoted by 𝒱X, satisfies 𝒱X ⊂ X = [lep(F), uep(F)], the latter being the range of F.

The layout of this paper is as follows: In the next section we state our main result on the IF of the TLIM family members and some particu-
larized forms related to each known members. For member whose IF’s are already given, we will make a comparison. In Section 3, we give
the complete proofs. In Section 4 we provide a conclusion and some perspectives. Section 5 is an appendix gathering IF’s expressions of
some members of the TLIM available in the literature.

2. MAIN RESULTS

(A) - The main theorem.

Theorem 2.1. If conditions (B1) − (B2) hold, then the IF of the TLIM index is given by

IF (z, F) = 𝜏′ (I)
(
−
(h′1 (𝜇F)𝔼h (X)

h1(𝜇F)2
+ h′2 (𝜇F)

)
(z − 𝜇F) +

h (X) − 𝔼h (X)
h1 (𝜇F)

)
, (4)

for z ∈ 𝒱X.

Remark on the asymptotic variance. It was said earlier that the plug-in estimator should give the asymptotic variance of the limiting
Gaussian variable, if it exists, as

𝜎2 = ∫𝒱X IF
(
X)2 dℙ = 𝔼IF

(
X)2.

This is exactly the case from the asymptotic normality of the plug-in estimator as established in Theorem 2 in [23].

Let us move to the illustrations of our results for particular cases.

(B) - Particular forms.

Let us proceed to the study of particular members of the TLIM class. We will have to compare our results with existent ones if any in the
appendix. When the computation are simple, we only give the result without further details.

(1) Mean logarithmic deviation. We have

𝜏 (s) = s, h (s) = h2 (s) = log
(
s−1) , h1 (s) ≡ 1

and next 𝜏′ (s) ≡ 1, h (s)′ = h′2 (s) = −1/s and h′1 (s) ≡ 0. The application of Theorem 2.1 leads to

IF (z,DLM) = 𝜇−1
F (z − 𝜇F) +

(
log z − 𝔼 logX

)
, z ∈ F.
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(2) Theil’s index. We have

𝜏 (s) = s, h (s) = s log s, h1 (s) = s, h2 (s) = log s,

and next 𝜏′ (s) ≡ 1, h′1 (s) ≡ 1 and h′2 (s) = 1/s. The application of Theorem 2.1 gives for z ∈ F,

IF (z,DLM) = 𝜇−1
F

(
z log z − 𝔼X logX

)
− 𝜇−2

F
(
𝜇F + 𝔼 logX

)
(z − 𝜇F)

(3) Class of generalized entropy Measures of parameter 𝛼, 𝛼 ∉ {0, 1}. We have

𝜏 (s) = s − 1
𝛼 (𝛼 − 1) , 𝜏

′ (s) = 1
𝛼 (𝛼 − 1) , h (s) = h1 (s) = s𝛼, h′

1 = 𝛼s𝛼−1 h2 (s) ≡ 0.

The application of Theorem 2.1 gives

IF (z,GE (𝛼)) =
z𝛼 − 𝜇F,𝛼
𝛼 (𝛼 − 1)𝜇𝛼F

− 𝜇F,𝛼 (𝛼 − 1)𝜇𝛼+1
F (z − 𝜇F) , z ∈ F.

(4) Class of Atkinson measures with parameter 𝛽 ∈ (0, 1). We have

𝜏 (s) = 1 − s1/𝛽 , h (s) = h1 (s) = s𝛽 , h2 (s) ≡ 0.

If we denote ∥ X ∥𝛽=
(
𝔼|X|𝛽

)1/𝛽 , the application of Theorem 2.1 yields

IF (z,At (𝛽)) =
∥ X ∥𝛽
𝜇F

(
z − 𝜇F
𝜇F

−
z𝛼 − 𝜇F,𝛽
𝛽𝜇F,𝛽

)
, z ∈ F.

(5) Champernowne’s index. We have

𝜏 (s) = 1 − exp (s) , h (s) = h2 (s) = log (s) , h1 (s) ≡ 1.

The application of Theorem 2.1 implies that

IF
(
z,Champ

)
=

exp
(
𝔼 logX

)
𝜇F

(
1
𝜇F

(z − 𝜇F) −
(
log z − 𝔼 logX

))
, z ∈ F.

(6) Kolm’s Familily of inequality measure of parameter 𝛼 ≠ 0. We have

𝜏 (s) = 1
𝛼 log (s) , h (s) = h1 (s) = exp (−𝛼s) , h2 (s) ≡ 0.

By Theorem 2.1, we have

IF (z, Kolm (𝛼)) = 1
𝛼

(
𝛼 (z − 𝜇F) −

(
exp (−𝛼z)
𝔼 exp (−𝛼X) − 1

))
, z ∈ F.

3. PROOF OF THE MAIN THEOREM

In the following proof, we will use the method of finding the IF following argument as given in [24]. Suppose that we are interested in
estimating T (ℙX), where ℙX the image measure is dℙ defined by dℙX (B) = dℙ (X ∈ B) for B ∈  (ℝ) and is also Lebesgue–Stieltjes
probability law associated F, that is ℙX ([a, b]) = F (b) − F (a) for all −∞ ≤ a ≤ b ≤ +∞. Here we use integrals based on measures and
thus integrals in dF are integrals in dℙX in the following sense: for any nonnegative and measurable function ℓ ∶ ℝ → ℝ, we have

∫ ℓ (X) dℙ = inf h
(
y
)
dℙX ≡ ∫ h

(
y
)
dF

(
y
)
.

Suppose that T (ℙ) is defined on a family of probability measures ℙ𝜆, ℙ𝜆 being associated with the random variable X𝜆 with X = X𝜆0
and

F = F𝜆0
. Suppose that T is independent of 𝜆. If we have

𝜕
𝜕𝜆T (ℙ𝜆) = ∫ ℓ

(
y
) 𝜕
𝜕𝜆ℙ𝜆,

where ℓ is measurable and ℙX-integrable. Then the IF at T
(
F𝜆0

)
= T (F) is given by

IF (z, F) = ℓ (z) − ∫ ℓ
(
y
)
dF

(
y
)
= ℓ (z) − 𝔼ℓ (X) .
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Actually, the rule uses Gâteaux differentiations properties and constitutes one of the fastest methods of finding the IF. We are going to
apply it.

Proof of Theorem 2.1.

We remind the notation.

I = 𝔼h (X)
h1 (𝜇F)

− h2 (𝜇F) .

We have

𝜕
𝜕𝜆TLIM (ℙX) =

𝜕
𝜕𝜆𝜏

((
1

h1
(∫ Xdℙ)

)
∫ h (X) dℙ − h1

(
∫ Xdℙ

))
.

We get

1
𝜏′ (I)TLIM (ℙX) = −

h′1 (𝜇F)𝔼h (X)
h1(𝜇F)2 ∫ X 𝜕

𝜕𝜆dℙ

+ 1
h1 (𝜇F) ∫ h (X) 𝜕

𝜕𝜆ℙ

−h′2 (𝜇F) ∫ X 𝜕
𝜕𝜆dℙ

= ∫
(
−
(h′1 (𝜇F)𝔼h (X)

h1(𝜇F)2
+ h′2 (𝜇F)

)
X + h (X)

h1 (𝜇F)

)
𝜕
𝜕𝜆dℙ.

By centering at expectations, we have

IF (z, F) = 𝜏′ (I)
(
−
(h′1 (𝜇F)𝔼h (X)

h1(𝜇F)2
+ h′2 (𝜇F)

)
(z − 𝜇F) +

h (X) − 𝔼h (X)
h1 (𝜇F)

)
, z ∈ 𝒱X.

4. CONCLUSION AND PERSPECTIVES

I this paper, we studied the Theil-like family of inequality measures introduced in [23]. Following the paper on the asymptotic finite-
distribution normality, we focus on the IF of that family. Results are compared with those of some authors in particular. We think that this
unified and compact approach will serve as general tools for comparison purpose. In addition, in computation packages, it allows more
compact programs resulting in more efficiency. A paper on computational aspects will follow soon.

5. APPENDIX: A LIST OF SOME IFS

Here, we list a number of inequality measures and the corresponding IFs.

The generalized entropy measures of inequality GE(𝛼), which depends of a parameter 𝛼 > 0 and defined by

I𝛼E = ∫
∞

0

1
𝛼 (𝛼 − 1) [

(
y
𝜇F

)𝛼
− 1] dF

(
y
)

= 1
𝛼 (𝛼 − 1)

(𝜇F,𝛼
𝜇𝛼F

− 1
)
, 𝛼 > 0, 𝛼 ∉ {0, 1} ,

has the IF (see e.g. [1])

IF
(
z; I𝛼E

)
= 1
𝛼 (𝛼 − 1)𝜇𝛼F

(z𝛼 − 𝜇𝛼) −
𝜇𝛼

(𝛼 − 1)𝜇𝛼+1
F

[z − 𝜇F] , 𝛼 ∉ {0, 1} . (5)

Important remark. Our result on the IF of the GE (𝛼) is different from that of [1] by the multiplicative coefficient 1
𝛼(𝛼 − 1)𝜇𝛼F

. In other

words, that coefficient is missing in [1]. We also find the same result by the computations below which is a direct proof.

𝜕
𝜕𝜆GE (𝛼) =

𝜕
𝜕𝜆GE (𝛼) =

𝜕
𝜕𝜆

1
𝛼 (𝛼 − 1)

( ∫ X𝛼 dℙ(∫ Xdℙ
)𝛼 − 1

)
= 1
𝛼 (𝛼 − 1) ∫

𝜇𝛼F X𝛼 − 𝛼𝜇𝛼−1
F X

𝜇2𝛼
F

𝜕
𝜕𝜆dℙ.
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By the method described in the proof, we may center the integrand to get

IF (X,GE (𝛼)) = 1
𝛼 (𝛼 − 1)

𝜇𝛼F (X𝛼 − 𝔼X𝛼) − 𝛼𝜇𝛼−1
F (X − 𝔼X)

𝜇2𝛼
F

.

which again gives the result.

The MDL, which is a special case of the GE class where 𝛼 = 0, defined by

I0E = − ∫
∞

0
log

(
y
𝜇F

)
dF

(
y
)
= log𝜇1 − 𝜈, 𝜈 = 𝔼 logX, (6)

is associated to the IF

IF
(
z, I0E

)
= − [log z − 𝜈] + 1

𝜇1
[z − 𝜇F] . (7)

The Theil measure, which also is a special case of the GE class for 𝛼 = 1,

I1E = ∫
∞

0

y
𝜇F

log
(

y
𝜇F

)
dF

(
y
)
= 𝜈
𝜇F

− log𝜇F, 𝜈 = 𝔼X logX, (8)

has the IF

IF
(
z; I1E

)
= 1
𝜇F

[z log z − 𝜈] − 𝜈 + 𝜇F
𝜇2

1
[z − 𝜇F] . (9)

The Atkinson class of inequality measures of parameter 𝛼 ∈ (0, 1], defined by (see [1])

I𝛼A = 1 − [∫
∞

0

(
y
𝜇F

)1−𝛼
dF(y)]

1/(1−𝛼)

= 1 −
𝜇1/(1−𝛼)
F,1−𝛼
𝜇F

, 𝛼 > 0, 𝛼 ≠ 1,

and its IF is given by

IF
(
z; I𝛼A

)
= −𝜈

(1/(1−𝜖))−1

(1 − 𝜖)𝜇F
(
z1−𝜖 − 𝜈

)
+ 𝜈1/(1−𝜖)

𝜇2
F

(z − 𝜇F) , (10)

where 𝜈 = 𝔼X1−𝜖 .

We notice that for 𝛼 = 1, we have

I1A = 1 − e∫∞0 (log y)dy

𝜇 = 1 − e−I0E , (11)

The Gini coefficient, defined by (see e.g. [1]):

IG = 1 − 2 ∫
1

0
L
(
F, p

)
dp, (12)

has the IF

IF (z, IG) = 2 [R (F) − C (F, F (z)) + z
𝜇F

(R (F) − (1 − F (z)))] , (13)

where

R (F) = ∫
1

0
L
(
F, p

)
dp (14)

and C is is the cumulative functional defined by

C
(
F, p

)
= ∫

Q(p)

0
xdF (x) , 0 ≤ p ≤ 1. (15)
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The QSRmeasure of inequality, defined by

𝜂 =
∫∞
Q(0.8) ydF

(
y
)

∫Q(0.2)
0

ydF
(
y
) = EX1{X>Q(0.8)}

EX1{X≤Q(0.2)}
, (16)

where 1A is an indicator function of a set A, is associated with the IF described below (see [16]). Let

N (F) = ∫
∞

Q(0.8)
xdF (x) (17)

and

D (F) = ∫
Q(0.2)

0
xdF (x) . (18)

And define the subdivision ofℝ+ : A1 = [0, Q(0.2)], A2 = (Q(0.2), Q(0.8)), A3 = (Q(0.8), 1] and set

I1 (z, 𝜂) = −zN (F) + 0.2Q (0.8)D (F) + 0.8Q (0.2)N (F)] /D2 (F) ;
I2 (z, 𝜂) = 0.2Q (0.8)D (F) − 0.2Q (0.2)N (F)] /D2 (F) ;
I3 (z, 𝜂) = zD (F) − 0.8Q (0.8)D (F) − 0.2Q (0.2)N (F)] /D2 (F) .

The SQR IF is defined by

I1 (z, 𝜂) = I1 (z, 𝜂) 1A1
(z) + I2 (z, 𝜂) 1A2

(z) + I3 (z, 𝜂) 1A3
(z) .
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