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ABSTRACT
In this paper, exponential distribution is characterized by normalized spacing of generalized order statistics (gos) using Meijer’s
G-function. While the necessary part of the theorem was given by U. Kamps, E. Cramer, Statistics. 35 (2001), 269–280, we have
given an easy proof of sufficient part in this paper. This paper contains the result of characterization of exponential distribution
through normalized spacing of order statistics, sequential order statistics, progressive type II censoring and record values. Also,
by simulation study, we have shown that the confidence interval based on upper records is shorter in length than asymptotic
confidence interval constructed by maximum likelihood estimate.
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1. INTRODUCTION

Ordered random variables like order statistics, record values, sequential order statistics and progressive type II censored order statistics
frequently arise in real life situations. For application of ordered random variables, one may refer to [1], to [2] for order statistics, to [3] and
[4] for record values and to [5] for progressive type II censored order statistics and reference cited therein. The concept of generalized order
statistics

(
gos

)
was first introduced by [6]. Goss includes various important models related to ordered random variables like order statistics,

record values, sequential order statistics, order statistics with non-integral sample size and progressive type II censored order statistics etc.

Let X1,X2, … ,Xn be a sequence of independent and identically distributed (iid) random variables (rv) with the distribution function (df )
F (x) and the probability density function (pdf ) f (x). Let n ∈ ℕ, k > 0, m̃ = (m1,m2, … ,mn−1) ∈ ℝn−1 and Mr = ∑n−1

j=r mj, such that
𝛾r = k + n − r +Mr > 0 for all r ∈ {1, 2, … , n − 1}, then X (1, n, m̃, k) ,X (2, n, m̃, k) ,⋯ ,X (n, n, m̃, k) are said to be the gos if their joint
pdf is given by

k

(
n−1

∏
j=1

𝛾j

)(
n−1

∏
i=1

[1 − F (xi)]mi f (xi)

)
[1 − F (xn)]k−1f (xn) (1)

on the cone F−1 (0+) < x1 ≤ x2 ≤ ⋯ ≤ xn < F−1 (1) of ℝn. By adjusting the parameters of gos, one may get almost all important models
related to ordered random variables. For example, at m = 0, k = 1 i.e. 𝛾i = n − i + 1, we get ordinary order statistics. At m = −1, k ∈
ℕ i.e. 𝛾i = k, we shall get kth record values. Similarly sequential order statistics (𝛾i = (n − i + 1) 𝛽i; 𝛽1, 𝛽2,⋯ , 𝛽n > 0), order statistics with
non-integral sample size (𝛾i = 𝛽 − i + 1; 𝛽 > 0), Pfeifer record values (𝛾i = 𝛽i; 𝛽1, 𝛽2,⋯ , 𝛽n > 0) and progressive type II censored order
statistics

(
N, n ∈ ℕ,N = n +∑n

j=1 Rj,Rj ∈ ℕ0 and 𝛾j = N −∑j−1
𝜈=1 R𝜈 − j + 1, 1 ≤ j ≤ n

)
can be obtained as specific cases of gos.

Let PF stands for the probability measure on ℝ determined by F (x). Define 𝛼 = inf {x ∈ ℝ ∶ F (x) > 0} and 𝛽 = sup {x ∈ ℝ ∶ F (x) < 1},
then the pdf of X (r, n, m̃, k) with respect to a measure PF can be expressed as (see [7]):

fr (x) = cr−1Gr [F (x) |𝛾1, … , 𝛾r] I(𝛼,𝛽) (x) , (2)
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where cr−1 = ∏r
j = 1 𝛾j, F (x) = 1 − F (x) and IA denotes the indicator function of the set A. Further Gr (x) = Gr,0

r,r
(
x|𝛾1, … , 𝛾r

)
=

Gr,0
r,r

(
x | 𝛾1,…,𝛾r

𝛾1−1,…,𝛾r−1

)
is the particular Meijer’s G-function defined by

Gr,0
r,r

(
x | 𝛾1,…,𝛾r

𝛾1−1,…,𝛾r−1

)
= 1

2𝜋i ∫L
x−z

r
∏
j=1

(
𝛾j − 1 − z

)dz, |x| < 1 (3)

and L is an appropriately chosen contour of integration. For the definition of G-function and its numerous properties and applications, one
may refer to [8](Chapter 2). The joint PF ⊗ PF density of X (r, n, m̃, k) and X (s, n, m̃, k), 1 ≤ r < s ≤ n is given by [7]

fr,s
(
x, y

)
= cs−1Gs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s]

Gr [F (x) |𝛾1, … , 𝛾r]
F (x)

IA1

(
x, y

)
, (4)

where the set A1 is defined as A1 = {
(
x, y

)
∈ ℝ2 ∶ 𝛼 < x < y < 𝛽}.

Suppose X1,X2,⋯ ,Xn are iid random variables from exponential distribution with scale parameter 𝜃, i.e., F (x) = 1 − e
−x
𝜃 , x > 0, 𝜃 > 0

andX1∶n ≤ X2∶n ≤ ⋯ ≤ Xn∶n are the corresponding orders statistics. The normalized spacing of order statistics (when the random variables
are iid and from exponential distribution) was introduced by [9] as: D1∶n = nX1∶n and Dr∶n = (n − r + 1) (Xr∶n − Xr−1∶n) , 2 ≤ r ≤ n. [9]
proved thatDr∶n (1 ≤ r ≤ n) are iid fromexponential distributionwith scale parameter 𝜃. Utilizing the above transformation, it can be shown
thatXs∶n−Xr∶n andXs−r∶n−r are identically distributed across all 1 ≤ r < s ≤ n. Based on order statistics, the characterization of exponential
distribution through normalized spacing was discussed by [10–13] and [14]. The related results of characterization of exponential distribu-
tion for record values through spacingwas established by [11,13,15,16] and [14]. [17] has shown that using linear function of spacings instead
of linear function of order statistics ismore suitable for theoretical and applied purposes. Normalized spacing for goswas given by [6] (p. 81).
Suppose X1,X2,⋯ ,Xn be the iid random variables from exponential distribution and X (1, n, m̃, k) ,X (2, n, m̃, k)⋯,X (n, n, m̃, k) be the
corresponding goss. [6] has shown that D (1, n, m̃, k) = 𝛾1X (1, n, m̃, k) and D (r, n, m̃, k) = 𝛾r [X (r, n, m̃, k) − X (r − 1, n, m̃, k)] , 2 ≤ r ≤ n
are iid from exponential distribution. Further, [18] and [7] characterized the exponential distribution using normalized spacing of goss
based on increasing failure rate and decreasing failure rate distributions. [19] characterizedWeibull and Uniform distributions using record
values.

In this paper, we have extended the result of [16] and [14] and characterized the exponential distribution using normalized spacing of goss.
While the necessary part of themain theoremwas given by [20], in this paper, we have given a simple and easy proof for the sufficient part of
the theorem. The paper is divided into four sections. In Section 2, based on gos, we have characterized the exponential distribution. Section 3
contains a simulation study where we have shown that confidence interval based on upper records is shorter in length than asymptotic
confidence interval constructed by maximum likelihood estimate. Concluding remark focusing on the use of the result given in Section 2,
is contained in Section 4.

2. CHARACTERIZATION OF EXPONENTIAL DISTRIBUTION

In this section, exponential distribution has been characterized through the normalized spacing based on goss.

The following two Lemmas are given, which have been used in the proof of the theorem. Proof of the Lemmas are straightforward and
hence omitted.

Lemma 2.1. Let X (r, n, m̃, k) be the rth gos with pdf defined in (2), then

1
cr−1

= ∫
𝛽

𝛼
Gr [F (x) |𝛾1, … , 𝛾r] f (x) dx. (5)

Lemma 2.2. Let X (s − r, n − r, 𝜇, k) and X (s − r − 1, n − r, 𝜇, k) be the two adjacent gos and 𝜇 = (mr+1, … ,mn−1) 𝜖 ℝn−r−1, then

Fs−r,n−r,𝜇,k (u) − Fs−r−1,n−r,𝜇,k (u) =
cs−2
cr−1

Gs−r [F (u) |𝛾r+1, … , 𝛾s] F (u) . (6)

Theorem 2.1. Let X1,X2, … ,Xn be n non-negative iid random variables with absolutely continuous df (with respect to Lebesgue measure) F (x)
and pdf f (x), where F (x) is strictly increasing over the support (0,∞), then for   1 ≤ r < s − 1 < n,

X (l, n, m̃, k) − X (r, n, m̃, k) d= X (l − r, n, 𝜇, k) , l = s − 1, s (7)

if and only if

f (x) = 1 − e−
x
𝜃 , 𝜃 > 0. (8)
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Proof. The necessary part was established by [20] as follows:

X (l, n, m̃, k) − X (r, n, m̃, k) = ∑l
j=r+1

( zj
𝛾j

)
, l = s − 1, s, where zj ∼ exp (𝜃).

This implies that X (l, n, m̃, k) − X (r, n, m̃, k) d= X (l − r, n − r, 𝜇, k) , l = s − 1, s, where the symbol
d= represents equal in distribution.

To prove the sufficient part, we have for any positive and finite u

P [X (s, n, m̃, k) − X (r, n, m̃, k) ≥ u]

= cs−1 ∫
∞

0 ∫
∞

x+u
Gs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s]

f
(
y
)

F (x)
Gr [F (x) |𝛾1, … , 𝛾r] f (x) dydx. (9)

Let

A
(
x, y

)
= Gs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

f
(
y
)

F (x)
.

Integrating A
(
x, y

)
w.r.t. y over (x + u,∞), we have

∫
∞

x+u
A
(
x, y

)
dy = ∫

∞

x+u
Gs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

f
(
y
)

F (x)
dy

= −Gs−r [
F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

F
(
y
)

F (x)
||∞(x+u) + ∫

∞

x+u

𝜕
𝜕yGs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

F
(
y
)

F (x)
dy. (10)

Now, we know from [8] (p. 130), that

xaGr
(
x|𝛾1, … , 𝛾r

)
= Gr

(
x|𝛾1 + a, … , 𝛾r + a

)
, a 𝜖 ℝ. (11)

Using (11) in (10), we have

A
(
x, y

)
= −Gs−r [

F
(
y
)

F (x)
|𝛾∗r+1, … , 𝛾∗s ] ||∞(x+u) + ∫

∞

x+u

𝜕
𝜕yGs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

F
(
y
)

F (x)
dy, (12)

where 𝛾∗r+i = 𝛾r+i + 1, i = 1, 2, … , s − r.

Let 𝛾1∶r ≤ ... ≤ 𝛾r∶r denote the ordered parameters of 𝛾1, ..., 𝛾r, r ≥ 2, then

lim
x→1−

Gr
(
x|𝛾1, … , 𝛾r

)
= lim

x→0+
Gr

(
x|𝛾1, … , 𝛾r

)
= 0, if 𝛾1∶r > 1. (13)

[21] and

d
dx

Gr
(
x|𝛾1, … , 𝛾r

)
= 1

x [(𝛾r − 1)Gr
(
x|𝛾1, … , 𝛾r

)
− Gr−1

(
x|𝛾1, … , 𝛾r−1

)
] . (14)

[8] (p. 94)

Using (13) and (14) in (12), we get

A
(
x, y

)
= Gs−r [

F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ] + ∫
∞

x+u
Gs−r−1 [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

f
(
y
)

F (x)
dy

− (𝛾s − 1) ∫
∞

x+u
Gs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s ]

f
(
y
)

F (x)
dy.

This implies that

P [X (s, n, m̃, k) − X (r, n, m̃, k) ≥ u]

= cs−1 ∫
∞

0
Gs−r [

F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ]Gr [F (x) |𝛾1, … , 𝛾r] f (x) dx

+cs−1 ∫
∞

0 ∫
∞

x+u
Gs−r−1 [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s−1]

f
(
y
)

F (x)
Gr [F (x) |𝛾1, … , 𝛾r] f (x) dydx

− (𝛾s − 1) cs−1 ∫
∞

0 ∫
∞

x+u
Gs−r [

F
(
y
)

F (x)
|𝛾r+1, … , 𝛾s]

f
(
y
)

F (x)
Gr [F (x) |𝛾1, … , 𝛾r] f (x) dydx
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= cs−1 ∫
∞

0
Gs−r [

F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ]Gr [F (x) |𝛾1, … , 𝛾r] f (x) dx

+𝛾sP [X (s − 1, n, m̃, k) − X (r, n, m̃, k) ≥ u] − (𝛾s − 1) P [X (s, n, m̃, k) − X (r, n, m̃, k) ≥ u] (15)

that is

P [X (s, n, m̃, k) − X (r, n, m̃, k) ≥ u] − P [X (s − 1, n, m̃, k) − X (r, n, m̃, k) ≥ u]

= cs−2 ∫
∞

0
Gs−r [

F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ]Gr [F (x) |𝛾1, … , 𝛾r] f (x) dx.
(16)

Now in view of Lemma 2.1 together with Lemma 2.2, we have

P [X (s − r, n − r, 𝜇, k ] − P [X (s − r − 1, n − r, 𝜇, k) ≥ u]
= cs−2Gs−r [F (u) |𝛾∗r+1, … , 𝛾∗s ] ∫

∞

0
Gr [F (x) |𝛾1, … , 𝛾r] f (x) dx.

(17)

(16) and (17) will be equal if and only if

cs−2 ∫
∞

0
[Gs−r [

F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ] − Gs−r [F (u) |𝛾∗r+1, … , 𝛾∗s ]]

×Gr [F (x) |𝛾1, … , 𝛾r] f (x) dx = 0.
(18)

Since both Gr [F (x) |𝛾1, … , 𝛾r] and f (x) are positive, using the generalization of Muntz-Swartz theorem (see [22]), the above integral will be
zero only if

Gs−r [
F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ] − Gs−r [F (u) |𝛾∗r+1, … , 𝛾∗s ] = 0. (19)

For s > r+ 1, the function 𝛾∗r+1∶s > 1, Gs−r [
F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ] is unimodal, strictly increasing up to mode and then strictly decreasing.

Further, the value of mode only depends upon the parameter 𝛾∗r+1, … , 𝛾∗s , hence for the functions

Gs−r [
F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ]

and

Gs−r [F (u) |𝛾∗r+1, … , 𝛾∗s ]

mode occurs at the same point (see [21]; Theorem 2.1). The value of Gs−r [
F (x + u)
F (x)

|𝛾∗r+1, … , 𝛾∗s ] and Gs−r [F (u) |𝛾∗r+1, … , 𝛾∗s ] are equal

only at the mode. At mode, the random variable X satisfy F (x + u)
F (x)

= F (u), which imply that X satisfies the memoryless property. Only

continuous distribution over the support (0,∞), which satisfies thememoryless property is exponential distribution and hence the theorem.

3. SIMULATION STUDY

Here we have followed the procedure adopted by [19] and carried out the simulation to construct the confidence interval for scale parameter
𝜃 of exponential distribution.

LetX1, ...,Xn is a random sample from pdf f (x) = 1
𝜃 e

− x
𝜃 , x > 0, 𝜃 > 0. Based onmaximum likelihood estimator of exponential distribution,

100 (1 − 𝛼)%, 0 < 𝛼 < 1, asymptotic confidence interval
(
CIAsymptotic

)
for 𝜃 is given by

CIAsymptotic =
⎛⎜⎜⎜⎝

X

1 + Z𝛼/2
√n

, X

1 − Z𝛼/2
√n

⎞⎟⎟⎟⎠ (20)
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where X is sample mean of random variables and Z𝛼/2 is a positive constant satisfying the relation Φ
(
Z𝛼/2

)
− Φ

(
−Z𝛼/2

)
= 1 − 𝛼 and

Φ (.) is the cumulative distribution function of the standard normal distribution. Using Theorem 2.1, for record statistics, we have XU(n) −
XU(m) dXU(n−m). As Y = XU(n−m) ∼ G (n −m, 𝜃), based on Y, a 100 (1 − 𝛼)% confidence interval for 𝜃 is given by

CI =
(

2Y
𝜒2
2n,1−𝛼/2

, 2Y
𝜒2
2n,𝛼/2

)
. (21)

To construct these confidence intervals we simulate 10,000 samples of size n from (8) for n = 4, 5, ..., 100, m = 1 and 𝜃 = 0.2, 0.5, 1, 2. For
each sample, we calculate the limits of confidence interval given in (20) and (21). The plot of coverage lengths versus n = 4, 5, ..., 100, is
shown in Figs. 1–4. From the figures, it can be seen that the confidence interval obtained from (21) is smaller than the confidence interval
obtained from (20) for n ≤ 60. Thus, we get an improved estimator based on XU(n−m).

Figure 1 Plot of confidence interval for 𝜃 = 0.2.

Figure 2 Plot of confidence interval for 𝜃 = 0.5.

Figure 3 Plot of confidence interval for 𝜃 = 1.
Pdf_Folio:307
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Figure 4 Plot of confidence interval for 𝜃 = 2.

4. CONCLUDING REMARK

In real life, a statistician is often interested in guessing the probability distribution from which the true data is obtained. Characterization
problem is a theoretical approach to obtain the distribution function if certain conditions are fulfilled. A probability distribution can be
characterized inmany ways and themethod under study here is one of them. Further this result may be used to ease statistical computation.
For example, if we are computing moments of difference between two gos (order statistics, records, sequential order statistics, progressive
type II censored order statistics), when the random variables X1,X2, … ,Xn follow exponential distribution, then we may utilize the result
of Theorem 2.1. This result may also be utilized for calculating the sample quasi range, when the random variables X1, ...,Xn are iid having
pdf f (x) = 1

𝜃 e
−x
𝜃 , x > 0, 𝜃 > 0. Various statistical properties of quasi range can be established using Theorem 2.1. Sample quasi range

is used in estimating the population standard deviation if the sample size n is small (see [23]). [24] used the sample quasi range in setting
confidence intervals for the population standard deviation. Further, [25] and [26] have used the sample quasi range in estimating the scale
parameter for a location scale family of distribution, if the parent distribution is symmetric about the location parameter. Sample quasi
range and range are also extensively used in quality control.
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