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ABSTRACT
Weighted distributions (univariate and bivariate) have received widespread attention over the last two decades because of their
flexibility for analyzing skewed data. In this paper, we derive the bivariate and multivariate weighted Kumaraswamy distribu-
tions via the construction method as discussed in B.C. Arnold, I. Ghosh, A. Alzaatreh, Commun. Stat. Theory Methods. 46
(2017), 8897–8912. Several structural properties of the bivariate weighted distributions including marginals, distributions of the
minimum and maximum, reliability parameter, and total positivity of order two are discussed. We provide some multivariate
extensions of the proposed bivariate weighted Kumaraswamy model. Two real-life data sets are used to show the applicability of
the bivariate weighted Kumaraswamy distributions and is compared with other rival bivariate Kumaraswamy models.
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1. INTRODUCTION

Recently the construction of continuous bivariate distributions have received a considerable amount of interest in the literature. A vast liter-
ature on this topic exists (see, the book by Balakrishnan and Lai [1]). Kumaraswamy [2] argued that the beta distribution does not faithfully
fit hydrological random variables such as daily rainfall and daily stream flow and introduced an alternative distribution to the beta distri-
bution, which is known as the Kumaraswamy distribution. According to Nadarajah [3] several papers in the hydrological literature have
used this distribution because it is deemed as a better alternative to the beta distribution. The Kumaraswamy distribution is also known
as minimax distribution, and generalized beta distribution of the first kind (or beta type I). As a motivation to our current work, we con-
sider a financial risk modeling scenario. In the context of bounded dependent risks, it is desirable to have available flexible models with
analytic expressions for the corresponding marginal distributions and densities. In such a context, after rescaling the bounded risks to the
interval (0, 1), Kumaraswamy distributions may provide attractive candidate components for such models because of the simplicity of their
corresponding density and distribution functions. It thus merits our attention to develop a spectrum of bivariate and multivariate models
with Kumaraswamy marginal and/or conditional distributions or at least Kumaraswamy type bivariate and multivariate distributions. For
a detailed study, interested readers are referred to Arnold and Ghosh [4], Wagner et al. [5]. The usefulness and applications of weighted
distribution to biased samples in various areas including medicine, ecology, reliability, and branching processes can also be seen in Nanda
and Jain [6], Gupta and Keating [7], Oluyede [8], Zelen and Feinleib [9], and the references therein. Recently, Arnold et al. [10] introduced
a newmethod of constructing bivariate weighted distributions which they used to model some real-life data sets independently. Al-Mutairi
et al. [11] developed a new bivariate distribution with weighted exponential marginals and discussed its multivariate generalization. In this
paper, we consider the particular weight function considered Arnold et al. [10], and in addition, namely the maximum conditioning weight
function, and via the modified symmetric bivariate Fa–rlieGumbel–Morgenstern (FGM, henceforth, in short) copula. This is completely
different from several other methods of obtaining a bivariate Kumaraswamy distribution as discussed in Arnold et al. [4,12,13]. The sym-
metric bivariate FGM copula based construction approach mentioned in this article, is completely different from Arnold et al. [5], where
the authors developed several strategies for constructing bivariate Kumaraswamy type distributions via Arnold–Ng copula. We focus our
attention on the application of this new weighted bivariate and multivariate Kumaraswamy distribution. We envision a real-life scenario as
a genesis of the proposed bivariate weighted distribution in a stress–strength model context.

Let (X,Y) be a two-dimensional absolutely continuous random variable with joint density function (with respect to Lebesgue measure)
f
(
x, y

)
. Also let (Ω,ℱ,𝒫) be the common probability space on which X and Y are defined.Using the notation of Arnold and Nagaraja [14],

the weighted distribution of (X,Y) denoted by
(
XW,YW)

is given by the following joint density function:
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fW
(
x, y

)
=

W
(
x, y

)
f
(
x, y

)
E (W (X,Y)) ,

whereW
(
x, y

)
is a nonnegative function such that E (W (X,Y)) < ∞. The utility of such distributions is well established in literature. Rao

[15] employed univariate weighted distributions in various real-life problems such as in analysis of family size, aerial survey and visibility
bias, renewal theory, cell cycle analysis, efficacy of early screening for disease, statistical ecology, and reliability modeling. An exhaustive
amount of work in this area is available in Patil and Rao [16]. Mahfoud and Patil [17] discussed the properties of bivariate weighted densities
based on two different choices of the weight functionW

(
x, y

)
, namely x𝛼 and max

(
x, y

)
. Arnold and Nagarajah [14] focused on the case

of two independent random variables (X,Y) and discussed the dependence structure of the corresponding bivariate weighted distributions.
In this article, we focused on the max

(
x, y

)
weight function in more details. In particular, we consider the following different weighted

bivariate and multivariate Kumaraswamy models:

• Assume a system has two independent components with strengthsW1 andW2, and suppose that to run the process each component
strength has to overcome an outside stressW0 which is independent of both (W1 andW2). If we define
(X,Y) d=

(
W1,W2|min(W1,W2) > W0

)
, where theW′

i s have absolutely continuous distributions, then the resulting joint distribution
of (W1,W2) is the type of bivariate weighted distribution to be investigated in this article. Henceforth, we call this as Type I-weighted
bivariate Kumaraswamy models. The utility of such models have been discussed in details in Arnold et al. [10].

• The motivation for the second type (from now on, Type-II weighted bivariate Kumaraswamy model) can be described as follows:
Consider a two component system, and suppose that, component J, J = 1, 2 receives outside random shocks, measured asWi, i = 1, 2,
and they are independent. Next, consider that the minimum of strength among the two components is measured asW0, which is
independent ofWi, i = 1, 2. Furthermore, let us assume that the implicit condition for the associated system to run is thatW0 must
exceed the maximum ofW1 andW2. Then the resulting joint distribution of (W1,W2) is the type of bivariate weighted distribution to
be investigated next. This is the major motivation to consider this type of models, that we discuss the outside stress structure rather
than the inside strength. The genesis of this model is distinct as compared to the previous one, although they might have some similar
type properties as we shall see later on.

• The third method considered is based on a symmetric bivariate modified FGM type copula. Since, the quantile function of a
Kumaraswamy distribution is available in simple analytical form, we can use this to construct various bivariate and multivariate
Kumaraswamy models. A copula C (x1, x2) is most simply described as a bivariate distribution with Uni form (0, 1)marginal
distributions. A bivariate Kumaraswamy distribution can then be obtained from any copula C (x1, x2) , by using marginal
transformations of the form indicated earlier. Thus if (U1,U2) has the copula C (x1, x2) as its distribution function, then the random

vector (X1,X2) =
((

1 − (1 − U)1/b1
)1/a1 ,(1 − (1 − U)1/b2

)1/a2
)
, will have a bivariate Kumaraswamy distribution in which

Xi ∼ K (ai, bi) , i = 1, 2. This approach thus provides us with a plethora of bivariate Kumaraswamy models. However, it is not clear how
to sensibly select the particular copula to be used in the construction in achieving greater flexibility. In a separate article, we will focus
our attention in this direction. Henceforth, we will call this method as Type-III weighted bivariate and multivariate copula based
Kumaraswamy type distribution.

The remainder of this paper is organized as follows: In Section 2, we briefly describe the method of constructing the bivariate weighted
distributions. In Section 3, we introduce a special case of the proposed family, the bivariate weighted Kumaraswamy (BWK) distribution and
discuss various properties. In Section 4, we discuss a BWK model via conditioning on maximum as mentioned earlier. In Section 5, some
discussion on the multivariate extension of the proposed family is provided. Section 6 deals with the estimation of the BWK distribution
parameters. For illustrative purposes, two real-life data seta are fitted to the proposed model in Section 7, and are compared with other
bivariate Kumaraswamy and bivariate beta models. Some concluding remarks are provided in Section 8.

2. TYPE-I WEIGHTED BIVARIATE KUMARASWAMY DISTRIBUTION

LetW1,W2, andW0 be independent random variables with density functions fWi
(wi) , i = 0, 1, 2. Then according to Arnold et al. [10] if we

define (X,Y) d=
(
W1,W2|min (W1,W2) > W0

)
then the density function of the corresponding bivariate weighted distribution is given by

fX,Y
(
x, y

)
=

fW1
(x) fW2

(
y
)
P
(
min (W1,W2) > W0|W1 = x,W2 = y

)
P (min (W1,W2) > W0)

=
fW1

(x) fW2

(
y
)
P
(
W0 < min

(
x, y

))
P (min (W1,W2) > W0)

=
fW1

(x) fW2

(
y
)
FW0

(
min

(
x, y

))
P (min (W1,W2) > W0)

. (1)
Pdf_Folio:199
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Remarks:

i. If W′
i s, i = 0, 1, 2 are identically distributed with common density function fW (w), then P (min (W1,W2) > W0) =

1
3 . Hence, (1)

reduces to

fX,Y
(
x, y

)
= 3fW (x) fW

(
y
)
FW

(
min

(
x, y

))
. (2)

ii. In general, we do not have a simple expression for P (min (W1,W2) > W0) , but in some cases it can be obtained in a closed form. For
example, it can be computed ifWi’s are independent exponential random variables with intensities 𝜆1, 𝜆2, and 𝜆0.

iii. One can obtain a multivariate extension of (1) in the following way: If Wi ∼ fWi
(wi) for i = 0, 1,⋯ , k are independent random

variables, then the k-dimensional weighted density analogous to (1) will be of the form

fX1,X2,...Xk
(x1, x2,⋯ , xk) =

[
k

∏
j=1

fWj

(
xj
)
] FW0

(min (x1, x2, ...xk))

P (min (W1,W2, ...,Wk) > W0)
. (3)

In the case in which theWi’s are independent and identically distributed (i.i.d.) random variables, (3) reduces to

fX1,X2,...Xk
(x1, x2, ...xk) = (k + 1) [

k

∏
j=1

fW
(
xj
)
] FW (min (x1, x2, ...xk)) . (4)

In the next section, we study a special case of the bivariate weighted distribution in (1) where theWi’s are Kumaraswamy with parameters
a and bi, for i = 0, 1, 2, respectively.

2.1. Definition and Structural Properties

Consider the scenario in which three Wi’s are independent random variables with Wi ∼ Kumaraswamy (a, bi) for i = 0, 1, 2. Then from
(1), the normalizing constant will be

C1 = P (min (W1,W2) > W0)

= b0
b0 + b1 + b2

. (5)

Hence, the joint distribution of (X,Y) will be

f
(
x, y

)
= C−1

1 a2b1b2
(
xy
)a−1 (1 − xa)b1−1 (1 − ya

)b2−1
(
1 −

(
1 −

(
min

(
x, y

))a)b0
)
× I

(
0 < x < 1, 0 < y < 1

)
. (6)

In this case the marginals are given by

f (x) = C−1
1

ab0b1
b0 + b2

xa−1 [(1 − xa)b1−1 − (1 − xa)b0+b1+b2−1] × I (0 < x < 1) . (7)

f
(
y
)
= C−1

1
ab0b2
b0 + b1

ya−1 [
(
1 − ya

)b2−1 −
(
1 − ya

)b0+b1+b2−1] × I
(
0 < y < 1

)
. (8)

Let t11, t12, t21, and t22 be real numbers with 0 < t11 < t12 and 0 < t21 < t22. Then, (X,Y) has the total positivity of order two (TP₂) property
if for any such set of tij’s,

fX,Y (t11, t21) fX,Y (t12, t22) − fX,Y (t12, t21) fX,Y (t11, t22) ⩾ 0. (9)

 

Theorem 1. The BWK distribution has the TP₂ property.

Proof. Let us consider different cases separately. If 0 < t11 < t21 < t12 < t22, then for the density function in (6), one can easily show that
the condition in (9) is equivalent to (

1 − ta21
)b0 ⩾ (

1 − ta12
)b0 . (10)

Now, (10) holds because t21 < t12 and a and b0 are positive. The other cases can be shown similarly. Hence the proof.Pdf_Folio:200
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Theorem 2. The BWK distribution with the density in (6) is log concave.

Proof. Taking negative of the logarithm of (6), we have the following:

Consider 0 < x < y < 1 (
− log

)
f
(
x, y

)
= constant − (a − 1) [log x + log y] − (b1 − 1) [log (1 − xa)]

− (b2 − 1) [log
(
1 − ya

)
] − log

(
1 − ((1 − xa) b0

)
. (11)

Next, taking partial double derivative w.r.t x and y, of (11), we get,

Dy [Dx
((
− log

)
f
(
x, y

))
] = 0,

where Dx stands for the partial derivative operator for x and similarly for Dy.

Case 2:When 0 < y < x < 1

Similar result will hold here as well. Hence the proof.

The log-concave property implies the following:

• The Type-I weighted bivariate Kumaraswamy is unimodal.

• The marginals are also log-concave.

• It is closed under weak limits.

Next, note that for any r ⩾ 1, the marginal moments of X and Y are given by, respectively

E (Xr) =

rΓ
(

r
a

) ⎛⎜⎜⎝ Γ(b1)
Γ
(
r
a
+b1+1

) − Γ(b0+b1+b2)
Γ
(
r
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2 ,

and

E (Yr) =

rΓ
(

r
a

) ⎛⎜⎜⎝ Γ(b2)
Γ
(
r
a
+b2+1

) − Γ(b0+b1+b2)
Γ
(
r
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2 .

The correlation coefficient 𝜌 for this distribution is given by

𝜌 = A1
B1B2

,

where

A1 = E (XY) − [E (X)E (Y)]

= 2C−1
⎡
⎢
⎢
⎢
⎣

1
a + 1

(Γ (2 + 2/a)Γ (b2)
Γ (2 + 2/a + b2)

)
−

∞
∑
k=0

(−1)k
(
b0
k

)
a (b0 + 1) + 1

(Γ (1 + 2/a + b0)Γ (b2)
Γ (1 + 2/a + b2 + b0)

)⎤
⎥
⎥
⎥
⎦

−C−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Γ
(

1
a

) ⎛⎜⎜⎝ Γ(b1)
Γ
(
1
a
+b1+1

) − Γ(b0+b1+b2)
Γ
(
1
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Γ
(

r
a

) ⎛⎜⎜⎝ Γ(b2)
Γ
(
1
a
+b2+1

) − Γ(b0+b1+b2)
Γ
(
1
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Pdf_Folio:201
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and

B1 = Var (X)

= C−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2Γ
(

r
a

) ⎛⎜⎜⎝ Γ(b1)
Γ
(
2
a
+b1+1

) − Γ(b0+b1+b2)
Γ
(
2
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2 −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Γ
(

1
a

) ⎛⎜⎜⎝ Γ(b1)
Γ
(
1
a
+b1+1

) − Γ(b0+b1+b2)
Γ
(
1
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly,

B2 = Var (Y)

= C−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2Γ
(

r
a

) ⎛⎜⎜⎝ Γ(b2)
Γ
(
2
a
+b2+1

) − Γ(b0+b1+b2)
Γ
(
2
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2 −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Γ
(

1
a

) ⎛⎜⎜⎝ Γ(b2)
Γ
(
1
a
+b2+1

) − Γ(b0+b1+b2)
Γ
(
1
a
+b0+b1+b2+1

)⎞⎟⎟⎠
a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note: From the expression of the correlation coefficient, it is evident that this model will exhibit both positive and negative correlation,
depending on the choice of the parameters (a, b0, b1, b2). Thus we seek a bivariate weighted distribution with a positive probability on the
unit square (0, 1)2, with marginals are of univariate Kumaraswamy type, and correlation over the full range. The bivariate Kumaraswamy
distribution as discussed in Arnold et al. [4] does allow correlation to vary over [−1, 1] but it has 5 parameters. In contrary, we propose an
alternative (weighted) bivariate Kumaraswamy distribution that has 4 parameters and allows correlations over the full range [−1, 1].
Distribution of the Z = min(X, Y) andW = max(X, Y)

Suppose, we want to derive the distribution of Z = min (X,Y) andW = max (X,Y). Note that, for each z ∈ (0 < z < 1), we have

P (Z > z) = ∫
1

z ∫
y

z
f(x, y)dxdy + ∫

1

z ∫
x

z
f(x, y)dxdy

= C−1
1 [(1 − za)b1+b2 − b1 + b2

b0 + b1 + b2
(1 − za)b0+b1+b2] .

On differentiating P (Z ⩽ z) = 1 − P (Z > z) w.r.t. z, the density of Z will be

fZ (z) = aC−1
1 za−1 (b1 + b2) [(1 − za)b1+b2−1 − (1 − za)b0+b1+b2−1] × I (0 < z < 1) .

Next, consider the distribution ofW. For the distribution ofW = max (X,Y) , note that for any w ∈ (0, 1) ,

FW (w) = P (W > w)
= P (X > w or Y > w)
= FX (w) + FY (w) − FZ (w) . (12)

From (12), the corresponding density will be

fW (w) = fX (w) + fY (w) − fZ (w)

= aC−1
1 wa−1 [ b0b1

(b0 + b2)
(1 − wa)b1−1 + b0b2

(b0 + b1)
(1 − wa)b2−1

− (b1 + b2) (1 − wa)b1+b2−1 − (1 − wa)b0+b1+b2−1
(
b1b2 (2b0 + b1 + b2)
(b0 + b1) (b0 + b2)

)
]

×I (0 < w < 1) .

Reliability parameter: In this case we have from (6),

R = P (Y > X) = ∫
1

0 ∫
∞

x
f(x, y)dydx

= b1
(b1 + b2)

, (13)

after some algebraic simplification.
Pdf_Folio:202
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3. TYPE II-WEIGHTED BIVARIATE KUMARASWAMY DISTRIBUTION

Let as before, W1,W2, and W0 be independent random variables with density functions fWi
(wi) , i = 0, 1, 2. We consider the joint density

of (W1,W2) given that W0 > max {W1,W2} . Now, if we define (X,Y)
d= (W1,W2|max(W1,W2) < W0), then the density function of the

corresponding bivariate weighted distribution is given by

fX,Y
(
x, y

)
=

fW1
(x) fW2

(
y
)
P
(
max (W1,W2) < W0|W1 = x,W2 = y

)
P (max (W1,W2) < W0)

=
fW1

(x) fW2

(
y
)
P
(
W0 > max

(
x, y

))
P (max (W1,W2) < W0)

=
fW1

(x) fW2

(
y
)
FW0

(max (w1,w2))
P (max (W1,W2) < W0)

. (14)

Suppose that we have three independent Kumaraswamy variables. We need to evaluate P (W0 > max {W1,W2}) . Note that
P (W0 > max {W1,W2}) = P (W1 < W2 < W0) + P (W2 < W1 < W0) .

Consider

P (W1 < W2 < W0)

= ∫
1

0
[∫

1

w1

[∫
1

w2

a3b0b1b2wa−1
1 wa−1

2 wa−1
0

(
1 − wa

1
)b1−1 (1 − wa

2
)b2−1 (1 − wa

0
)b0−1 dw0] dw2] dw1

= ∫
1

0
[∫

1

w1

a2b1b2wa−1
2

(
1 − wa

2
)b0+b2−1 dw2] dw1

= ab1b2
b0 + b2 ∫

1

0
wa−1
1

(
1 − wa

1
)b0+b1+b2−1 dw1

= b1b2
(b0 + b2) (b0 + b1 + b2)

.

Analogously, P (W2 < W1 < W0) =
b1b2

(b0+b1)(b0+b1+b2)
, so that P (W0 > max {W1,W2}) =

b1b2(2b0+b1+b2
(b0+b2)(b0+b1)(b0+b1+b2)

. For notational simplicity,
let us write

D = P (W0 > max {W1,W2}) =
b1b2 (2b0 + b1 + b2

(b0 + b2) (b0 + b1) (b0 + b1 + b2)
.

Therefore,

fW0>max{W1,W2}.
(
x, y

)

= D−1a2b1b2
(
xy
)a−1 (1 − xa)b1−1 (1 − ya

)b2−1
(
1 −

(
max

(
x, y

))a)b0

=
⎧⎪
⎨⎪
⎩

a2 [ b1b2 (2b0 + b1 + b2)
(b0 + b2) (b0 + b1) (b0 + b1 + b2)

]
−1

wa−1
1 wa−1

2 wa−1
0

(
1 − wa

1
)b1−1 (1 − wa

2
)b0+b2−1 , 0 < x < y < 1

a2 [ b1b2 (2b0 + b1 + b2)
(b0 + b2) (b0 + b1) (b0 + b1 + b2)

]
−1

wa−1
1 wa−1

2 wa−1
0

(
1 − wa

1
)b0+b1−1 (1 − wa

2
)b2−1 , 0 < y < x < 1.

(15)

In this case the marginals are given by

fX (x) = [ (2b0 + b1 + b2
(b0 + b2) (b0 + b1) (b0 + b1 + b2)

]
−1

ab−1
2 xa−1 (1 − xa)b0+b1−1 [1 − b0

b0 + b2
(1 − xa)b2] I (0 < x < 1) . (16)

fY
(
y
)
= [ (2b0 + b1 + b2

(b0 + b2) (b0 + b1) (b0 + b1 + b2)
]
−1

ab−1
1 ya−1 (1 − ya

)b0+b2−1 [1 − b0
b0 + b1

(
1 − ya

)b1] I (0 < y < 1
)
. (17)
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Remark 1. From (16) and (17), the marginal densities of Type-II weighted bivariate Kumaraswamy variable are linear combinations of
univariate Kumaraswamy densities. In particular, using convenient transparent notation, one may write

fX (x) =
(b0 + b2) (b0 + b1 + b2)

b2 (2b0 + b1 + b2)
KW (a, b0 + b1) −

b0 (b0 + b2) (b0 + b1 + b2)
b2 (2b0 + b1 + b2)

KW (a, b0 + b1 + b2) ,

fX (x) =
(b0 + b1) (b0 + b1 + b2)

b1 (2b0 + b1 + b2)
KW (a, b0 + b2) −

b0 (b0 + b1) (b0 + b1 + b2)
b1 (2b0 + b1 + b2)

KW (a, b0 + b1 + b2) ,

where KW(.,.) stands for the univariate Kumaraswamy distribution.

Distribution of the Z = min(X, Y) andW = max(X, Y)

In this case, following similar technique as before, the density of Z andW will be, respectively

fZ (z) = a (b0 + b1 + b2) za−1 (1 − za)(b0+b1+b2)−1 × I (0 < z < 1) .

fW (w) = a [ (2b0 + b1 + b2
(b0 + b2) (b0 + b1) (b0 + b1 + b2)

]
−1

ab−1
2 wa−1

(
b−1
2 (1 − wa)b0+b1−1 + b−1

1 (1 − wa)b0+b2−1
)

−awa−1
b0 (b0 + b1 + b2)

(
b0b2 + b22 + b0b1 + b21

)
b1b2 (2b0 + b1 + b2)

(1 − wa)b0+b1+b2−1 × I (0 < w < 1) .

Note: It is interesting to see here that the distribution of Z is again a Kumaraswamy distribution with parameters a and b0 + b1 + b2.

Now, in this case, for any r ⩾ 1, the marginal moments of X and Y are given by, respectively

E (Xr) = (b0 + b2) (b0 + b1 + b2)
b2 (2b0 + b1 + b2)

(
(b0 + b1)B

(
b0 + b1,

r
a

))
−b0 (b0 + b2) (b0 + b1 + b2)

b2 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

r
a

))
,

and

E (Yr) = (b0 + b1) (b0 + b1 + b2)
b1 (2b0 + b1 + b2)

(
(b0 + b2)B

(
b0 + b2,

r
a

))
−b0 (b0 + b1) (b0 + b1 + b2)

b1 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

r
a

))
.

The correlation coefficient 𝜌 for this distribution is given by

𝜌 = M1
M2M3

,

where

M1 = E (XY) − [E (X)E (Y)]

=
∞
∑
k=0

(
1/a + k − 1
k

)
1

b0 + b1 + b2 + k

−[ (b0 + b2) (b0 + b1 + b2)
b2 (2b0 + b1 + b2)

(
(b0 + b1)B

(
b0 + b1,

1
a

))
− b0 (b0 + b2) (b0 + b1 + b2)

b2 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

1
a

))
]

× [ (b0 + b1) (b0 + b1 + b2)
b1 (2b0 + b1 + b2)

(
(b0 + b2)B

(
b0 + b2,

r
a

))
− b0 (b0 + b1) (b0 + b1 + b2)

b1 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

r
a

))
] ,

and

M2 = Var (X)

= (b0 + b2) (b0 + b1 + b2)
b2 (2b0 + b1 + b2)

(
(b0 + b1)B

(
b0 + b1,

2
a

))
− b0 (b0 + b2) (b0 + b1 + b2)

b2 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

2
a

))
−[ (b0 + b2) (b0 + b1 + b2)

b2 (2b0 + b1 + b2)

(
(b0 + b2)B

(
b0 + b2,

1
a

))
− b0 (b0 + b2) (b0 + b1 + b2)

b2 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

1
a

))
]
2

.
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Similarly,

M3 = Var (Y)

= (b0 + b1) (b0 + b1 + b2)
b1 (2b0 + b1 + b2)

(
(b0 + b2)B

(
b0 + b2,

2
a

))
− b0 (b0 + b1) (b0 + b1 + b2)

b1 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

2
a

))
−[ (b0 + b1) (b0 + b1 + b2)

b1 (2b0 + b1 + b2)

(
(b0 + b2)B

(
b0 + b2,

1
a

))
− b0 (b0 + b1) (b0 + b1 + b2)

b1 (2b0 + b1 + b2)

(
(b0 + b1 + b2)B

(
b0 + b1 + b2,

1
a

))
]
2

.

Remark 2. Wemay write the following:

i. Sincemax (W1,W2) is aTP2 function, the density corresponding to (15)will also beTP2. Furthermore,TP2 is themost rigid dependence
property, several other dependency properties will follow immediately. Consequently, we can write the following:

• X and Y are positive quadrant dependent.

• X (Y) is a positive regression dependent of Y (X) .

• X (Y) is a left tail decreasing in Y (X) .

ii. From the expression of the correlation coefficient, it can be conjectured that, like the Type-I BWK model, Type-II weighted bivariate
Kumaraswamy model also allows the correlation coefficient between [−1, 1] .

4. COPULA BASED BIVARIATE KUMARASWAMY DISTRIBUTION

In this section we consider twomodified versions of the FGM (henceforth, in short) bivariate copula to construct a bivariate Kumaraswamy
distribution. We list them as follows:

• We begin by considering a modified version of bivariate FGM copula, given as

C (u, v) = uv [1 + 𝜃
(
(1 − u)𝛿1

)(
(1 − v)𝛿2

)
] , (18)

for 𝛿1, 𝛿2 > 0 and 𝜃 ∈ [−1, 1] . From now on, we call this as modified FGM copula based bivariate Kumaraswamy model (Type I),
henceforth in short, Type-III bivariate Kumaraswamy model. Note that (18) is indeed a copula as it satisfies the following:

– C (0, 0) = 0; C (1, 1) = 1.
– C (0, 1) = 0 = C (1, 0) .
– For every u1 ⩽ u2 and v1 ⩽ v2, C (u2, v2) − C (u2, v1) − C (u1, v2) + C (u1, v1) ⩾ 0.

Next, suppose that Xi ∼ K (ai, bi) , for i = 1, 2 and they are independent. Then setting u = F (x1) and v = F (x2) , a bivariate
dependent Kumaraswamy model from (18) (hence forth Type-III bivariate Kumaraswamy) can be obtained as (the associated
distribution function)

HType−III (x1, x2) = [1 −
(
1 − xa11

)b1] [1 − (
1 − xa22

)b2] [1 + 𝜃
(
1 − xa11

)b1𝛿1 (1 − xa22
)b2𝛿2] . (19)

• Another modified version of the FGM copula which can be used to construct a different bivariate Kumaraswamy model is given as
follows:

C (u, v) = u𝛿1v𝛿2 [1 + 𝜃
((
1 − u𝛿1

)) ((
1 − v𝛿2

))
] , (20)

with 𝛿1, 𝛿2 > 0, 𝜃 ∈ [−1, 1] . One can easily show that (20) is also a valid copula.Again, we consider two arbitrary independent
Xi ∼ K (ai, bi) , for i = 1, 2 and they are independent. Then, setting u = F (x1) and v = F (x2) , a bivariate dependent Kumaraswamy
model from (20) (hence forth Type-IV bivariate Kumaraswamy) can be obtained as (the associated distribution function)

HType−IV (x1, x2) = [1 − (1 − xa1 )b1]𝛿1 [1 − (1 − xa2 )b2]𝛿2

[1 + 𝜃
(
1 −

(
1 −

(
1 − xa11

)b1))(
1 −

(
1 −

(
1 − xa22

)b2))] . (21)
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4.1. Properties of the Bivariate Copula Based Kumaraswamy Model
• We provide the joint and the conditional copula density function expressions for one of the copula models (Type III ) described earlier.

For the Kumaraswamy copula (Type III), the corresponding joint copula density

c (u, v) = 𝜕2C (u, v)
𝜕u𝜕v

= 𝛿1𝛿2u𝛿1−1v𝛿2−1 {2 + 𝜃
(
(1 − u)𝛿1

)(
(1 − v)𝛿2

)
+ 𝜃

(
(1 − u)𝛿1−1

)(
(1 − v)𝛿2−1

)
}

+𝛿2u𝛿1v𝛿2−1 {1 − 𝜃𝛿1
(
(1 − u)𝛿1−1

)(
(1 − v)𝛿2

)
} + 𝛿1u𝛿1−1v𝛿2 {1 − 𝜃𝛿1

(
(1 − u)𝛿1

)(
(1 − v)𝛿2−1

)
} .

Also, the conditional copula density of U given V = v is given by

c
(
u|v

)
= u𝛿1

(
𝛿2v𝛿2−1 {1 + 𝜃

(
(1 − u)𝛿1

)(
(1 − v)𝛿2

)
}
)
+ 𝛿2u𝛿1v𝛿2 {1 − 𝜃

(
(1 − u)𝛿1

)(
(1 − v)𝛿2−1

)
} .

Similarly, one can get the other conditional copula density function. Following similar logic, one can get the corresponding density and
conditional density function(s) for the Type-IV bivariate Kumaraswamy copula model.

• Dependence structure Note that the selection of a particular copula function, indeed, depends on a number of factors, among which
the dependence parameter is of primary importance. Furthermore, it is obvious from (19) and (21) that the resultant bivariate
distributions reduce to the case of independence, when the parameter 𝜃 = 0. These singular characteristics make these copulas
particularly interesting for empirical analysis, as it is straightforward to compare estimates of the parameters of F

(
x, y

)
and F1 (x) and

F2
(
y
)
separately. To study the nature of dependence, we consider the following two measures listed below:

1. Kendall’s 𝜏: Let X and Y be continuous random variables with copula C. Then Kendall’s 𝜏 is given by

𝜏 (X,Y) = 4∬
[0,1]2

C (u, v) dC (u, v) − 1 = 4∬
[0,1]2

c (u, v) dudv − 1,

where c (u, v) is the corresponding copula density.
2. Spearman’s 𝜌: Let X and Y be continuous random variables with copula C. Then Spearman’s 𝜌s is given by

𝜌s = 12∬
[0,1]2

uvdC (u, v) − 3.

Based on the above, we can write the following:

• For the bivariate Kumaraswamy (Type-III) copula

1. Spearman’s correlation coefficient 𝜌 will be (assuming 𝛿1 and 𝛿2 are integers)

𝜌 = 12 [ 1
𝛿1𝛿2

+ 𝜃B (𝛿1 + 1, 𝛿1 + 1)B (𝛿2 + 1, 𝛿2 + 1)] − 3.

2. Kendall’s 𝜏 will be (assuming 𝛿1 and 𝛿2 are integers)

𝜏 = 4𝛿1𝛿2 {
2

𝛿2 + 1
B (𝛿1 + 1, 𝛿1) + 3𝜃B (𝛿2 + 1, 𝛿2 + 1)B (𝛿1, 𝛿1 + 1)}

+4𝛿1𝛿2𝜃2 {B (𝛿2 + 1, 2𝛿2 + 1)B (𝛿1, 2𝛿1 + 1) + 𝜃2B (𝛿2 + 1, 2𝛿2)B (𝛿1, 2𝛿1) − 1} .

• For the bivariate Kumaraswamy (Type-IV) copula

1. Spearman’s correlation coefficient 𝜌 will be (assuming 𝛿1 and 𝛿2 are integers)

𝜌 = 12 [ 1
(𝛿1 + 1) (𝛿2 + 1)

+ 𝜃B
(
2, 1
𝛿2 + 1

)
B
(
1, 1
𝛿1 + 1

)
] − 3.

2. Kendall’s 𝜏 will be (assuming 𝛿1 and 𝛿2 are integers)

𝜏 = 4 { 1
𝛿1𝛿2

+ 𝜃
4B

(
2, 2 + 1

𝛿1
+ 2

)
− B

(
1, 1𝛿1

+ 1
)
} − 1.

Next, we discuss the upper tail dependence and lower tail dependence property for these bivariate Kumaraswamy type copula models.Pdf_Folio:206



I. Ghosh. / Journal of Statistical Theory and Applications 18(3) 198–211 207

• Tail dependence property: The upper tail dependence coefficient (parameter) 𝜆U is the limit (if it exists) of the conditional probability
that Y is greater than 100𝛼 th percentile of G given that X is greater than the 100𝛼 th percentile of F as 𝛼 approaches 1,
𝜆U = lim𝛼 ↑ 1P

(
Y > G−1 (𝛼) |X > F−1 (𝛼)

)
. If 𝜆U > 0, then X and Y are upper tail dependent and asymptotically independent

otherwise. Similarly, the lower tail dependence coefficient is defined as
𝜆L = lim𝛼↓0 P

(
Y ⩽ G−1 (𝛼) |X ⩾ F−1 (𝛼)

)
. Let, C be the copula of X and Y. Then, equivalently we can write 𝜆L = limu↓0

C(u,u)
u

and

𝜆U = limu↓0
C̃(u,u)

u
, where C̃ (u, u) is the corresponding survival copula given by C̃ (u, u) = 1 − 2u + C (u, u) .

For the bivariate Kumaraswamy (Type-III) copula, it is straightforward to see that 𝜆L = 0, which implies that X and Y are
asymptotically independent. Again, we have 𝜆U = 0, thereby implying that X and Y are asymptotically dependent. In a similar way, one
can establish these properties for the Type-IV bivariate Kumaraswamy type copula model.

• Left-Tail decreasing property and Right-Tail increasing property
Nelson [21] showed that X (Y) is left tail decreasing, that is, LTD

(
Y|X

)
and LTD

(
X|Y

)
if and only if for all u, u′, v, v′ such that

0 < u ⩽ u′ ⩽ 1 and 0 < v ⩽ v′ ⩽ 1, if C(u,v)
uv

⩾ C(u′,v′)
u′v′

. Next, we have the following theorem:

Theorem 3. The bivariate (Type-III) Kumaraswamy type copula in (18) has LTD
(
Y|X

)
and LTD

(
X|Y

)
if and only if 𝜃 ∈ [0, 1] and for

integer valued 𝛿1 and 𝛿2.
Proof. Since, 0 < u ⩽ u′ ⩽ 1 and 0 < v ⩽ v′ ⩽ 1, we may write

(1 − u)𝛿1 (1 − v)𝛿2 ⩾ (1 − u′)𝛿1 (1 − v′)𝛿2 ,

for any 𝛿1 > 0, 𝛿2 > 0 and both are integer valued. Next, for 𝜃 ∈ [0, 1] , we can write

1 + 𝜃 (1 − u)𝛿1 (1 − v)𝛿2 ⩾ 1 + 𝜃 (1 − u′)𝛿1 (1 − v′)𝛿2 .

Hence, C(u,v)
uv

=
(
1 + 𝜃 (1 − u)𝛿1 (1 − v)𝛿2

)
⩾
(
1 + 𝜃 (1 − u′)𝛿1 (1 − v′)𝛿2

)
. This immediately implies the result.

Note that if 𝜃 ∈ [−1, 0] , then the above tail dependence property will not hold. Almost identical argument will lead us to the fact that
Left-Tail decreasing property and Right-Tail increasing property will also hold for bivariate (Type-IV) Kumaraswamy type copula.

Remark 3.

• When 𝛿1 and 𝛿2 are not integers, the expressions for Kendalls 𝜏 and Spearmans 𝜌 will involve infinite sums, but, still it will be in a
closed form.

• Since, in general, any convex combination of two (or more) is again a copula, one might consider another bivariate Kumaraswamy type
copula (say, Type-V) with the following structure: CType−V (u, v) = 𝛽CType−III (u, v) + (1 − 𝛽)CType−II (u, v) , for suitable 𝛽 ∈ (0, 1) . For
a detailed study on the Arnold–Ng type bivariate copula based Kumaraswamy distribution construction and other associated bivariate
copula models, see,Arnold and Ghosh [12].

5. MULTIVARIATE WEIGHTED KUMARASWAMY DISTRIBUTION

Following Arnold et al. [13], we consider the model in which in which T1,T2, ...,Tj are i.i.d. random variables with distribution and density
functions G0 and g0; X1,X2, ...,Xk are i.i.d. random variables with distribution and density functions F0 and f0 and U1,U2, ...,Uℓ are i.i.d.
random variables with distribution and density functions H₀ and h0. In this case we have

f (x1, x2, ..., xk) ∝ [
k

∏
𝛽=1

f0
(
x𝛽

)
] [G0 (x1∶k)]j [1 −H0 (xk∶k)]ℓ . (22)

When the three distributions in (22) are of the Kumaraswamy form, it reduces to

f (x1, x2, ..., xk) ∝ akbk
k

∏
i=1

xa−1
i

(
1 − xai

)b−1 [1 −
(
1 − xa1∶k

)b0]j (1 − xak∶k
)ℓb1 . (23)

To identify the required normalizing constant we must evaluate

∫
1

0 ∫
1

0
⋯ ∫

1

0
akbk

k

∏
i=1

xa−1
i

(
1 − xai

)b−1 [1 −
(
1 − xa1∶k

)b0]j (1 − xak∶k
)ℓb1 dx1⋯ dxk

=
j

∑
m=0

(
j
m

)
(−1)m E {

(
1 + Xa

1∶k
)mb1 (1 + Xa

k∶k
)−ℓ b0 } , (24)
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where the Xi’s have a K (a, b) distribution. Next, the joint distribution of X1∶k and Xk∶k for a random sample of size k will be

f (x1∶k, xk∶k) = k (k − 1) a2b0b1xa1∶kx
a
k∶k

(
1 − xa1∶k

)b0 (1 − xak∶k
)b1 I (0 < x1∶k < xk∶k < 1) . (25)

From (24) and on using (25), the normalizing constant is

C =
j

∑
m=0

(
j
m

)
(−1)m k (k − 1) b0

((b0 +mb1 + 1) (b0 (1 + ℓ)) + b1 (1 +m) + b0 + 2)
.

Hence, the k-variate joint density function in (25) can be written as

f (x1, x2, ..., xk) = C−1akbk
k

∏
i=1

xa−1
i (1 − xai )

b−1[1 − (1 − xa1∶k)
b0]j(1 − xak∶k)

ℓb1

×I (0 < (x1, x2, ..., xk) < 1) .

Another multivariate extension of the BWKmodel can be proposed using (3) as follows

f (x1, x2, ..., xk) = D−1
k

∑
i=0

k

∏
j=1

akbj [1 −
(
1 − xa1∶k

)b0] I (0 < x < 1
)
,

where D = b0
k

∑
j=0

bi

.

6. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we consider the estimation of the model parameters of the BWK distribution.

Suppose we have n observations from the bivariate density in (6). The log-likelihood is given by

ℓ (a, b0, b1, b2) = −n log [ b0
b0 + b1 + b2

] + 2n log a + 2n [log b1 + log b2]

+ (a − 1)
n

∑
i=1
[log xi + log yi]

+ (b1 − 1)
n

∑
i=1

log(1 − xai ) + (b2 − 1)
n

∑
i=1

log(1 − yai )

+
n

∑
i=1

log
(
1 −

(
1 − (min(xi, yi))a

)b0). (26)

The corresponding likelihood equations are

𝜕ℓ
𝜕b0

=
n

∑
i=1

−

(
1 −

(
1 −min(xi, yi)

)a)b0
log

(
1 −

(
1 −min(xi, yi)

)a)
1 −

(
1 −

(
1 −min(xi, yi)

)a)b0

−
(b0 + b1 + b2)

(
1

b0+b1+b2
− b0

(b0+b1+b2)
2

)
n

b0
. (27)

𝜕ℓ
𝜕b1

=
n

∑
i=1

log
(
1 − xai

)
+ 2n

b1
+ n

b0 + b1 + b2
. (28)

𝜕ℓ
𝜕b2

=
n

∑
i=1

log
(
1 − yai

)
+ 2n

b2
+ n

b0 + b1 + b2
. (29)
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𝜕ℓ
𝜕a =

n

∑
i=1

b0
(
1 −min(xi, yi)

)a log (1 −min(xi, yi)
)(

1 −
(
1 −min(xi, yi)

)a)b0−1

1 −
(
1 −

(
1 −min(xi, yi)

)a)b0
+ 2n

a

+ (b1 − 1)
n

∑
i=1

−
xai log(xi)
1 − xai

+ (b2 − 1)
n

∑
i=1

−
yai log(yi)
1 − yai

+
n

∑
i=1

log(xi) +
n

∑
i=1

log(yi). (30)

Setting (27–30) to 0 and solving these likelihood equations simultaneously, we get the maximum likelihood estimates (MLEs) for b0, b1, b2,
and a.

7. APPLICATION

In this section we consider two applications of the proposed BWK distribution based two data sets:

• Data Set I: Earthquakes become major societal risks when they strike on vulnerable populations. We consider the data is obtained from
Ozel [18]. Due to the fact that a significant portion of Turkey is subject to frequent earthquakes, destructive mainshocks and their
foreshock and aftershock sequences between the longitudes (39 − 42°N) and latitudes (26 − 45°E) are investigated. In this particular
region, 111 mainshocks with surface magnitude (Ms) of five or more have occurred in the past 106 years. We define the following
random variables: X represents the magnitude of foreshocks and Yrepresents the magnitude of the aftershocks. We fit the data to the
following bivariate Kumaraswamy models:

• Data Set II: The data on 37 patients were available regarding the hemoglobin content in blood being prone to type II diabetes from a
Private Clinic in Tennessee. To see the effect of reducing hemoglobin content in the blood a special type of treatment was administered
to those patients. We define the following: X as a random variable which represents the proportion of hemoglobin content in the blood
before the treatment, Y as a random variable which represents the proportion of hemoglobin content in the blood after the treatment.

1. Model I: BWK distribution ([6]).

2. Model II: Bivariate Kumaraswamy (absolutely continuous distribution (Wagner et al. [5], [5]).

3. Model III: Bivariate Kumaraswamy distribution via conditional specification (Arnold and Ghosh [12]), given by

f
(
x, y

)
= C𝛼1𝛼2x𝛼1−1y𝛼2−1 (1 − x𝛼1 )𝛽1−1 (1 − y𝛼2

)𝛽2−1 exp
(
𝛽3 log (1 − x𝛼1 ) log (1 − x𝛼2 )

)
×I

(
0 < x < 1, 0 < y < 1

)
,

where C is an appropriate normalizing constant.

4. Model IV: Bivariate Kumaraswamy distribution via conditional survival specification (Arnold and Ghosh [4]), given by

f
(
x, y

)
= 𝛼1𝛼2x𝛼1−1

1 y𝛼2−1 (1 − x𝛼1 )𝛽1−1 (1 − y𝛼2
)𝛽2−1 exp 𝛽3 log

(
1 − x𝛼1

1
)
log

(
1 − y𝛼2

)
×
(
𝛽1𝛽2 + 𝛽2𝛽3 log

(
1 − x𝛼1

1
)
+ 𝛽3 + 𝛽2

3 log (1 − x𝛼1 ) log
(
1 − y𝛼2

)
+ 𝛽1𝛽3 log

(
1 − y𝛼2

))
I (0 < x1, x2 < 1) .

5. Model V: Nadarajah [19] bivariate F3-beta distribution, given by

f
(
x, y

)
=

Cx𝛽−1y𝛿−1 (1 − x − y
)𝛾−𝛽−𝛿−1

(1 − ux)𝜃1
(
1 − vy

)𝜃2 ,

for 0 < x < 1, 0 < y < 1, 0 < x+y < 1, −1 < u < 1, −1 < v < 1, (𝛽, 𝛿, 𝜃1, 𝜃2) > 0 and 𝛾 > 𝛽+𝛿, andC is the normalizing constant.

6. Model VI: Nadarajah [3] bivariate generalized beta distribution given by

f
(
x, y

)
=

Cx𝛼−1y𝛽−1 (1 − x)𝛾−𝛼−1 (1 − y
)𝛾−𝛽−1(

1 − xy𝛿
)𝛾 ,

for 0 < x < 1, 0 < y < 1, 0 < x+y < 1, −1 < u < 1, −1 < v < 1, (𝛽, 𝛿, 𝜃1, 𝜃2) > 0 and 𝛾 > 𝛽 + 𝛿, andC is the normalizing constant.

7. Model VII: Olkin and Trikalinos [20] bivariate beta distribution given by

f
(
x, y

)
=

x𝛼1−1y𝛼2−1 (1 − x)𝛼0+𝛼2−1 (1 − y
)𝛼0+𝛼1−1(

1 − xy
)𝛼0+𝛼1+𝛼2

.
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Table 1 Parameter estimates for Data Set I.

Model Model I Model II Model III Model IV

Parameter estimates â = 2.4956 (0.8010) 𝛼1 = 3.5287 (0.3335) 𝛼1 = 2.4571 (0.4620) 𝛼1 = 1.1892 (0.6043)
b̂1 = 1.4891 (0.1207) 𝛼2 = 1.1845 (0.9723) 𝛼2 = 2.5183 (0.5781) 𝛼2 = 2.0367 (0.1472)
b̂2 = 0.3165 (0.0842) 𝛼3 = 3.2424 (0.1065) 𝛽1 = 1.472 (0.1368) 𝛽1 = 4.352 (0.4956)
b̂0 = 0.7849 (0.0229) ̂𝛽 = 1.923 (0.9537) 𝛽2 = 1.1883 (0.0442) 𝛽2 = 2.1769 (0.0154)

𝛽3 = 1.6543 (0.0279) 𝛽3 = 2.538 (0.4015)

Log-likelihood −162.34 −116.58 −113.36 −113.25

𝜒2 goodness p-value 0.9983 0.7146 0.8345 0.9978

Table 2 Parameter estimates for Data Set II.

Model Model I Model II Model III Model IV

Parameter estimates â = 1.2781 (0.3533) 𝛼1 = 2.1258 (0.4015) 𝛼1 = 0.547 (0.6436) 𝛼1 = 0.723 ((0.5145))
b̂1 = 1.1139 (0.0737) 𝛼2 = 3.4753 (0.1216) 𝛼2 = 1.6782 (0.1635) 𝛼2 = 1.7894 (0.2051)
b̂2 = 1.1464 (0.2102) 𝛼3 = 2.3832 (0.3528) 𝛽1 = 0.3587 (0.1822) 𝛽1 = 0.2291 (0.0567)
b̂0 = 0.8735 (0.1718) ̂𝛽 = 1.2913 (0.4583) 𝛽2 = 0.7117 (0.3453) 𝛽2 = 0.5673 (0.1644)

𝛽3 = 0.3257 (0.5726) 𝛽3 = 0.4882 (0.8293)

Log-likelihood −162.34 −116.58 −113.36 −113.25

𝜒2p-value 0.9532 0.8140 0.9123 0.9203

Table 3 Parameter estimates for Data Set I.

Model Model V Model VI Model VII

Parameter estimates ̂𝛽 = 2.427 (0.6518) �̂� = 1.485 (0.6672) 𝛼0 = 4.016 (0.6436)
̂𝛿 = 0.980 (2.490) ̂𝛽 = 1.973 (0.3294) 𝛼1 = 3.7649 (2.1873)

�̂� = 1.0892 (4.5253) �̂� = 7.528 (0.9897) 𝛼2 = 6.172 (0.5837)
𝜃1 = 2.6843 (0.6439) ̂𝛿 = 2.735 (0.9892)
𝜃2 = 0.8735 (0.1718)

Log-likelihood −245.68 −237.18 −186.79

𝜒2p-value 0.5584 0.6283 0.7246

Table 4 Parameter estimates for Data Set II.

Model Model V Model VI Model VII

Parameter estimates ̂𝛽 = 2.893 (0.753) �̂� = 0.891 (1.248) 𝛼0 = 3.184 (0.776)
̂𝛿 = 1.653 (1.046) ̂𝛽 = 1.172 (1.682) 𝛼1 = 2.457 (1.2837)

�̂� = 3.117 (3.8931) �̂� = 6.418 (1.0583) 𝛼2 = 3.271 (0.4819)
𝜃1 = 1.542 (0.8568) ̂𝛿 = 1.389 (2.4015)
𝜃2 = 0.489 (0.3294)

Log-likelihood −262.17 −206.44 −135.43

𝜒2p-value 0.3518 0.3849 0.6722

To check the goodness of fit of all statistical models, several other goodness-of-fit statistics are used and are computed using computational
package Mathematica. The MLEs are computed using Nmaximize technique as well as the measures of goodness-of-fit statistics including
the log-likelihood function evaluated at the MLEs. Parameter estimates along with several goodness of fit measures are provided in Tables
1 and 3 and in Tables 2 and 4 for the data sets I and II, respectively.

8. CONCLUSION

In recent times the construction of bivariate and multivariate Kumaraswamy distributions has received a significant amount of attention.
While most of the other works focuses primarily on investigating structural properties of the proposed model, in our present work, we tryPdf_Folio:210



I. Ghosh. / Journal of Statistical Theory and Applications 18(3) 198–211 211

to provide more emphasize on the application side without undermining the need to discuss structural properties of the developed bivariate
and multivariate Kumaraswamy distributions. In this article, we propose a 4 parameter bivariate (weighted) Kumaraswamy distribution,
which allows the correlation coefficient to vary over the full range [−1, 1] and it’s an improved model in comparison with other bivariate
Kumaraswamy type distributions (such as those studied and discussed in Arnold et al. [14], [15] with 5 parameters), since we have one
parameter less. Thus it merits a separate study. In conclusion, the BWK distributions provides a rather flexible mechanism for fitting a wide
spectrum of positive real world data. Additionally, one can easily imagine situations in which observations are made only if themaximum of
k variables is less than one particular variable. In such a scenario, within the framework of amultivariate Kumaraswamy joint distribution for
the (k + 1)-dimensional data, efforts will bemade. Indeed, one could begin with any one of themany dependentmultivariate Kumaraswamy
models available in the literature. A separate report on such models will be prepared. However, unless k is small, these models necessarily
involve a considerable number of parameters, which can be expected to invite difficulties in estimation in practical settings where sample
sizes cannot be expected to be enormous. Furthermore one can envision a semi-parametric model in which (X,Y) = (h1 (X∗) , h2 (Y∗)),
where (X∗,Y∗) has a BWK distribution and h1 and h2 are unknown functions to be estimated from the data. Alternatively the functions h1
and h2 might be assumed to belong to specific parametric families of functions. The enhanced flexibility of such augmented models may
prove to be useful in many applications.
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