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ABSTRACT
This study investigates the simultaneous optimization of multiple correlated responses that involve mixed ordinal and continu-
ous responses. The proposed approach is applicable for responses that have either an all ordinal categorical form are continuous
but have different marginal distributions, or when standard multivariate distribution of responses is not applicable or does not
exist. These multiple responses have rarely been the focus of studies despite their high occurrence during experiments. The cop-
ula functions have been used to construct a multivariate model for mixed responses. To resolve the computational problems of
estimation under a high dimension of responses, we have estimated parameters of the model according to a pairwise likelihood
estimation method. We adapted the generalized distance approach to determine settings of the factors that simultaneously opti-
mized the mean of continuous responses and desired cumulative categories of the ordinal responses. A simulation study was
used to evaluate the performance of the estimators from the pairwise likelihood approach. Finally, we presented an application
of the proposed method in a real data example of a semiconductor manufacturing process.

© 2019 The Authors. Published by Atlantis Press SARL.
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1. INTRODUCTION

Improvements to product or process performance are important problems in pharmacology, agriculture, and industry, which is the focus of
attention by manufacturers. Consequently, of particular interest is detection of optimal settings for the control factors at which the response
presents certain desired characteristics. Several publications focus on optimizing a single response (Draper [1]; Hoerl [2]; Peace [3]; Fowlkes
and Creveling [4]; Paul and Khuri [5]). However, numerous situations exist where multiple responses need to be simultaneously optimized.
For example, in clinical trials it is important to determine the combination of drugs with maximum therapeutic effects and the lowest level
of toxicity. In a semiconductor manufacturing process minimizing the defect count in the sensitive area and achieving the target amount of
an ion implanted in a wafer may simultaneously need to be considered for an ion implantation process.

Most quality improvement studies research approaches for simultaneous optimization of multiple responses. The desirability function is
one of the most popular methods to optimize a multi-response system (Harrington [6]; Derringer and Suich [7]; Kim and Lin [8]). This
approach, turns the several responses into a single response, which results in a combined desirability. The desirability function approach is
easy to apply and allows the user to make a subjective judgment on the importance of each response; however, this approach does not take
into account the variance–covariance structure of the responses. Ignoring the possible correlations between the responsesmay bemisleading
and leads to incorrect optimization decisions. To overcome this difficulty, Elsayed and Chen [9], Ko et al. [10], Pignatiello [11], Tsui [12],
and Vining [13] have proposed the use of the loss function approach to optimize multiple correlated responses. Khuri and Conlon [14]
introduced an efficient optimization algorithmbased on a generalized distance approach. These researchers assumed that allmean responses
in the system depended on the same set of controllable variables via a polynomial regression model. The first step of their algorithm was to
obtain individual optima of the estimated responses over the experimental region, after which they measured the deviation from the ideal
optimum by means of a distance function expressed in terms of the estimated responses along with their variance–covariance structure.
Finally, this function could be minimized to arrive at a set of suitable operating conditions.

The following regression models are used in the mentioned multiple response optimization procedure: ordinary least squares (OLS), gen-
eralized least squares (GLS), and multivariate regression (MVR), all of which are under the assumption of normal errors. OLS and GLS
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regressions consider modeling responses individually with the assumption of independent responses. OLS regression is under the homo-
geneity of error variances, whereas GLS is free from error variances. MVR models the responses simultaneously, by taking into considera-
tion a correlation between the errors. Normality assumption of responses and homogeneity of error variances may be violated in situations
where the responses are not normal, discrete, or exhibit heterogeneous variances. Such situations happen frequently in clinical and epidemi-
ological studies. Mukhopadhyay and Khuri [15] have recently modified Khuri and Conlon’s [14] algorithm to a generalized linear model
(GLM), which can be used to handle multiple discrete responses and bypass the heterogeneity of error variances. They assume all margin
distributions are the same and the joint distribution of responses are available and belong to the multivariate exponential family.

Anumber of different proposedmethods optimizemultiple continuous responses. Su andTong [16] have used principle component analysis.
However, Lai and Chang [17], Lu and Antony [18], and Tong and Su [19] used the fuzzy theorem whereas Wu and Chyu [20] suggested a
mathematical programming method.

However, ordinal responses observed are observed in number of experiments due to the quality characteristic or the convenience of the
measurement technique and cost-effectiveness. In the optimization of ordinal responses, Taguchi [21–23] primarily employed the accumu-
lation analysis (AA)method. In thismethod the corresponding cumulative categories are defined, then the researcher determines the effects
of the factor levels according to the probability distribution by the categories. Finally, the optimal control factor settings are obtained by the
desired cumulative category and the important location effects are taken into consideration. Nair [24] has proposed two scoring schemes
that separately detect the location and dispersion effects. Jeng and Guo [25] presented a weighted probability-scoring scheme (WPSS) to
avoid the computational complexity of Nair’s scoring scheme. Thy considered the location and dispersion effects. Chipman and Hamada
[26] used a GLMwith Bayesian estimation techniques to optimize these type of responses. Computational complexity was more than Nair’s
scoring scheme.

In case of mixed responses very few studies have been conducted that optimize the ordinal-continuous responses. Hsieh and Tong [27] have
employed an artificial neural network technique to optimize the ordinal-continuous responses, a method that is employed with difficulty
in industrial settings. Wu [28] has presented an approach based on the quality loss function of Taguchi [23] where ordinal responses can
be treated as continuous responses and a weighted average quality loss is defined for the ordinal responses. This approach is easier than the
approach by Hsieh and Tong [27], however there is no correlation between the responses.

In this article, we introduce an approach to simultaneously optimize mixed correlated continuous and ordinal responses. Our procedure
can be easily applied when responses are all ordinal, all continuous with different types of marginal distributions, or in cases where standard
multivariate distribution of responses is not applicable or does not exist. For example, when the entire marginal distribution of responses
is gamma and the responses are correlated, it is difficult to determine the multivariate exponential distribution. In this approach we have
used the Gaussian copula function. We extended the regression models for a bivariate mixed outcomes of De Leon and Wu [29] to the
multivariate mixed discrete and continuous outcomes through pairwise fitting of models for the joint modeling of a multivariate mixed
outcome based on the concept by Fieuws andVerbeke [30]. After specifying the effects of the factor levels on themean continuous responses
and probability distributions by the categories of the ordinal responses, we have adopted the generalized distance approach of Khuri and
Conlon [14] to carry out the optimal control factor settings by mean of continuous responses and desired cumulative categories of ordinal
responses. Copula-based dependencies, introduced in statistical literature by Skalar [31], allows one to model the dependence structure
independently of marginal distributions. This approach provides an alternative and more useful representation of multivariate distribution
compared to traditional approaches such as multivariate normality. Formally, copula can be defined as follows: Suppose that we have K
marginal CDFs, FX1

(⋅) , . . ., FXK
(⋅), where X1, . . .,XK are the random variables. Sklar’s theorem states that every k-dimensional cumulative

distribution FX1,. . .,XK
(⋅) = P (X1 ≤ x1, . . .,XK ≤ xk) of a random vector (X1, . . .,XK) can be expressed by involving only the marginals

FX1
(x1) , . . ., FXK

(xk) as FX1,. . .,XK
(x1, . . ., xk) = C

(
FX1

(x1) , . . ., FXK
(xk)

)
, where C is a copula. Gaussian copulas are an important family

which has been used in a variety of applications Song [32]. The P-dimensional Gaussian copula is defined as

C
(
FX1

(x1) , . . ., FXK
(xK)

)
= ΦK

(
Φ−1 {FX1

(x1)} , . . ., Φ−1 {FXK
(xK)} ;R

)
,

where Φ−1 (⋅) is the inverse function of the standard normal distribution Φ (⋅) and ΦK (⋅;R) is the k-dimensional standard multivariate
normal distribution function. A more through overview can be found in the reference works by Joe [33] or by Nelsen [34].

We considered the real data obtained from a semiconductor manufacturing process in which the defect counted on the sensitive area (an
ordinal response) and the amount of ion implanted (a continuous response) require simultaneous investigation for an ion implantation
process (Hsieh and Tong [27]), as discussed in Section 6.

This paper is organized as follows: We define a multivariate model for mixed responses in Section 2. In Section 3, parameters of regression
models and variance–covariance of the parameters are simultaneously estimated. The confidence region of the parameters, estimated mean
of continuous responses, and estimated desired cumulative categories of ordinal responses are obtained in this section. We use all of these
for the optimization algorithm. Section 4 outlines the optimization algorithm according to a generalized distance approach. In Section 5, we
have conducted a simulation study to compare the performance of estimators from pairwise and full likelihood estimation. An application
of the proposed optimization algorithm is described in Section 6 with a real data example. Finally, concluding remarks are presented in
Section 7.Pdf_Folio:213
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2. A MULTIVARIATE MODEL FOR MIXED RESPONSES

Weconsider amixedmulti-response obtained from the ith run of the experiment, i = 1, . . ., n, isYi =
(
Yi1, . . .,YiP,Zi1, . . .,ZiQ

)′, whereYips,
for p = 1, . . ., P are continuous responses and Ziqs, for q = 1, . . .,Q are ordinal responses with Kq levels. Underling Ziq is Y∗iq, a continuous
latent variable, such that

Ziq = kq ⇔ 𝛾kqq < Y∗iq ≤ 𝛾kq+1q , kq = 0, . . .,Kq − 1,

where 𝛾0q = −∞, 𝛾Kq
q = +∞ and 𝛾q =

(
𝛾1q , . . ., 𝛾

Kq−1
q

)′
is an unknown vector of the threshold parameters. Let cumulative distribution

function (CDF) of Yip and Y∗iq be FYip

(
.; 𝜇p (xi) , 𝜃p

)
and FY∗iq

(
.; 𝜇∗q (xi) , 𝜃∗q

)
respectively, where 𝜇p (xi) = E

(
Yip

)
= hp

(
𝛿′p (xi) 𝛽p

)
, 𝜇∗q (xi) =

E
(
Y∗iq

)
= hq

(
𝛿∗′q (xi) 𝛽∗q

)
. Here, 𝛿p (xi) and 𝛿∗q (xi) are known vector functions of the covariate vector xi = (xi1, . . ., xim)′, 𝛽p and 𝛽∗q are

vectors of regression coefficient and 𝜃p and 𝜃∗q are the marginal parameters. We use the Gaussian copula function to jointly analyze these
types of responses. This function has been used in a variety of applications (Song [32]) because of its flexibility and analytical tractability,
and to extend the regression models for a bivariate mixed outcomes of De Leon andWu [29] to the multivariate mixed outcomes. As it was
shown in recent paper Jiryaie et al. [35] the joint CDF and density of Yi can be obtained as follows:

P
(
Yi1 ≤ yi1, . . .,YiP ≤ yiP,
Zi1 = k1, . . .,ZiQ = kQ

)
= P

(
Yi1 ≤ yi1, . . .,YiP ≤ yiP,

𝛾k11 < Y∗i1 ≤ 𝛾k1+11 , . . ., 𝛾kQQ < Y∗iQ ≤ 𝛾kQ+1Q
;R

)

=
1

∑
𝜀1=0

. . .
1

∑
𝜀Q=0

(−1)Q+∑
Q
j=1 𝜀j ΦP∗

(
t1, . . ., tP,

s(k1+𝜀1)1 , . . ., s(kQ+𝜀Q)Q
;R

)

and

fYi

(
yi; 𝜃

)
=

1

∑
𝜀1=0

. . .
1

∑
𝜀Q=0

(−1)Q+∑
Q
j=1 𝜀j 𝜕P

𝜕yP. . .𝜕y1
ΦP∗

(
t1, . . ., tP,

s(k1+𝜀1)1 , . . ., s(kQ+𝜀Q)Q
;R

)
, (1)

respectively, where tp = Φ−1
(
FYip

(
yip; 𝜇p, 𝜃p

))
, p = 1, . . ., P, s

(
kq+𝜀q

)
q = Φ−1

(
FY∗iq

(
𝛾kq+𝜀qq ; 𝜇∗q , 𝜃∗q

))
, q = 1, . . .,Q, P∗ = P + Q, 𝜃 is a

vector parameter that contains 𝛽p, 𝛽∗q , 𝛾q, 𝜃p, 𝜃∗q and R,Φ−1 (.) is the inverse function of the univariate standard normal CDF, whileΦP∗ (.;R)
is the P∗-dimensional standard CDF with correlation matrix R

(
rij
)
and yi =

(
yi1, . . ., yiP, k1, . . ., kQ

)′.
2.1. Estimation

The maximum likelihood estimator (MLE) of 𝜃 can be found by maximizing the log-likelihood function 𝓁 (𝜃) =
n

∑
i=1

logfYi

(
yi; 𝜃

)
, with an

iterative technique such as the Newton–Raphson updating scheme. Hence we should layout the density (1), let fYP

(
yp
)
be the density of Yp,

Sq = Φ−1
(
FY∗q

(
Y∗q

))
, Tp = Φ−1

(
FYp

(
Yp

))
, and R|T1∶Tk

= RTk+1∶SQ|T1∶Tk
be the partial correlation matrix for, Tk+1, . . .,TP, S1, . . ., SQ, after

eliminating T1, . . .,Tk, for k = 1, . . ., P − 1. Note that

ΦP∗

(
t1, . . ., tp,

s(k1+𝜀1)1 , . . ., s(kQ+𝜀Q)Q
;R

)
= ∫

t1

−∞
𝜙 (t)ΦP∗−1

(
t2|1, . . ., tP|1,

s(k1+𝜀1)1|1 , . . ., s(kQ+𝜀Q)Q|1
;R|T1

)
dt, (2)

where 𝜙 is a standard normal density. Since 𝜕t1/𝜕y1 = fY1

(
y1
)
/𝜙 (t1) the differentiation of (2) with respect to y1 is

ΦP∗−1

(
t2|1, . . ., tP|1,

s(k1+𝜀1)1|1 , . . ., s(kQ+𝜀Q)Q|1
;R|T1

)
fY1

(
y1
)
. (3)

Next with applying (2), differentiation of function (3) with respect to y2 is

ΦP∗−2

(
t3|1∶2, . . ., tP|1∶2,

s(k1+𝜀1)1|1∶2 , . . ., s(kQ+𝜀Q)Q|1∶2
;R|T1∶T2

)
×

𝜙
(
t2|1

)
√1 − r2T1T2

fY2

(
y2
)

𝜙 (t2)
× fY1

(
y1
)
,

Pdf_Folio:214
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where 𝜕t2|1/𝜕y2 = 𝜙
(
t2|1

)
𝜕t2/𝜕y2; so by repeated application of (2) we can find the densities of Y. We remark that notice the elements of

R|T1∶Tk
can be computed recursively. For example,

rTpSq|T1∶Tk
=

rTpSq|T1∶Tk−1
− rTkTp|T1∶Tk−1

rTkSq|T1∶Tk−1

√
(
1 − r2TkTp|T1∶Tk−1

)(
1 − r2TkSq|T1∶Tk−1

) ,
for p = k + 1, . . ., P, q = 1, . . .,Q.
In situations where the dimension of the vector variable Y is elevated, some difficulties will arise to layout the density (1). This is particu-
larly true for high dimensional continuous vector variables due to differentiating the nested conditional normal distribution. In addition,
the dimension of vector parameter 𝜃 in the joint distribution of Y will increase, which leads to computational problems to estimate the
parameters. Fortunately for every dimension of Y all pair marginal density can be easily found from (1) as follows:

fYp1
,Yp2

(
yp1 , yp2 ; 𝜇p1 (x) , 𝜇p2 (x) , 𝜃p1 , 𝜃p2

)
= fYp1

(
yp1

)
fYp2

(
yp2

)
× |R∗|−

1
2 exp {12

(
tp1 , tp2

)′ (I2 − R∗−1) (tp1 , tp2)} ,
fYp,Zq

(
yp, kq; 𝜇p (x) , 𝜇∗q (x) , 𝜃p, 𝜃∗q

)
= fYp

(
yp
)
[Drqp

(
s
kq+1
q , tp

)
− Drqp

(
s
kq
q , tp

)
] ,

fZq1
,Zq2

(
kq1 , kq2 ; 𝜇

∗
q1 (x) , 𝜇

∗
q2 (x) , 𝜃

∗
q1 , 𝜃

∗
q2

)
=

1

∑
𝜀q1=0

1

∑
𝜀q2=0

(−1)𝜀q1+𝜀q2ΦP
(
s(k1+𝜀1)q1 , s(k2+𝜀2)q2

)
.

Herein q1 ≠ q2, p1 ≠ p2, q1, q2, q = 1, . . .,Q and p1, p2, p = 1, . . ., P, R∗ =
(

1 rp1p2
rp2p1 1

)
and Dr (a, b) = Φ

(
a−rb
√1−r2

)
.

In order to overcome these complicated problems, we can use the pairwise likelihood estimation procedure of Fieuws and Verbeke [30]. In
this approach instead of maximizing the full log-likelihood, each pairwise log-likelihood is separately maximized. Let the vector parameter
of all possible pair likelihoods be 𝜓 =

(
𝜓′1, . . ., 𝜓′m

)′, 𝜓j represents the vector of all parameters in the jth bivariate joint model, j = 1, . . .,m,
m = (P∗) (P∗ − 1) /2 is the total number of possible pairs. Note the vector parameter 𝜃 of density (2) and 𝜓 are not equivalent, elements of
correlation matrix R in 𝜃 have a single counterpart in 𝜓, while the marginal parameters in 𝜃 have (P∗ − 1) counterparts in 𝜓. Thus

̂𝜃 = A ̂𝜓, (4)

whereA is amatrix containing the appropriate coefficients to calculate the averages and ̂𝜓 =
( ̂𝜓′1, . . ., ̂𝜓′m

)′ which ̂𝜓j, j = 1, . . .,m is obtained
from maximizing the jth pair log-likelihood, 𝓁j

(
𝜓j
)
= ∑n

i=1 log fYij

(
yij; 𝜓j

)
, where fYij

(
yij; 𝜓j

)
is the jth pair joint density with yi1 =

(yi1, yi2), . . ., ym =
(
yi(P−1), yiP

)
. It can be shown that

( ̂𝜃 − 𝜃
)
∼ N (0, Σ), with Σ = AJ−1KJ−1A′, where J is a block-diagonal matrix with

diagonal blocks Jtt and K is a symmetric matrix containing blocks Ktr, as Jtt = ∑n
i=1

(𝜕𝓁it(𝜓t)
𝜕𝜓t

)(𝜕𝓁it(𝜓t)
𝜕𝜓t

)′
and Ktr = ∑n

i=1

(𝜕𝔩it(𝜓t)
𝜕𝜓t

)
(𝜕𝔩ir(𝜓r)

𝜕𝜓r

)′

, t, r = 1, . . .,m.

For computational convenience in the estimation step the constraints on rij ∈ (−1, 1) can be removed with the Fisher’s Z-transformation

r∗ij =
1
2
log

(
1+rij
1−rij

)
. So by the delta method, we have SE

(
̂rij
)
=
(
1 + ̂rij

) (
1 − ̂rij

)
SE

(
̂r∗ij
)
, SE is the standard error.

Based onWald [36] an approximate 100 (1 − 𝛼)% confidence region for 𝛽 =
(
𝛽′1, . . ., 𝛽′p, 𝛽†

′

1 , . . ., 𝛽†
′

Q

)′
with 𝛽†q =

(
𝛾kqq , 𝛽∗′q

)′
, q = 1, . . .,Q

is given by

C = {𝛽:
( ̂𝛽 − 𝛽

)′ (var ( ̂𝛽
))−1 ( ̂𝛽 − 𝛽

)
} ≤ 𝜒2

𝛼,p̃} , (5)

here p̃ is the length of the vector parameter 𝛽.
In the ordinal-continuous multi-response system the goal of simultaneous optimization is determining a point, xo, in the design region, R,
at which the estimated mean responses of continuous variables, �̂�p (xo) = hp

(
𝛿′p (xo) ̂𝛽p

)
, and cumulative probabilities of desired categories

kq = koq, q = 1, . . .,Q, p̂
(
Zq ≤ koq

)
= FY∗q

(
𝛿′†q (xo) ̂𝛽†q ; 0, ̂𝜃∗q

)
, 𝛿†q (x) =

(
1, −𝛿′∗

q (x)
)′

, are optimal. Let 𝜇 (x) =
(
𝜇1 (x) , … 𝜇P (x) ,

Pdf_Folio:215



216 F. Jiryaie and A. Khodadadi / Journal of Statistical Theory and Applications 18(3) 212–221

p
(
Z1 ≤ ko1

)
, . . ., p

(
ZQ ≤ koQ

))′
, 𝜂p (x) = 𝛿′p (x) 𝛽p and 𝜂oq (x) = 𝛿′†

q (x) 𝛽†q a first-order Taylor expansion of �̂�p (x) and p̂
(
Zq ≤ koq

)
around

𝜂p (x) and 𝜂oq (x), respectively are

�̂�p (x) = 𝜇p (x) +
𝜕hp

(
𝜂p (x)

)
𝜕𝜂p (x)

[ ̂𝜂p (x) − 𝜂p (x)]

and

p̂
(
Zq ≤ koq

)
= p

(
Zq ≤ koq

)
+
𝜕FY∗q

(
𝜂oq (x) ; 0, 𝜃∗q

)
𝜕𝜂oq (x) [ ̂𝜂oq (x) − 𝜂oq (x)] .

Thus an approximation of var (�̂� (x)) is given by

var (�̂� (x)) = ABvar
( ̂𝛽

)
B′A′. (6)

Herein A = diag

(
𝜕𝜇1(x)

𝜕𝜂1(x)
, . . ., 𝜕𝜇P(x)

𝜕𝜂P(x)
,
𝜕FY∗

1
(𝜂o

1(x);0,𝜃1)
𝜕𝜂o

1(x)
, . . .,

𝜕FY∗
Q
(𝜂o

Q(x);0,𝜃Q)
𝜕𝜂o

Q(x)

)
, B is a block-diagonal matrix with diagonal blocks 𝛿p (x), p =

1, . . .,P and 𝛿†q (x), q = 1, . . .,Q. So the estimation of (6) is

v̂ar (�̂� (x)) = ÂBvar
( ̂𝛽

)
B′Â′, (7)

where Â is the MLE of A.

3. THE SIMULTANEOUS OPTIMIZATION PROCEDURE

At the outset, we individually optimize each estimated mean response of continuous variables, �̂�p (x), p = 1, . . .,P and cumulative proba-
bilities of desired categories FY∗q

(
𝛿′†

q (xo) ̂𝛽†q ; 0, ̂𝜃∗q
)
, q = 1, . . .,Q over the experimental region R. We denote the individual optimum value

of �̂�p (x), p = 1, . . ., P and FY∗q
(
𝛿′†

q (xo) ̂𝛽†q ; 0, ̂𝜃∗q
)
, q = 1, . . .,Q by ̂𝜅j, j = 1, . . ., P∗. If all the individual optima ̂𝜅1, . . ., ̂𝜅P∗ are attained at the

same setting of x in R, then the optimization problemwill be solved and no further study will be required; otherwise, it is necessary to search
compromise conditions favorable for all responses. To access these compromise conditions, we follow the generalized distance approach
by Khuri and Conlon [14] that Mukhopadhyay and Khuri [15] adapted for the multivariate GLM situation. This approach attempts to
find the conditions on x that minimizes the distance between the estimated mean responses vector �̂� (x) and the individual optima vector
̂𝜅 (x) =

(
̂𝜅1 (x) , . . ., ̂𝜅p∗ (x)

)′. Such a distance function is denoted by 𝜌 [�̂� (x) , ̂𝜅]. A variety of choices is possible for the distance measure
𝜌, Khuri and Conlon [14] have suggested the two following distance functions:

𝜌1 [�̂� (x) , ̂𝜅] = {(�̂� (x) − ̂𝜅)′ {v̂ar (�̂� (x))}−1 (�̂� (x) − ̂𝜅)}
1
2 (8)

and

𝜌2 [�̂� (x) , ̂𝜅] = {
m

∑
j=1

(
�̂�j (x) − ̂𝜅j

)2
̂𝜅2j

}

1
2
.

Since ̂𝜅1, . . ., ̂𝜅∗P are the individual optimumvalues of the randomvariables �̂�p (x), p = 1, . . ., P and FY∗q
(
𝛿′†

q (xo) ̂𝛽†q ; 0, ̂𝜃∗q
)
, q = 1, . . .,Q, they

are random variables themselves. We need to incorporate the variability of ̂𝜅 into 𝜌. For this purpose, suppose 𝜉j (𝛽) to be the true optimum
value of the jth

(
j = 1, . . ., P∗

)
mean response or cumulative probability optimized individually over R, and let 𝜉 (𝛽) = [𝜉1 (𝛽) , . . ., 𝜉P∗ (𝛽)]′.

Minimizing 𝜌 [�̂� (x) , 𝜉 (𝛽)] is impossible because 𝜉 (𝛽) is unknown. We instead minimize an upper bound of 𝜌 [�̂� (x) , 𝜉 (𝛽)] to carry
out the optimization step, as in Khuri and Conlon [4]. Let D𝜉 be a confidence region for the true optima vector 𝜉 (𝛽). By employing the
100 (1 − 𝛼)% confidence region C on 𝛽 given in (5), Mukhopadhyay and Khuri [15] show that an appropriate choice of D𝜉 is given by

P [𝜉 (𝛽) ∈ ×P∗
j=1Dj (C)] = P [𝜉j (𝛽) ∈ Dj (C) |j = 1, . . ., P∗] ≥ P (𝛽 ∈ C) ≈ 1 − 𝛼, (9)

where × denotes the Cartesian product and Dj (C) =
(
min𝛾∈C 𝜉j (𝛾) ,max𝛾∈C 𝜉j (𝛾)

)
is an individual confidence interval of 𝜉j (𝛽).

If 𝜉 (𝛽) ∈ D𝜉 , then we have

𝜌 [�̂� (x) , 𝜉 (𝛽)] ≤ max
𝜉∈D𝜉

𝜌 [�̂� (x) , 𝜉] , (10)
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and hence

min
x∈R

𝜌 [�̂� (x) , 𝜉 (𝛽)] ≤ min
x∈R

max
𝜉∈D𝜉

𝜌 [�̂� (x) , 𝜉] .

Therefore by minimizing the right-hand side of (10) over the region R, we adopt a conservative distance approach to the optimization
problem.

4. SIMULATION STUDY: FULL VERSUS PAIRWISE LIKELIHOOD ESTIMATION

In order to evaluate and compare the performance of the estimators from the pairwise and full likelihood approaches for the mixed ordinal-
continuous responses, we have considered a simple 3 × 3 design with xi = (xi1, xi2)′, xij ∈ {−1, 0, 1}, i = 1, . . ., 9 and j = 1, 2. Distribution
of the responses have the following form:

Yi1 ∼ Gamma (𝜇1 (xi) , 𝜈) , Yi2 ∼ normal
(
𝜇2 (xi) , 𝜎2) ,

where 𝜇1 (xi) = exp (𝛽10 + 𝛽11xi1 + 𝛽12xi2), 𝜇2 (xi) = 𝛽20+𝛽21xi1+𝛽22xi2 and the density of theGamma (𝜇1 (xi) , 𝜈) distribution is specified
as

fYi1

(
yi1; 𝜇1 (xi) , 𝜈

)
= 1
Γ (𝜈)

(
𝜈

𝜇1 (xi)

)𝜈
y𝜈−1
i1 e

−
𝜈

𝜇1(xi)
yi1 , (11)

with E (Yi1) = 𝜇1 (xi) and CDF FYi1
(.; 𝜇1 (xi) , 𝜈),

Zi1 = {0 Y∗i1 + 𝜇∗1 (xi) ≤ 𝛾1
1 Y∗i1 + 𝜇∗1 (xi) > 𝛾1

, Zi2 =
⎧
⎨
⎩

0 Y∗i2 + 𝜇∗2 (xi) ≤ 𝛾12
1 𝛾12 < Y∗i2 + 𝜇∗2 (xi) ≤ 𝛾22
2 Y∗i2 + 𝜇∗2 (xi) > 𝛾22

,

where Y∗1 , Y∗2 ∼ normal (0, 1), 𝜇∗1 (xi) = 𝛽∗11xi1 + 𝛽∗12xi2, 𝜇∗2 (xi) = 𝛽∗21xi1 + 𝛽∗22xi2. Following (1) the joint density of Yi = (Yi1,Yi2,Zi1,Zi2)
′

can be simplified as

fYi

(
yi; 𝜃

)
=

fYi1

(
yi1; 𝜇1 (xi) , 𝜈

)
𝜙
(
t2|1

)
𝜎√1 − r2T1,T2

𝜑
(
yi1, yi2, k1, k2

)
,

herein 𝜑
(
yi1, yi2, k1, k2

)
is evaluated for yi1 ≥ 0 and yi2 ∈ R at k1 = 0, 1 and k2 = 0, 1, 2 in Table 1 with Φ2 (⋅; r∗) the standard bivariate

normal CDF with correlation r∗ and t2 =
(
yi2 − 𝜇2 (xi)

)
/𝜎.

t1 = Φ−1 (F (yi1; 𝜇1 (xi) , 𝜈)) , t2|1 = t2 − rT1T2
t1

√1 − r2T1T2

,

s1|1 =
𝛾1 − 𝜇∗1 (xi) − rT1S1 t1

√1 − r2T1S1

, s1|1∶2 =
s1|1 − rT2S1|T1

t2|1

√1 − r2T2S1|T1

,

s(j)2|1 =
𝛾(j)2 − 𝜇∗2 (xi) − rT1S2 t1

√1 − r2T1S2

, s(j)2|1∶2 =
s(j)2|1 − rT2S2|T1

t2|1

√1 − r2T2S2|T1

,

Table 1 𝜑
(
yi1, yi2, k1, k2

)
evaluated at k1 = 0, 1, and k2 = 0, 1, 2.

k1 = 0 k1 = 1

k2 = 0 Φ2

(
s1|1∶2, s(1)2|1∶2; r

∗
)

Φ2

(
s1|1∶2, s(2)2|1∶2; r

∗
)
−Φ2

(
s1|1∶2, s(1)2|1∶2; r

∗
)

k2 = 1 Φ2

(
s1|1∶2, s(2)2|1∶2; r

∗
)
−Φ2

(
s1|1∶2, s(1)2|1∶2; r

∗
)

Φ
(
s(2)2|1∶2

)
−Φ

(
s(1)2|1∶2

)
−Φ2

(
s1|1∶2, s(2)2|1∶2; r

∗
)
+ Φ2

(
s1|1∶2, s(1)2|1∶2; r

∗
)

k2 = 2 Φ
(
s1|1∶2

)
−Φ2

(
s1|1∶2, s(2)2|1∶2; r

∗
)

1−Φ
(
s(2)2|1∶2

)
−Φ

(
s1|1∶2

)
+ Φ2

(
s1|1∶2, s(2)2|1∶2; r

∗
)
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Table 2 Result of simulation study for pairwise and full likelihood estimation.

Parameter Truth RBp × 100 RBf × 100 Ave SEp SDp REp MSEp MSEf

𝛽10 1 −0.8577 −25.0141 0.1035 0.1107 0.9354 0.0123 0.0798
𝛽11 −3 −0.1182 −0.2141 0.1260 0.1559 0.8080 0.0243 0.0254
𝛽12 −2 −0.2783 −1.1402 0.1259 0.1374 0.9164 0.0189 0.0217
𝛽20 −1 3.6322 16.4251 0.1867 0.1641 1.1380 0.0282 0.0608
𝛽21 1 0.7144 −0.1973 0.2410 0.2026 1.1893 0.0411 0.0451
𝛽22 −1 −1.4872 −2.2351 0.2396 0.2007 1.1939 0.0405 0.0454
𝛾1 1 11.4930 −29.3023 0.3426 0.3477 0.9854 0.1272 0.0890
𝛽∗11 −1 10.1537 −10.6593 0.3854 0.3956 0.9741 0.1513 0.0567
𝛽∗12 2 10.6494 −14.6922 0.5231 0.4963 1.0539 0.3493 0.0919
𝛾1
1 −0.25 1.6823 116.7175 0.2153 0.1948 1.1054 0.0380 0.0880
𝛾2
1 1 6.0361 −2.0552 0.2547 0.2356 1.0808 0.0592 0.0396

𝛽∗21 1 6.4798 −15.4204 0.2652 0.2426 1.0930 0.0631 0.0521
𝛽∗22 −2 5.1658 −14.7951 0.3553 0.3184 1.1161 0.1120 0.0920
𝜍 1 −4.3821 29.3046 0.0753 0.1196 0.6298 0.0162 0.0890
𝜈 0.4 3.5435 −20.1926 0.0534 0.0521 1.0258 0.0029 0.0090

rT1T2
0.5 −1.5025 18.1566 0.0918 0.0851 1.0793 0.0073 0.0098

rT1S1 0.5 4.4983 −40.5024 0.1917 0.1621 1.1827 0.0268 0.0424
rT1S2 0.5 2.7490 −40.6943 0.1427 0.1278 1.1160 0.0165 0.0428
rT2S1 0.5 5.1281 −31.6022 0.2037 0.1746 1.1671 0.0311 0.0331
rT2S2 0.5 3.3858 −33.5907 0.1484 0.1312 1.1306 0.0175 0.0340
rS1S2 0.5 6.8221 18.7066 0.3100 0.2837 1.0927 0.0817 0.0099

True values are given, the relative bias (RB = Bias ÷ Parameter) under the pairwise
(
RBp

)
and full likelihood(

RBf

)
, average estimate of standard errors

(
Ave SEp

)
, empirical standard division

(
SDp

)
and relative efficiency(

REp = Ave SEp ÷ SDp

)
under the pairwise approach are obtained. Mean squared error under pairwise

(
MSEp

)
and

full likelihood
(
MSEf

)
are listed.

rT2Sj|T1
=

rT2Sj − rT1T2
rT1Sj

√
(
1 − r2T1T2

)(
1 − r2T1Sj

) , r∗ = rS1S2|T1
− rT2S1|T1

rT2S2|T1

√
(
1 − r2T2S1|T1

)(
1 − r2T2S2|T1

) ,
for j = 1, 2. A total of R = 1000 repeated samples of size ni = 10, i = 1, . . ., 9 for each run of experiments were generated with the true
values of parameters given in Table 2. Estimation of parameters and calculation of the likelihood score functions at estimated parameters
were implemented in R using the “optim” and “fdHess” functions, respectively. The results of this simulation study are reported in Table 2.
Relative biases and mean square errors of the pairwise and full likelihood suggest that the pairwise likelihood estimation obtains suitable
point estimates with small mean square errors. Furthermore relative efficiencies that are generally close to 1 in the pairwise method show
that pairwise likelihood estimations have standard errors which reflect these estimates true sampling variability.

5. ILLUSTRATIVE EXAMPLE

In dealing with simultaneous optimization of mixed ordered categorical and continuous responses, a case study of an ion implantation
process from a Taiwanese integrated circuit (IC) fabrication manufacturer was conducted by Hsieh and Tong [27] based on artificial neural
networks. This example contained two quality responses: i) the amount of ion implanted in a wafer, continuous response denoted by Y, and
ii) the defect situation of a sensitive area in the wafer, an ordered response denoted by Z, which included five ordered categories: very good,
good, not good not bad, bad, and very bad. The responses was listed in a progressively worse order; we denoted these categories as 1–5.
Each wafer had 36 sensitive areas that were tested independently. There were six control factors denoted by X1, . . .,X6. Between these, X1
was discrete whereas the others were continuous. Table 3 lists the control factors with their levels and coded levels of X1, . . .,X6 denoted by
x1, . . ., x6. Therefore the region of the experiment transformed to the R = {x = (x1, . . ., x6)′ |x1 = 0, 1; 1 ≤ xl ≤ 3, l = 2, ..6}. The two mixed
responses data in a L18 orthogonal array are given in Table 4. In this table mik, i = 1, . . ., 18, k = 1, ..5 are the number of 36 sensitive areas
in the ith wafer, which was tested in the ith run (ith level of x) of the experiment which fell into the kth category.

The continuous response is a nominal-the-best (NTB) with a target value of 1000 ( after the data was transformed ). First, for the continuous
response Y we fitted the normal GLM regression with link 𝜇 (xi) = 𝛿′ (xi) 𝛽 and gamma GLM regression with link 𝜇 (xi) = exp (𝛿′ (xi) 𝛽)Pdf_Folio:218
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Table 3 Control factors and coded factors with their levels.

Level X1 X2 X3 X4 X5 X6 x1 x2 x3 x4 x5 x6

Level 1 Type 1 6 50 5 4 25 1 1 1 1 1 1
Level 2 Type 2 12 100 10 8 50 0 2 2 2 2 2
Level 3 18 150 15 12 75 3 3 3 3 3

Table 4 Experimental data.

i yi1 mi1 mi2 mi3 mi4 mi5

1 741.4 33 3 0 0 0
2 972.1 24 5 6 1 0
3 796.1 6 2 20 8 0
4 797.8 0 28 4 4 0
5 796.6 2 2 4 12 16
6 802.1 4 0 20 4 8
7 908.2 0 2 6 14 14
8 645.7 10 2 8 4 12
9 650.3 0 0 0 24 12
10 1072.5 34 0 2 0 0
11 1316.1 30 2 4 0 0
12 890.5 10 10 12 0 4
13 886.6 14 8 10 4 0
14 826.5 8 16 12 0 0
15 800.1 0 8 6 4 18
16 816.1 18 12 6 0 0
17 824.2 10 6 0 4 16
18 735.6 0 4 2 6 24

where the density of the Gamma (𝜇i, 𝜈) distribution was specified as (11), 𝛿 (xi) = (1, xi1, . . ., xi6)′ and 𝛽 = (𝛽0, 𝛽1, . . ., 𝛽6)′. Akaike infor-
mation criteria (AIC) were 230.37 and 225.1, respectively. Gamma distribution appeared to have a better fit to this response compared to
normal distribution.We assumed that the dispersion parameter 𝜈 was known and did not need to be estimated in the joint regressionmodel.
In our example we used its MLE in the marginal gamma GLM, which was 35.9348.

Zi, i = 1, . . ., n, n = 18 has the ordinal form with K = 5 categories. Therefore we have used the cumulative probabilities. The kth cumulative
probability in the ith run of the experiment is

p (Zi ≤ k) = FY∗
(
𝛾k − 𝛿∗ (xi)′ 𝛽∗

)
=

exp
(
𝛾k − 𝛿∗ (xi)′ 𝛽∗

)
1 + exp

(
𝛾k − 𝛿∗ (xi)′ 𝛽∗

) ,
where k = 0, . . ., (K − 1), 𝛿∗ = (xi1, . . ., xi6)′, 𝛽∗ =

(
𝛽∗1 , . . ., 𝛽∗6

)′, and 𝛾 = (𝛾1, . . .𝛾4)′.
Yi = (Yi,Zi)

′ given covariate xi = (xi1, . . ., xi6)′, i = 1, . . ., 18 are independent, Yi ∈ R+ and Zi ∈ {0, . . ., 4}, using (1), we can write the joint
density of Yi and Zi as follows:

fYi,Zi

(
yi, k; 𝜃

)
= fYi

(
yi; 𝜇 (xi)

)
[Dr

(
sk+1, t

)
− Dr

(
sk, t

)
] ,

where t = Φ−1
(
FYi

(
yi; 𝜇 (xi) , 𝜈

))
, sk = Φ−1

(
FY∗i

(
𝛾ki − 𝜇∗ (xi)

))
, Dr (a, b) = Φ

(
a−rb
√1−r2

)
and 𝜃 = (𝛽′, 𝛽′∗, 𝛾′, r)′.

Therefore log-likelihood for the presented data set in Table 4 is

ℓ (𝜃) =
n

∑
i=1

log fYi

(
yi; 𝜇 (xi)

)
+

n

∑
i=1

K−1

∑
k=0

mi(k+1) log [Dr
(
sk+1, t

)
− Dr

(
sk, t

)
] . (12)

Following this log-likelihood, we estimated the parameters and calculated the likelihood’s score functions at the estimated parameters in R
software using the “optim” and “fdHess” functions, respectively. Table 5 lists the estimated parameters, their standard errors and p-values.
In this table ̂r = 0.0092 with a p-value = 0.4672 shows we can accept that the amount of ion implanted and the defect situation of a sensitive
area in a wafer are independent. In this example we aim to reach a point in the design region that simultaneously minimize |�̂� (x) − 1000|
and maximize �̂�1 (x) as cumulative probabilities of the desired category, herein �̂�k (x) = p̂ (Z = k − 1), k = 1, . . ., 5. Table 6 shows ̂𝜅1 and
̂𝜅2, the individual optimum of �̂� (x) and �̂�1 (x) over R, do not have the same location in the design region. So its needed to continue, we

know the components of ̂𝜅 (x) are random variables, using these variablity in ̂𝜅 a confidence region such as (12) can be constructed, before
using the distance metric. For this purpose 5000 values were randomly selected from C, the confidence region of

(
𝛽′, 𝛽∗′

)′
, and individual

optimum values, (𝜇 ((x) , 𝜋1 (x))′, of each point over the experimental region R were computed. We denote these optimum by
(
𝜉1, 𝜉2

)′ and
Pdf_Folio:219
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Table 5 Estimates and standard errors.

Parameter Estimate Std.Error z =
̂𝜃

se
(

̂𝜃
) p-value

̂𝛽0 7.1070 0.2268 31.3394 0.0000
̂𝛽1 −0.1316 0.0789 −1.6682 0.0476
̂𝛽2 −0.1143 0.0481 −2.3778 0.0087
̂𝛽3 −0.0557 0.0488 −1.1416 0.1268
̂𝛽4 −0.0115 0.0474 −0.2426 0.4042
̂𝛽5 −0.0281 0.0487 −0.5772 0.2819
̂𝛽6 0.0566 0.0488 1.1610 0.1228
̂𝛽∗1 0.7580 0.1561 4.8551 0.0000
̂𝛽∗2 1.4816 0.1073 13.8052 0.0000
̂𝛽∗3 1.1839 0.1009 11.7374 0.0000
̂𝛽∗4 −0.2319 0.0939 −2.4699 0.0068
̂𝛽∗5 0.1324 0.0970 1.3653 0.0861
̂𝛽∗6 0.3071 0.0942 3.2607 0.0006

�̂�1 4.9282 0.4683 10.5234 0.0000
�̂�2 5.9847 0.4880 12.2635 0.0000
�̂�3 7.2068 0.5166 13.9513 0.0000
�̂�4 8.2651 0.5351 15.4455 0.0000
̂r 0.0092 0.1125 0.0822 0.4672

Table 6 The individual optima and confidence region Dξ.

Gamma Response Ordinal Response

Location (1, 6.002, 63.848, 6.08, 4.401, 71.88) (0, 6, 50, 15, 4, 25)
Optimummean response 1000 0.925
Confidence region (822.078, 1000) (0.849, 0.965)

Table 7 Simultaneous optima (Example 1).

Taghuchi Neural Network Gaussian Copula

Location (1, 12, 50, 15, 8, 25) (1, 6.06, 46.32, 12.19, 11.63, 52.06) (0,7.26, 54.9, 12.55, 11.91, 25.42)
Ordinal response (0.54, 0.23, 0.15, 0.05, 0.03) (0.75, 0.14, 0.07, 0.02, 0.01) (0.85,0.094, 0.04, 0.01, 0.01)
Gamma response 778.113 912.682 946.277
Max𝜌2 0.496 0.245 0.194

we find the minimum and maximum 5000 values of
(
𝜉1, 𝜉2

)′ to get the approximate lower and upper bound of Di (C), i = 1, 2, where in
Table 6D1 (C) = (822.0784, 1000) andD2 (C) = (0.8486, 0.9648) are confidence intervals with a 95% convergence probability for 𝜇 and 𝜋1,
respectively.

In this example we used the distancemeasure 𝜌2 due to two responses that had an equal importance in the ion implantation process byHsieh
and Tong [27] and were independent. For each of the 5000 values of x randomly selected from the region R, we computed the maximum
distance function 𝜌2 [�̂� (x) , 𝜉] with respect to 𝜉 ∈ D𝜉 , whereD𝜉 = ×2

j=1Dj (C),and �̂� (x) = (�̂� (x) , �̂�1 (x))′. Next a minimum of 5000 values
of this maximum distance were obtained. This distance, the corresponding simultaneous maximum of �̂� (x) and �̂�1 (x) and their locations
are given in Table 7.

For the purpose of compression we considered two points of the design region that Hsieh and Tong [27] introduced for simultaneous
optimization of these responses with the Taguchi and Artificial Neural Network methods. By using these locations, estimated parameters
in Table 5 and confidence region in Table 6, �̂�, (�̂�1, . . ., �̂�5)

′ and maximum of 𝜌2 [�̂� (x) , 𝜉] with respect to this confidence region were
computed (Table 7). These results showed that the location founded by the Gaussian copula had better optimum values for these responses.

6. CONCLUSION

In the simultaneous optimization problem, due to the inherent nature of the data and convenience of measurements, it is not feasible to
report all of the responses as continuous variables with normal distribution. One of the most popular means is to represent the data in the
ordinal categorical form. Thus the outputs may involve mixed continuous and ordinal variables. The innovative use of the copula function
permits a model of various types of correlated responses, such as mixed continuous and ordinal responses, those with all ordinal categorical
forms, continuous responses that have different marginal distributions, or where standard multivariate distribution of the responses is not
applicable or does not exist. This paper used the pairwise likelihood estimationmethod for a high dimension of responses, and alleviated thePdf_Folio:220
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computational demands of estimation. The results of the simulation study showed the usefulness of this method. Adopting the generalized
distance approach would allow us to simultaneously optimize such responses by considering the dependency between them. An example
demonstrated the effectiveness of the proposedmethod. The publishedmethods could not be directly applied to simultaneous optimization
of such correlated responses.
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