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1.  INTRODUCTION 

Stabilities of feedback control systems are guaranteed under the 
assumption that the feedback loops are healthy. Obviously, if just 
one loop has a failed sensor, then the control system would lose 
its stability. Hence, detection for sensor failures plays an import-
ant role in maintaining the control system. In the previous works, 
several types of the Self-Repairing Control Systems (SRCS) have 
been developed against unknown sensor failures [1,2]. The SRCS 
can automatically detect failures, and replace failed sensors with 
healthy backups so as to maintain the system stability. Compared 
with existing active fault tolerant controls, the SRCS has the 
following advantages: (1) the detection filter has a simple structure 
that does not depend on the mathematical model of the plant, and 
(2) the maximum time for detection can be specified arbitrarily 
in advance, i.e., early fault detection can be attained. However, 
because unstable detection filters have been used [1], the con-
ventional SRCS have been contrary to the concept of the strong 
stability, which claims that control systems should be constructed 
by stable elements [3].

In this paper, for the SRCS against sensor failures, a new design 
method for the detection filter is presented based on the simple 
spiking neuron model by Izhikevich [4], and also a concrete failure 
detection by counting the number of spikes in the filtered signal is 
shown. This method satisfies strong stability concept, because the 
filtered signal is always bounded. Furthermore, this paper shows 
the high-gain feedback controller stabilizing both the plant and the 
detection filter. It is shown that the overall control system has high 
robustness with respect to disturbances.

Throughout this paper, with x Î , we define the ‘sgn’ function by
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Notice that this is slightly different from the ordinary one.

2.  SPIKING NEURON MODEL

The spiking neuron model proposed by Izhikevich [4] is represented 
as [Equations (1) and (2)]:
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where v Î  is the membrane potential of the neuron, w Î  is the 
recovery variable, I Î  is the stimulus, and e Î  and g Î  are 
the parameters for the recovery dynamics. The auxiliary after-spike 
resetting is expressed by (2), where vR Î  and wR Î  are the reset 
values.

Figure 1 shows the well-known ‘bursting’ pattern with the parame-
ters e = 0.02, g = 0.2, vR = −50, wR = 2, the initial values v(0) = −50, 
w(0) = 2 and the stimulus I = 10 [mV]. In both figures, ‘A’ indicates 
the first point where the auxiliary resetting (2) is performed.

Clearly, it is shown that each spike is shaped by the auxiliary 
resetting. This will be used for the fault detection of the proposed 
SRCS.
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where tF Î + is the unknown failure time, and j Î  is the 
unknown stuck value.

The aim of this paper is to design the SRCS, which can replace the 
failed sensor with the backup to maintain the control stability and 
guarantee the convergence property of y:

			   limsup ( )
t
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for arbitrarily given l Î +.

4.  CONTROL SYSTEM DESIGN

First of all, the detection filter is introduced based on the spiking 
neuron model expressed by (7) and (8).
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where q0 Î , q1 Î , q2 Î , g0 Î , g1 Î , s Î + and h Î + 
are design parameters. Also, vT Î  is the threshold for the auxil-
iary resetting. These parameters can be selected by scaling of the 
Izhikevich model parameters (see Section 6). For stability, the rule 
(8) of the resetting should be invalid before steady state, and then 
become valid after a sufficiently long control time.

Comparing the detection filter with the Izhikevich model, we can 
find that the part of the output feedback, y pyS S+  in (7) corre-
sponds to the stimulus I in (1). Furthermore, because ys takes nega-
tive values, the sign function sgn[ys] is introduced.

Next, the high-gain feedback controller is designed by
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where p Î + is the feedback gain to stabilize the plant and the 
detection filter. The nonlinear part, − −y vS

3 3  is introduced to 
handle the nonlinearities in the filter (7).

The overall control system is illustrated in Figure 2.

Here, consider the case when the sensor is healthy, i.e., ys = y. From 
(3), (7), and (9), the behavior of the overall control system without 
the auxiliary resetting (8) obeys
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Define the positive definite function S : + → + as [Equation (11)]
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Figure 1 | A ‘bursting’ pattern by Izhikevich spiking neuron model: the 
time history (top) and the trajectory (v, w) of the v – w plane (bottom).

3.  PROBLEM STATEMENT

Consider the following linear time invariant system with unknown 
disturbances.
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where y Î  is the actual output, u: + →  is the control input, and 
z Î n−1 is the state. Also, dy Î  and dz Î n−1 are unknown but 
bounded disturbances. Here, it is assumed that the high frequency 
gain b Î  is positive, and that F Î (n−1)×(n−1) is the stable matrix 
(i.e., all eigenvalues lie in −).

For measurement of the output y, two sensors are prepared. One is 
the primary sensor #1, and the other is the backup #2 for occasion 
of failure. Then, the feedback signal ys: 

+ →  can be expressed as 
follows [Equation (4)].
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where tD Î + is the detection time, whose details will be discussed 
later. Each yi Î , i Î {1,2} is the output of the sensor #i. The 
healthy sensor output is yi = y. Based on dynamic redundancy (4), 
we usually use the primary sensor #1, but switch to the backup #2 
when the failure of the primary one is detected.

The failure scenario to be considered here, is expressed as follows 
[Equation (5)]:
		        y t t tF1( ) =j, ≥ � (5)
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where P Î (n−1)×(n−1) is the positive definite matrix which satis-
fies FT P + PT F = −2Q for any positive definite Q Î (n−1)×(n−1). 
Moreover, small constants d > 0 and d > 0  are introduced only for 
analysis, i.e., these are not design parameters.

Taking the time derivative of S gives [Equation (12)]
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have ai > 0, i = 1, 2, 3. Hence, from (12), it follows that
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Solving the differential inequality (13), we have [Equation (15)]
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Therefore, we can conclude that all the signals in the control system 
are bounded in spite of existence of the disturbances. Moreover, if 
no sensor fails, that is, tF = ∞, then we have [Equation (16)]
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For sufficiently small d  (sufficiently large p), we have 2db a l./ <  
This means that the inequality (6) holds if no failure occurs.

With the same analysis, it can be verified that the filtered signal v 
also remains in a small region of radius l, i.e., lim

t
v

®¥
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the threshold as vT > l. Make the rule (8) of the resetting valid after 
a sufficiently long time. Then, spikes occur only during the failure, 
and no spike is induced whenever the sensor is healthy.

5.  FAULT DETECTION

This section shows the concrete detection method using the detec-
tion filter given by (7) and (8).

Consider the case when the failure occurs. Then, the detection 
filter is represented as [Equation (17)]
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This is similar to the Izhikevich model (1). Refer to the ‘bursting’ as 
mentioned in Section 2. Roughly speaking, when the two nullclines 
in (1) are apart from each other (see the dashed blue lines, v = 0  
and w = 0  in Figure 1), the bursting pattern appears. Here, suppose 
that the parameters in (7) are chosen so that the following two null-
clines are apart with a sufficient distance and never intersect.
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Then, from (8) and (17), it is shown that in the filtered signal v, the 
bursting pattern appears just like Figure 1. Hence, by monitoring 
the spikes in v, the failure can be detected. Thus, the detection time 
tD is defined by

		      t t c t nD R R: ( )|= ≥{ }min � (19)

where cR Î  is the number of the spikes in v, that is counted in real 
time, and nR Î  is the specified minimum number of spikes. Note 
that it is possible to count up the spikes from the number of times 
of the auxiliary resetting (8) in real time.

Because the occurrence time of the bursting can be arbitrarily 
shortened by selecting the parameters for the detection filter, the 
detection time can be hastened.

After replacing the failed sensor, the boundedness of all the signals 
in the control system are guaranteed again, and the convergence (6) 
can be obtained.

6.  NUMERICAL EXAMPLES

To confirm the effectiveness of the proposed method, the numeri-
cal simulation is explored.

Consider the following plant with disturbances.

		


y y u z t
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. ( . )
cos( . )

sin

The initial values are y(0) = 1 and z(0) = −1.

Figure 2 | The block diagram of the proposed SRCS with the Izhikevich 
spiking neuron model.
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In this example, the radius l of the small region (6) to which the 
output y converges, is given by l = 0.01.

The failure scenario (5) is supposed that

t s y tF F= =25[ ], ( )j

By the appropriate scaling of the bursting pattern shown in 
Figure 1, the parameters for the detection filter are selected as 
follows.
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These are chosen so that the bursting pattern of more than five 
spikes per second can be observed during sensor failure. Hence, by 
selecting nR = 5, we can find the failure within almost 1 s. Thus, the 
detection time can be arbitrarily shortened.

To stabilize the plant and the detection filter mentioned above, by 
trial and error, the controller parameter is chosen as

p = 5

Figure 3 | Simulation results: the measured output and the actual output 
(top) and the filtered signal (bottom).

Taking preliminary simulation results into account, the rule (8) of 
the auxiliary resetting is made valid from the beginning. Of course, 
no spike occurs whenever the sensor is healthy.

The simulation results are shown in Figure 3. In this figure, the 
measured output yS, the actual output y (top) and the filtered 
signal v (bottom) are shown. From this result, it is clear that the 
control system can be well stabilized in spite of the existence of the 
disturbances, and the actual output y converges to a very small ball 
before and after the failure. The SRC can be accomplished, and the 
failed sensor is replaced at tD @ 26 [s], i.e., early fault detection can 
be achieved by using the spiking neuron model.

7.  CONCLUSION

In this paper, the new SRCS has been developed that has the detec-
tion filter based on the spiking neuron model by Izhikevich. In this 
method, the sensor failure can be detected by counting the spikes 
in the filtered signal. The applications to nonlinear systems with 
noise, multiple-input and multiple output (MIMO) systems and so 
on are still left in the future works.
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