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ABSTRACT
We introduce the generalized Farlie–Gumbel–Morgenstern (FGM) type bivariate-generalized exponential distribution. Some
distributional properties of concomitants of order statistics as well as record values for this family are studied. Recurrence rela-
tions between the moments of concomitants are obtained, some of these recurrence relations were not publishes before for
Morgenstern type bivariate distributions. Moreover, most of the paper results are extended to arbitrary distributions.
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1. INTRODUCTION

Let (X,Y) be a bivariate absolutely continuous random variable (rv), formally defined by the distribution function (df)

FX,Y
(
x, y

)
= FX (x) FY

(
y
)
{1 + 𝜆A (Fx (x))B

(
Fy

(
y
))
} , (1)

where, FX (x) and FY
(
y
)
are the marginals df ’s of X and Y, respectively. Moreover, the two kernel A (x) → 0 and B

(
y
)
→ 0, as x → 1 and

y → 1, satisfy certain regularity conditions ensuring that FX,Y
(
x, y

)
is a df with absolutely continuous marginals FX (x) and FY

(
y
)
. The

model (1) was originally introduced by [1] forA (x) = 1−x and B
(
y
)
= 1−y and investigated by [2] for exponential marginals. Subsequent

generalizations for this model is due to Farlie (1960) [3−6]. The successive generalizations of this model aims generally to enlarge the range
of its correlation. If A (x) = 1− FX (x) and B

(
y
)
= 1− FY

(
y
)
in model (1) then we have the classical Farlie–Gumbel–Morgenstern (FGM)

for arbitrary continuous marginals FX (x) and FY
(
y
)
with df

FX,Y
(
x, y

)
= FX (x) FY

(
y
)
{1 + 𝜆 (1 − FX (x))

(
1 − FY

(
y
))
} , −1 ≤ 𝜆 ≤ 1. (2)

The extension of the model (2), due to [4] and denoted by HK-FGM, has the df and probability density function (pdf)

FX,Y
(
x, y

)
= FX (x) FY

(
y
)
{1 + 𝜆

(
1 − F p

X (x)
) (

1 − F p
Y
(
y
))
} , −1 ≤ 𝜆 ≤ 1, p ≥ 1 (3)

and

fX,Y
(
x, y

)
= fX (x) fY

(
y
)
{1 + 𝜆

((
1 + p

)
FX (x) − 1

) ((
1 + p

)
FY

(
y
)
− 1

)
} , −1 ≤ 𝜆 ≤ 1, p ≥ 1, (4)

respectively, where fX (x) and fY
(
y
)
are the pdf ’s of the rv’s X and Y respectively. The admissible range of the associated parameter 𝜆 is

−max
(
1, p

)−2 ≤ 𝜆 ≤ p−1, and since p ≥ 1, this admissible rang is p−2 ≤ 𝜆 ≤ p−1.
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Remark 1.1. It is worth mentioning that, under the conditions p > 0 and −max
(
1, p

)−2 ≤ 𝜆 ≤ p−1, the model (4) is a bona fide (i.e.,
FX,Y

(
x, y

)
is a genuine bivariate df. However, when 0 < p < 1 the model (4) becomes very poor and is not allowing any improvement of

the positive correlation compared to the classical FGM model (see, [6]). Therefore most of authors who tackle the model (4) postulate the
condition p > 1.
[7] studied some properties of the model (3) and (4)) for bivariate-generalized exponential (GE) distribution (denoted byMTBGED). Also,
they studied some distributional properties of concomitants of order statistics as well as record values of thismodel.Moreover, they obtained
some recurrence relations between moments of concomitants of order statistics. Recently, [8] extended all the results of [7] to HK-FGM
family for bivariate-GE distribution (denoted by HK-FGMGE). Moreover, some new results, which were not be obtained by [7], for FGM
family, were given. Finally, [8] studied the asymptotic behavior of the concomitants of order statistics and made some corrections of [7].

[9] proposed a new generalization of FGMmodel (3), with marginals FU (u) = u and FV (v) = v, 0 ≤ u, v ≤ 1, by

FU,V (u, v) = uv[1 + 𝜆(1 − u p)(1 − v p)]m, −1 ≤ 𝜆 ≤ 1, p > 0, (5)

where the admissible range of the parameter 𝜆 is −min
(
1, 1

mp2

)
≤ 𝜆 ≤ 1

mp . The Spearman’s correlation coefficient of the model (5) is

𝜌★ = 12
n

∑
j=1

𝜆 j

(
n
j

)
⎡
⎢
⎢
⎣

Γ( j + 1)Γ
(

2
p

)
pΓ

(
j + 1 + 2

p

)⎤⎥⎥
⎦

2

. (6)

Clearly, if putm = p = 1 in (6) then we get 𝜌⋆ for the model (2), while if putm = 1 then we get 𝜌⋆ for the model (3).

A rv X is a two-parameter GE if it has the df

FX (x) = (1 − exp(−𝜃x))𝛼, x > 0; 𝜃 > 0, 𝛼 > 0, (7)

and the pdf

fX (x) = 𝛼𝜃(1 − exp(−𝜃x))𝛼−1 exp (−𝜃x) . (8)

This distribution is a generalization of the exponential distribution and ismore flexible, for being that, the hazard function of the exponential
distribution is constant, but the hazard function of GE distribution can be constant, increasing or decreasing. [10] showed that the kth
moment of GE (𝜃; 𝛼) is

𝜇k (𝜃, 𝛼) =
𝛼k!
𝜃k

ℵ(𝛼−1)

∑
i=0

(−1)i
(i + 1)k+1

(
𝛼 − 1
i

)
,

where ℵ (x) = ∞, if x is non-integer and ℵ (x) = x, if x is integer. Moreover, the mean, variance and moment generating function of
GE (𝜃; 𝛼) are given, respectively, by

𝜇1 (𝜃, 𝛼) = E (X) = B (𝛼)
𝜃 , Var (X) = C (𝛼)

𝜃2 and MX (t) = 𝛼𝛽
(
𝛼, 1 − t

𝜃
)
, (9)

where B (𝛼) = Ψ (𝛼 + 1) − Ψ (1) , C (𝛼) = Ψ′ (1) − Ψ′ (𝛼 + 1) , 𝛽 (a, b) = Γ (a)Γ (b)
Γ (a + b)

and Ψ (.) is the digamma function, while Ψ′ (.) is its
derivation (the trigamma function).

In this paper we studied some properties of the model (5) for bivariate-GE distribution (denoted by GFGM-GE). Also, we studied some
distributional properties of concomitants of order statistics as well as record values of this model. Moreover, some recurrence relations
between moments of concomitants of order statistics are obtained. It is more suitable for achievement our aim to put the model (5) in the
following form (by using binomial expansion):

FX,Y
(
x, y

)
= FX (x) FY

(
y
) m

∑
i=0

𝜆i
(
m
i

)
(1 − F p

X(x))
i (1 − F p

Y(y))
i. (10)

In this case the pdf of the model (1.10) is given by

fX,Y
(
x, y

)
= fX (x) fY

(
y
)
[1 +

m

∑
i=1

𝜆i
(

m
i

)
(1 − F p

X(x))
i−1 (1 − (

1 + ip
)
F p
X (x)

)
.(1 − F p

Y(y))
i−1 (1 − (

1 + ip
)
F p
Y
(
y
))
] .
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2. SOME PROPERTIES OF GFGM-GE
(
𝜃1, 𝛼1; 𝜃2, 𝛼2

)
In this section we determined the correlation coefficient the model GFGM-GE (𝜃1, 𝛼1; 𝜃2, 𝛼2). By using the Hoeffding formula (see [11]),
we get

COV
(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p;m

)
= ∫

∞

0 ∫
∞

0
[FX,Y

(
x, y

)
− FX (x) FY

(
y
)
] dxdy

=
m
∑
i=1
𝜆i
(
m
i

)
∫
∞

0 ∫
∞

0
FX (x) FY

(
y
)
(1 − F p

X(x))
i(1 − F p

Y(y))
idxdy

= 1
𝜃1𝜃2

m
∑
i=1
𝜆i
(
m
i

)
I1I2, (11)

where

It = ∫
1

0
𝜉𝛼t (1 − 𝜉𝛼tp)i 1

1 − 𝜉 d𝜉 =
∞
∑
j=0 ∫

1

0
𝜉𝛼t+j(1 − 𝜉𝛼tp)id𝜉

= 1
𝛼tp

∞
∑
j=0 ∫

1

0
𝜉
𝛼t+j+1
𝛼tp

−1
(1 − 𝜉)id𝜉 = 1

𝛼tp
∞
∑
j=1
𝛽
(𝛼t + j + 1

𝛼tp
, i + 1

)
, t = 1, 2

and 𝛽 (a, b) is the usual Beta function. Therefore, the correlation coefficient of the model GFGM-GE (𝜃1, 𝛼1; 𝜃2, 𝛼2)) is given by

𝜌
(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p;m

)
= 1

p2
m
∑
i=1
𝜆i
(
m
i

) 2
∏
t=1

1
√C (𝛼t)𝛼t

∞
∑
j=1
𝛽
(𝛼t + j + 1

𝛼tp
, i + 1

)
. (12)

Remark 2.1. Form = 1, the correlation coefficient (12) reduces to

𝜌
(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p; 1

)
= 𝜆

D
(
𝛼1, p

)
D
(
𝛼2, p

)
√C (𝛼1)C (𝛼2)

,

where D
(
𝛼i, p

)
= B

(
𝛼i
(
1 + p

))
− B (𝛼i) , i = 1, 2. The preceding formula was derived by [8].

The following theorem gives some interesting properties of the model GFGM-GE (𝜃1, 𝛼1; 𝜃2, 𝛼2) .

Theorem 2.1. Let −min {1, 1
mp2 } ≤ 𝜆 ≤ 1

mp . Then,

𝜌
(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p;m

)
> 𝜌

(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p, 1

)
, ∀m > 1. (13)

Moreover,

lim
𝛼1→0
𝛼2→0

𝜌
(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p;m

)
= 0

and

lim𝛼1→∞
𝛼2→∞

𝜌
(
X,Y ∶ 𝜆; 𝛼1, 𝛼2; p;m

)
= 𝜌

(
X,Y ∶ 𝜆; p;m

)
= 6
𝜋2

m
∑
i=1
𝜆i
(
m
i

)(
∫
1

0
(1 − zp)2i 1

log z
dz
)2

.
(14)

Finally, a more accessible formula for 𝜌
(
X,Y ∶ 𝜆; p;m

)
is given by

𝜌
(
X,Y ∶ 𝜆; p;m

)
= 6
𝜋2

m
∑
i=1
𝜆i
(
m
i

)(
i

∑
j=1

(−1)i−j
(
i
j

)
log(1 + pj)

)2

. (15)
Pdf_Folio:311



312 H. M. Barakat et al. / Journal of Statistical Theory and Applications 18(3) 309–322

Proof of Theorem 2.1. The proof of the relation (13) follows immediately from the fact that the function 𝛽
(
x, y

)
is non-increasing in both

x and y, and i ≥ 1. In order to prove the relation (14), we start with the relation (11), where

It = ∫
1

0
𝜉𝛼t

(
1 − 𝜉𝛼tp

)i 1
1 − 𝜉 d𝜉 =

1
𝛼t ∫

1

0
(1 − zp)i z

1
𝛼t

1 − z
1
𝛼t

dz (16)

(by using the transformation z = 𝜉𝛼t ). On the other hand, for any 0 < z < 1, we have

lim
𝛼t→∞

z
1
𝛼t

𝛼t
(
1 − z

1
𝛼t

) = lim
𝜃→0

𝜃z𝜃
1 − z𝜃

= − 1
log z

(17)

and

lim
𝛼t→∞

C (𝛼t) =
𝜋2

6 . (18)

Combining (16 ), (17) and (18), we get the relation (14). By using a result of [12] we get

∫
1

0
(zp − 1)i 1

log z
dz =

i

∑
j=1

(−1)i−j
(
i
j

)
log

(
1 + pj

)
,

which immediately proves (15).

Remark 2.2. From (15) withm = 1, we have

𝜌
(
X,Y ∶ 𝜆; p; 1

)
= 6
𝜋2 log

2 (1 + p
)
,

which coincides with the result of [8].

In Table 1 , we give some values of the correlation coefficient 𝜌
𝜆max

= 𝜌
(
X,Y ∶ 𝜆max; p;m

)
defined in (15), where 𝜆max =

1
mp . The result

of this table shows that, when 0 < p < 1, the model becomes very poor and is not allowing any improvement of the positive correlation
compared to the HK-FGM model or even the classical model FGM. Therefore, for the practical purposes, we always take p > 1 (see also
Remark 1.1). Moreover, Table 1 shows that the values of 𝜌

𝜆max
are irregularly fluctuated with changing the values of the parameters p andm.

However the maximum value of 𝜌
𝜆max

, which is 0.4214, reaches at m = 25 and p = 4.5. This maximum value is a significant improvement
comparing with the upper bound “0.2921”obtained by [7] for the model MTBGED and is also a satisfactory improvement comparing with
the upper pound “0.3937”obtained by [8] for themodel HK-FGMGE. This fact gives a satisfactorymotivation to deal with GFGM-GE rather
than MTBGED and HK-FGMGE.

Table 1 Some different values of the correlation coefficient for the family GFGM-GE.

m p 𝜆max 𝜌𝜆max
m p 𝜆max 𝜌𝜆max

1 0.01 100 0.006 1 3 0.33333 0.389
3 0.01 33.333 0.0062 50 3 0.0067 0.42
1 0.1 10 0.055 1 4 0.25 0.394
25 0.1 0.4 0.057 50 4 0.005 0.4210
1 1 1 0.29 25 4.5 0.0089 0.4214
50 1 0.02 0.32 1 5 0.2 0.399
100 1 0.01 0.33 25 5 0.008 0.411
3 1.5 0.2222 0.3513 50 5 0.004 0.417
1 2 0.5 0.366 1 6 0.16667 0.3836
3 2 0.16667 0.3849 50 6 0.0033 0.3983
50 2 0.01 0.399 500 6 0.00033 0.3988
100 2 0.005 0.3999 1000 6 0.000166 0.3998
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3. CONCOMITANTS OF ORDER STATISTICS BASED ON GFGM-GE

In the last two decades much attention has been paid to the concomitants of order statistics models, see, e.g. [7,8,13,14]. The importance of
thesemodels increased owing to the rigorous demand of natural science, social science and economics to study the problemswhich generally
depend on two different dependent characteristics. Let (X1,Y1) , (X2,Y2) , ..., (Xn,Yn) be a random sample from a bivariate df FX,Y

(
x, y

)
. If

we arrange the X−variate in ascending order as X1∶n ≤ X2∶n ≤ .... ≤ Xn∶n, then, the Y−variate paired with these order statistics are denoted
byY[1∶n],Y[2∶n], ...,Y[n∶n] and termed the concomitants of order statistics. The concept of concomitants of order statistics was first introduced
by [15] and almost simultaneously under the name of induced order statistics by [16]. These concomitant order statistics are of interest in
selection and prediction problems based on the ranks of the X’s. Another application of concomitants of order statistics is in ranked-set
sampling. It is a sampling scheme for situations where measurement of the variable of primary interest for sampled items is expensive or
time-consuming while ranking of a set of items related to the variable of interest can be easily done. A comprehensive review of ranked-set
sampling can be found in [17]. For a recent comprehensive review of possible applications of the concomitants of order statistics, see [18].

Let X ∼ GE (𝜃1; 𝛼1) and Y ∼ GE (𝜃2; 𝛼2) . Since the conditional pdf of Y[r∶n] given X[r∶n] = x is fY[r∶n]|Xr∶n

(
y|x

)
= fY|X

(
y|x

)
, then the pdf of

Y[r∶n] is given by

f[r∶n]
(
y
)
= ∫

∞

0
fY|X

(
y|x

)
fr∶n (x) dx, (19)

where fr∶n (x) =
1

𝛽 (r, n − r + 1)
F r−1
X (x) (1 − FX (x))n−r fX (x) is the pdf of the rth order statistic Xr∶n and fY|X

(
y|x

)
can be computed by

using (7), (8) and (10). The following theorem gives the useful representation of the pdf f[r∶n]
(
y
)
.

Theorem 3.1. Let Uj ∼ GE
(
𝜃2, 𝛼2

(
jp + 1

))
and Vi ∼ GE

(
𝜃2, 𝛼2

((
j + 1

)
p + 1

))
. Then

f[r∶n]
(
y
)
= fY

(
y
)
+

m

∑
i=1

𝜆i
(
m
i

)
𝒮(t)r,n

(
p, i

)

×
ℵ(i−1)

∑
j=0

(
i − 1
j

)
(−1)j { 1

jp + 1 fUj

(
y
)
− 1 + pi(

j + 1
)
p + 1

fVj

(
y
)
} , t = 1, 2,

where

𝒮(1)r,n
(
p, i

)
= 1

p

n−r

∑
l=0

(
n − r
l

)
(−1)lΔ⋆l∶r,n

(
p, i

)
,

Δ⋆l∶r,n
(
p, i

)
=
𝛽
(

r+l
p
, i
)
−
(
1 + pi

)
𝛽
(

r+l
p
+ 1, i

)
𝛽 (r, n − r + 1)

,

𝒮(2)r,n
(
p, i

)
=

ℵ(i−1)

∑
l=0

(
i − 1
l

)
(−1)lΔ⋆⋆l∶r,n

(
p, i

)
and

Δ⋆⋆l∶r,n
(
p, i

)
=
𝛽
(
lp + r, n − r + 1

)
−
(
1 + pi

)
𝛽
(
(l + 1) p + r, n − r + 1

)
𝛽 (r, n − r + 1)

.

Proof. Clearly, the relation (19), can be written in the form

f[r∶n]
(
y
)
= fY

(
y
)
[1+

m

∑
i=1
𝜆i

(
m
i

)(
1− F p

Y(y)
)i−1 (

1−
(
1+ pi

)
F p
Y
(
y
)) (

J1 −
(
1+ pi

)
J2
)
]

= fY
(
y
)
+

m

∑
i=1
𝜆i

(
m
i

)(
J1 −

(
1+ pi

)
J2
) ℵ(i−1)
∑
j=0

(
i− 1
j

)
(−1)j {

fUj

(
y
)

jp+ 1
−

(
1+ pi

)
fVj

(
y
)(

j+ 1
)
p+ 1

} ,
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where

J1𝛽 (r, n− r+ 1) = ∫
∞

0

(
1− F p

X(x)
)i−1 F r−1

X (x) (1− FX(x))n−rfX (x) dx

=
n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ ∫

∞

0
(1− F p

X(x))
i−1F ℓ+r−1

X (x) fX (x) dx

=
n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ𝛼1𝜃1 ∫

∞

0
(1− (1− e−𝜃1x)𝛼1p)i−1(1−e

−𝜃1x)𝛼1(ℓ+r)−1e−𝜃1xdx

=
n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ𝛼1 ∫

1

0
(1− 𝜉𝛼1p)i−1𝜉𝛼1(ℓ+r)−1d𝜉

= 1
p

n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ ∫

1

0
t
ℓ+r
p

−1
(1− t)i−1dt = 1

p

n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ𝛽

(
r+ ℓ
p , i

)
(20)

(by using the substitute 𝜉 = 1− e−𝜃1x and then use the substitution t = 𝜉𝛼1p) and

J2𝛽 (r, n− r+ 1) = ∫
∞

0

(
1− F p

Y(x)
)i−1 F p+r−1

X (x) (1− FX(x))n−rfX (x) dx

=
n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ ∫

∞

0
(1− F p

X(x))
i−1F ℓ+p+r−1

X (x) fX (x) dx

=
n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ𝛼1𝜃1 ∫

∞

0
(1− (1− e−𝜃1x)𝛼1p)i−1(1− e−𝜃1x)𝛼1(ℓ+p+r)−1e−𝜃1xdx

= 1
p

n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ𝛼1 ∫

1

0
(1− 𝜉𝛼1p)i−1𝜉𝛼1(ℓ+p+r)−1d𝜉 = 1

p

n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ𝛽

(
r+ ℓ
p + 1, i

)
(21)

(by using the substitute 𝜉 = 1− e−𝜃1x and then use the substitution t = 𝜉𝛼1p). Therefore, by combining (20) and (21), we get

𝒮(1)r,n
(
p, i

)
= J1 −

(
1+ pi

)
J2 =

1
p

n−r
∑
ℓ=0

(
n− r
ℓ

)
(−1)ℓ∆⋆

ℓ∶r,n
(
p, i

)
,

where

∆⋆
ℓ∶r,n

(
p, i

)
=

𝛽
(

r+ℓ
p
, i
)
−

(
1+ pi

)
𝛽
(

r+ℓ
p
+ 1, i

)
𝛽 (r, n− r+ 1)

.

On the other hand,

J1𝛽 (r, n− r+ 1) = ∫
∞

0

(
1− F p

X(x)
)i−1 F r−1

X (x) (1− FX(x))n−rfX (x) dx

= 𝛼1𝜃1 ∫
∞

0
(1− (1− e−𝜃1x)𝛼1p)i−1(1− e−𝜃1x)𝛼1r−1(1− (1− e−𝜃1x)𝛼1 )n−re−𝜃1xdx.

Upon substituting 𝜉 = 1− e−𝜃1x, we get

J1𝛽 (r, n− r+ 1) = 𝛼1 ∫
1

0
(1− 𝜉𝛼1p)i−1𝜉𝛼1r−1(1− 𝜉𝛼1 )n−rd𝜉.

Moreover, by using the substitution u = 𝜉𝛼1 , we get

J1𝛽 (r, n− r+ 1) = 1
p ∫

1

0
ur−1(1− u)n−r(1− up)i−1du,
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after simple calculations, we get

J1𝛽 (r, n− r+ 1) =
ℵ(i−1)
∑
ℓ=0

(
ℓi−1

)
(−1)ℓ𝛽

(
ℓp+ r, n− r+ 1

)
. (22)

Similarly

J2𝛽 (r, n− r+ 1) =
ℵ(i−1)
∑
ℓ=0

(
ℓi−1

)
(−1)ℓ𝛽

(
(ℓ + 1) p+ r, n− r+ 1

)
. (23)

Therefore, by combining (22) and (23), we get

𝒮(2)r,n
(
p, i

)
=

(
J1 −

(
1+ pi

)
J2
)
=

ℵ(i−1)
∑
j=0

(
i− 1
ℓ

)
(−1)ℓ∆⋆⋆

ℓ∶r,n
(
p, i

)
,

where

∆⋆⋆
ℓ∶r,n

(
p, i

)
=

𝛽
(
ℓp+ r, n− r+ 1

)
−

(
1+ pi

)
𝛽
(
(ℓ + 1) p+ r, n− r+ 1

)
𝛽 (r, n− r+ 1)

.

This completes the proof of the theorem. □

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.1. Let 𝜇(k)
[r∶n] = E

(
Yk
[r∶n]

)
, k = 1, 2, .... Then,

𝜇(k)
[r∶n] = 𝜇k (𝜃2, 𝛼2) +

m
∑
i=1
𝜆i
(
m
i

)
𝒮(t)r,n

(
p, i

)
𝒟
(
k; p, i

)
= 𝜇k (𝜃2, 𝛼2) +

m
∑
i=1
𝜆i

(
m
i

)
𝒮(t)r,n

(
p, i

) ℵ(i−1)
∑
j=0

(
i − 1
j

)
(−1)j {

E
(
Uk

j

)
jp + 1 −

(
1 + pi

)
E
(
Vk
j

)
(
j + 1

)
p + 1

} , t = 1, 2,

(24)

where, E
(
Uk

j

)
and E

(
Vk
j

)
can be easily computed by using the relation (9). Therefore, the mean 𝜇[r∶n] = E

(
Y[r∶n]

)
is given by

𝜇[r∶n] =
B (𝛼2)
𝜃2

+
m
∑
i=1
𝜆i
(
m
i

)
𝒮(t)r,n

(
p, i

)
𝒟
(
1, p, i

)
, t = 1, 2, (25)

where

𝒟
(
1, p, i

)
= 1
𝜃2

ℵ(i−1)

∑
j=0

(
i − 1
j

)
(−1)j [

B
(
𝛼2

(
jp + 1

))
jp + 1 −

(
1 + pi

)
B
(
𝛼2

((
j + 1

)
p + 1

))(
j + 1

)
p + 1

] .

Corollary 3.2. Whenm = 1, we get 𝜇[r∶n] for the family HK-FGM-GE, (see [8])

𝜇[r∶n] =
1
𝜃2
[
(
1 + 𝜆Δ⋆⋆0∶r,n

(
p, 1

))
B (𝛼2) − 𝜆Δ⋆⋆0∶r,n

(
p, 1

)
B
(
𝛼2

(
p + 1

))
] . (26)

Remark 3.1. It is worth mentioning that, if we replace 𝜇k (𝜃2, 𝛼2) by E
(
Yk) .Moreover, Uj and Vj in 𝒟

(
k; p, i

)
are taken to be such that

Uj ∼ F jp+1
Y

(
y
)
and Vj ∼ F (j+1)p+1

Y
(
y
)
, then the representation (24) holds for any two arbitrary distributions FX (x) and FY

(
y
)
.

Now, by using the two representations in relation (24), as well as (25), at t = 1 and t = 2, we can derive some useful recurrence relations
satisfied by the moments 𝜇(k)

[r∶n], k = 1, 2, .... The following theorem give a new recurrence relation by using the representation at t = 1. It is
worth mentioning that this recurrence relation was not proved even for the model FGM-GE. Moreover, in view of Remark 3.1, all the next
recurrence relations are satisfied for arbitrary distributions FX (x) and FY

(
y
)
, if only we would consider the obvious changes illustrated in

Remark 3.1.
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Theorem 3.2. Let p be an integer and k = 1, 2, ...., then

1
Q(2)

r,n
(
p
)𝜇(k)

[r+2p∶n+2p] +
1

Q(1)
r,n

(
p
)𝜇(k)

[r+p∶n+p] − 2𝜇(k)
[r∶n] =

(
1

Q(2)
r,n

(
p
) + 1

Q(1)
r,n

(
p
) − 2

)
𝜇k (𝜃2, 𝛼2) −

1
p

m
∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

) n−r
∑
l=0

(
n − r
l

)
(−1)l𝜂l∶r,n

(
p, i

)
,

where

Q(j)
r,n

(
p
)
=
Γ (r)Γ

(
n + jp + 1

)
Γ
(
r + jp

)
Γ (n + 1)

, j = 1, 2,

and

𝜂l∶r,n
(
p, i

)
=
(
3 − p (1 + i)

r + p (1 + i) + l

) 𝛽
(

r+l
p
, i + 1

)
𝛽 (r, n − r + 1)

−
(
1 + pi

)(
3 − p (1 + i)

r + p (2 + i) + l

) 𝛽
(

r+l
p
+ 1, i + 1

)
𝛽 (r, n − r + 1)

.

Proof. Starting with ∆⋆
l∶r,n

(
p, i

)
, after simple calculations, we can show that

∆⋆
l∶r+p,n+p

(
p, i

)
=

𝛽
(

r+l
p
+ 1, i

)
𝛽
(
r+ p, n− r+ 1

) − (
1+ pi

) 𝛽
(

r+l
p
+ 2, i

)
𝛽
(
r+ p, n− r+ 1

)

=
(
n+ p

)
! (r− 1) !(

r+ p− 1
)
! (n! )

⎡
⎢
⎢
⎢
⎣

r+l
p

r+l
p
+ i

𝛽
(

r+l
p
, i
)

𝛽 (r, n− r+ 1)
−

(
1+ pi

) r+l
p
+ 1

r+l
p
+ i+ 1

𝛽
(

r+l
p
+ 1, i

)
𝛽 (r, n− r+ 1)

⎤
⎥
⎥
⎥
⎦

.

On the other hand, since Q(1)
r,n

(
p
)
=

(
n+ p

)
! (r− 1) !(

r+ p− 1
)
! (n! )

, we get ∆⋆
l∶r+p,n+p

(
p, i

)
= Q(1)

r,n
(
p
)
[∆⋆

l∶r,n
(
p, i

)
− 𝜉1] , where

𝜉1 =
𝛽
(

r+l
p
, i+ 1

)
−

(
1+ pi

)
𝛽
(

r+l
p
+ 1, i+ 1

)
𝛽 (r, n− r+ 1)

.

Therefore,

1
Q(1)

r,n
(
p
)∆⋆

l∶r+p,n+p
(
p, i

)
−∆⋆

l∶r,n
(
p, i

)
= −𝜉1. (27)

Similarly, after some calculations, we get

∆⋆
l∶r+2p,n+2p

(
p, i

)
=

𝛽
(

r+l
p
+ 2, i

)
𝛽
(
r+ 2p, n− r+ 1

) − (
1+ pi

) 𝛽
(

r+l
p
+ 3, i

)
𝛽
(
r+ 2p, n− r+ 1

)

=
(
n+ 2p

)
! (r− 1) !(

r+ 2p− 1
)
! (n! )

⎡
⎢
⎢
⎢
⎣

r+l
p

(
r+l
p
+ 1

)
r+l
p
+ i

(
r+l
p
+ i+ 1

) 𝛽
(

r+l
p
, i
)

𝛽 (r, n− r+ 1)

−
(
1+ pi

)
(

r+l
p
+ 1

)(
r+l
p
+ 2

)
(

r+l
p
+ i+ 1

)(
r+l
p
+ i+ 2

) 𝛽
(

r+l
p
+ 1, i

)
𝛽 (r, n− r+ 1)

⎤
⎥
⎥
⎥
⎦

.
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Thus, we get

∆⋆
l∶r+2p,n+2p

(
p, i

)
= Q(2)

r,n
(
p
)
[∆⋆

l∶r,n
(
p, i

)
− 𝜉2] , (28)

where

𝜉2 = 𝜉1 +

l+r
p
𝛽
(

r+l
p
, i+ 1

)
(

r+l
p
+ i+ 1

)
𝛽 (r, n− r+ 1)

−

(
1+ pi

)(
1+ l+r

p

)
𝛽
(

r+l
p
+ 1, i+ 1

)
(

l+r
p
+ i+ 2

)
𝛽 (r, n− r+ 1)

.

Therefore,

1
Q(2)

r,n
(
p
)∆⋆

j∶r+2p,n+2p
(
p, i

)
−∆⋆

l∶r,n
(
p, i

)
= −𝜉2. (29)

Put x = r+ l
p , we can write

𝜉2 =
i (2x+ i+ 1)

(x+ i) (x+ i+ 1)
𝛽 (x, i)

𝛽 (r, n− r+ 1)
−

(
1+ pi

) i (2x+ i+ 3)
(x+ i+ 1) (x+ i+ 2)

𝛽 (x+ 1, i)
𝛽 (r, n− r+ 1)

= (2x+ i+ 1)
(x+ i+ 1)

𝛽 (x, i+ 1)
𝛽 (r, n− r+ 1)

−
(
1+ pi

) (2x+ i+ 3)(
x+ q+ 2

) 𝛽 (
x+ 1, q+ 1

)
𝛽 (r, n− r+ 1)

= 𝜉1 +
x

(x+ i+ 1)
𝛽 (x, i+ 1)

𝛽 (r, n− r+ 1)
−

(
1+ pi

) (x+ 1)
(x+ i+ 2)

𝛽 (x+ 1, i+ 1)
𝛽 (r, n− r+ 1)

.

Therefore, we can easily show that

𝜉2 + 𝜉1 =
(
2+ x

x+ i+ 1

) 𝛽 (x, i+ 1)
𝛽 (r, n− r+ 1)

−
(
1+ pi

)(
2+ x+ 1

x+ i+ 2

) 𝛽 (x+ 1, i+ 1)
𝛽 (r, n− r+ 1)

= 𝜂l∶r,n
(
p, i

)
.

Thus by combining this equality with (27), (28), (29) and (24), at t = 1, the proof of the theorem follows immediately. □

Corollary 3.3. Form = 1, we get for the family HK-FGM-GE, (see [8])

1
Q(2)

r,n
(
p
)𝜇(k)

[r+2p∶n+2p] +
1

Q(1)
r,n

(
p
)𝜇(k)

[r+p∶n+p] − 2𝜇(k)
[r∶n] =

(
1

Q(2)
r,n

(
p
) + 1

Q(1)
r,n

(
p
) − 2

)
𝜇k (𝜃2, 𝛼2) −

𝜆𝒟
(
k, p, 1

)
p𝛽 (r, n − r + 1)

3
∑
l=0

cl
(
p
)
𝛽
(
r + lp, n − r + 1

)
,

(30)

where c0
(
p
)
= 2p, c1

(
p
)
= −p

(
2p + 3

)
, c2

(
p
)
= p2, c3

(
p
)
= p

(
1 + p

)
and 𝒟

(
k, p, 1

)
= 𝜇k (𝜃2, 𝛼2) − 𝜇k

(
𝜃2, 𝛼2

(
1 + p

))
.

The following theorem, which is relying on the representation (27), at t = 2, given some recurrence relations satisfied by the kth moments
of concomitants of order statistics for any arbitrary distributions.

Theorem 3.3. For any k = 1, 2, ...., we have

𝜇(k)
[r+2∶n] − 𝜇(k)

[r∶n]

𝜇(k)
[r+1∶n] − 𝜇(k)

[r∶n]
=

m
∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

)
Ω(1)

r,n
(
p, i

)
(r + 1)

m
∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

)
Ω(2)

r,n
(
p, i

) (31)

and

𝜇(k)
[r∶n−2] − 𝜇(k)

[r∶n]

𝜇(k)
[r∶n−1] − 𝜇(k)

[r∶n]
=

m
∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

)
Ω(1)

r,n
(
p, i

)
(n − 1)

m
∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

)
Ω(2)

r,n
(
p, i

) , (32)
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where

Ω(1)
r,n

(
p, i

)
=

ℵ(i − 1)
∑
l=0

(
i − 1

l

)
(−1)l [lp

(
lp + 2r + 1

)
𝛽
(
lp + r, n − r + 1

)
−
(
1 + pi

)
(1 + l) p

(
(l + 1) p + 2r + 1

)
𝛽
(
(l + 1) p + r, n − r + 1

)
] ,

and

Ω(2)
r,n

(
p, i

)
=

ℵ(i − 1)

∑
l=0

(
i − 1

l

)
(−1)l [lp𝛽

(
lp + r, n − r + 1

)
−

(
1 + pi

)
(1 + l) p𝛽

(
(l + 1) p + r, n − r + 1

)
] .

Proof. It is easy to check that

∆⋆⋆
l∶r+1,n

(
p, i

)
=
𝛽
(
lp+ r+ 1, n− r

)
−

(
1+ pi

)
𝛽
(
(l+ 1) p+ r+ 1, n− r

)
𝛽 (r+ 1, n− r)

=
lp+r
n−r

𝛽
(
lp+ r, n− r+ 1

)
−

(
1+ pi

) (l+1)p1+r
n−r

𝛽
(
(l+ 1) p+ r, n− r+ 1

)
r

n−r
𝛽 (r, n− r+ 1)

= ∆⋆⋆
l∶r,n

(
p, i

)
+

lp𝛽
(
lp+ r, n− r+ 1

)
−

(
1+ pi

)
(l+ 1) p𝛽

(
(l+ 1) p+ r, n− r+ 1

)
r𝛽 (r, n− r+ 1)

.

Therefore, we get

𝒮(2)r+1,n
(
p, i

)
− 𝒮(2)r,n

(
p, i

)
= 1

r𝛽 (r, n− r+ 1)

×
ℵ(i − 1)

∑
l=0

(
i− 1
l

)
(−1)l [lp𝛽

(
lp + r, n− r+ 1

)
−

(
1 + pi

)
(1 + l) p𝛽

(
(l + 1) p+ r, n− r + 1

)
] .

Moreover, we have

∆⋆⋆
l∶r+2,n

(
p, i

)
=
𝛽
(
lp+ r+ 2, n− r− 1

)
−

(
1+ pi

)
𝛽
(
(l+ 1) p+ r+ 2, n− r− 1

)
𝛽 (r+ 2, n− r− 1)

.

=
(lp+r)(lp+r+1)
(n−r)(n−r−1)

𝛽
(
lp+ r, n− r+ 1

)
−

(
1+ pi

) ((l+1)p+r)((l+1)p+r+1)
(n−r)(n−r−1)

𝛽
(
(l+ 1) p+ r, n− r+ 1

)
r(r+1)

(n−r)(n−r−1)
𝛽 (r, n− r+ 1)

.

Thus, we get

𝒮(2)r+2,n
(
p, i

)
− 𝒮(2)r,n

(
p, i

)
= 𝜆

r (r+ 1)𝛽 (r, n− r+ 1)

×[
ℵ(i−1)
∑
l=0

(
i− 1
l

)
(−1)l [lp

(
lp+ 2r+ 1

)
𝛽
(
lp+ r, n− r+ 1

)

−
(
1+ pi

)
(1+ l) p

(
(l+ 1) p+ 2r+ 1

)
𝛽
(
(l+ 1) p+ r, n− r+ 1

)
] .

Therefore,

𝜇(k)
[r+2∶n] −𝜇(k)

[r∶n]

𝜇(k)
[r+1∶n] −𝜇(k)

[r∶n]
=

m
∑
i=1
𝜆i

(
m
i

)
𝒟
(
k, p, i

)
Ω(1)

r,n
(
p, i

)
(r+ 1)

m
∑
i=1
𝜆i

(
m
i

)
𝒟
(
k, p, i

)
Ω(2)

r,n
(
p, i

) .
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Similarly, we have

∆⋆⋆
l∶r,n−1

(
p, i

)
=
𝛽
(
lp+ r, n− r

)
−

(
1+ pi

)
𝛽
(
(l+ 1) p+ r, n− r

)
𝛽 (r, n− r)

.

=
lp+n
n−r

𝛽
(
lp+ r, n− r+ 1

)
−

(
1+ pi

) (l+1)p+n
n−r

𝛽
(
(l+ 1) p+ r, n− r+ 1

)
n

n−r
𝛽 (r, n− r+ 1)

= ∆⋆⋆
l∶r,n

(
p, i

)
+

lp𝛽
(
lp+ r, n− r+ 1

)
−

(
1+ pi

)
(l+ 1) p𝛽

(
(l+ 1) p+ r, n− r+ 1

)
n𝛽 (r, n− r+ 1)

.

Consequently, we get

𝒮(2)r,n−1
(
p, i

)
− 𝒮(2)r,n

(
p, i

)
= 𝜆

n𝛽 (r, n− r+ 1)

×
ℵ(i − 1)

∑
l=0

(
i − 1

j

)
(−1)l [lp𝛽

(
lp + r, n− r+ 1

)
−

(
1 + pi

)
(1 + l) p𝛽

(
(l + 1) p+ r, n− r + 1

)
] .

Moreover,

∆⋆⋆
l∶r,n−2

(
p, i

)
=
𝛽
(
lp+ r, n− r− 1

)
−

(
1+ pi

)
𝛽
(
(l+ 1) p+ r, n− r− 1

)
𝛽 (r, n− r− 1)

=
(lp+n)(lp+n−1)
(n−r)(n−r−1)

𝛽
(
lp+ r, n− r+ 1

)
−

(
1+ pi

) ((l+1)p+n)((l+1)p+n−1)
(n−r)(n−r−1)

𝛽
(
(l+ 1) p+ r, n− r+ 1

)
n(n−1)

(n−r)(n−r−1)
𝛽 (r, n− r+ 1)

= ∆⋆⋆
l∶r,n

(
p, i

)
+
lp
(
lp + 2n − 1

)
𝛽
(
lp + r, n − r + 1

)
−

(
1 + pi

)
(l + 1) p

(
(l + 1) p + 2n − 1

)
𝛽
(
(l + 1) p + r, n − r + 1

)
n (n − 1)𝛽 (r, n − r + 1)

.

Thus,

𝒮(2)r+2,n
(
p, i

)
− 𝒮(2)r,n

(
p, i

)
= 𝜆

n (n− 1)𝛽 (r, n− r+ 1)

×[
ℵ(i − 1)

∑
l=0

(
i − 1

j

)
(−1)l [lp

(
lp+ 2n− 1

)
𝛽
(
lp+ r, n− r+ 1

)

−
(
1+ pi

)
(1+ l) p

(
(l+ 1) p+ 2n− 1

)
𝛽
(
(l+ 1) p+ r, n− r+ 1

)
] .

Therefore,

𝜇(k)
[r∶n−2] −𝜇(k)

[r∶n]

𝜇(k)
[r∶n−1] −𝜇(k)

[r∶n]
=

m
∑
i=1
𝜆i

(
m
i

)
𝒟
(
k, p, i

)
Ω(1)

r,n
(
p, i

)
(n− 1)

m
∑
i=1
𝜆i

(
m
i

)
𝒟
(
k, p, i

)
Ω(2)

r,n
(
p, i

) .
This completes the proof of the theorem. □

Corollary 3.4. Atm = 1, we get for the HK-FGM-GE family (see [8])

(r + 1)𝜇(k)
[r+2∶n] =

(
2r + p + 1

)
𝜇(k)
[r+1∶n] −

(
r + p

)
𝜇(k)
[r∶n]

and (
n + p

)
𝜇(k)
[r∶n] =

(
2n + p − 1

)
𝜇(k)
[r∶n−1] − (n − 1)𝜇(k)

[r∶n−2].Pdf_Folio:319
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Theorem 3.4. For any k = 1, 2, ..., we have

𝜇(k)
[r+2∶n] + 𝜇(k)

[r+1∶n] − 2𝜇(k)
[r∶n] =

m

∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

)
Φ(1)

r,n
(
p, i

)
,

where

Φ(1)
r,n

(
p, i

)
= p

r (r + 1) 𝛽 (r, n − r + 1)

ℵ(i−1)

∑
ℓ=0

(
i − 1
ℓ

)
(−1)ℓ [ℓ

(
ℓp + 3r + 2

)
𝛽
(
ℓp + r, n − r + 1

)
−
(
1 + pi

)
(1 + ℓ)

(
(ℓ + 1) p + 3r + 2

)
𝛽
(
(ℓ + 1) p + r, n − r + 1

)
] .

Moreover,

𝜇(k)
[r∶n−2] + 𝜇(k)

[r∶n−1] − 2𝜇(k)
[r∶n] =

m

∑
i=1
𝜆i
(
m
i

)
𝒟
(
k, p, i

)
Φ(2)

r,n
(
p, i

)
,

where

Φ(2)
r,n

(
p, i

)
= p

n (n − 1) 𝛽 (r, n − r + 1)

ℵ(i−1)

∑
ℓ=0

(
i − 1
ℓ

)
(−1)ℓ [ℓ

(
ℓp + 3n − 2

)
𝛽
(
ℓp + r, n − r + 1

)
−
(
1 + pi

)
(1 + ℓ)

(
(ℓ + 1) p + 3n − 2

)
𝛽
(
(ℓ + 1) p + r, n − r + 1

)
] .

Proof. The proof of the theorem is similar to the proof of Theorem 3.3, with the exception that the addition operation supersedes the subtraction
operation. □

Corollary 3.5. Atm = 1, we have for HK-FGM-GE family (see [8]),

𝜇(k)
[r+2∶n] + 𝜇(k)

[r+1∶n] − 2𝜇(k)
[r∶n] = −

𝜆p
(
1 + p

) (
p + 3r + 2

)
𝛽
(
r + p, n − r + 1

)
r (r + 1) 𝛽 (r, n − r + 1)

𝒟
(
k, p, 1

)
.

Moreover, form = 1 we have for the HK-FGM-GE family (see [8]),

𝜇(k)
[r∶n−2] + 𝜇(k)

[r∶n−1] − 2𝜇(k)
[r∶n] = −

𝜆p
(
1 + p

) (
p + 3n − 2

)
𝛽
(
r + p, n − r + 1

)
n (n − 1) 𝛽 (r, n − r + 1)

𝒟
(
k, p, 1

)
.

4. CONCOMITANTS OF RECORD VALUES BASED ON GFGM-GE MODEL

A new topic in record values theory is concomitants of record values as analogue to concomitants of order statistics, which was suggested
for the first time and studied by [19]. The most important use of concomitants of record values arises in experiments in which a specified
characteristic’s measurements of an individual are made sequentially, and only values that exceed or fall below the current extreme value are
recorded. So the only observations are bivariate record values, i.e., records and their concomitants. Let {(Xi,Yi)} , i = 1, 2, ... be a random
sample from the model GFGM-GE (𝜃1, 𝛼1; 𝜃2, 𝛼2) . When the experimenter interests in studying just the sequence of records of the first
component Xi′s the second component associated with the record value of the first one is termed as the concomitant of that record value.
The concomitants of record values has many applications, e.g., see [20] and [21]. Some properties from concomitants of record values
can be found in [14] and [22]. Let {Rn, n ≥ 1} be the sequence of record values in the sequence of X′s while R[n] be the corresponding
concomitant. [19] obtained the pdf of concomitant of nth record value for n ≥ 1, as [n]

(
y
)
= ∫∞

0
fY
(
y|x

)
hn (x) dx, where hn (x) =

1
Γ(n)

(
− log (1 − FX (x))

)n−1 fX (x) is the pdf of Rn. The following theorem gives a useful representation for the pdf [n]
(
y
)
, as well as the

kth moments concomitants of record values based on the GFGM-GE model.

Theorem 4.1. Let Uj and Vj be defined as in Theorem 3.1. Then,

[n]
(
y
)
= fY

(
y
)
+

m
∑
i=1
𝜆i
(
m
i

)
[𝒮⋆

(
p, i

)
−
(
1 + pi

)
𝒮⋆⋆

(
p, i

)
]

×
ℵ(i−1)
∑
j=0

(
i − 1
i

)
(−1)j { 1

jp + 1 fUj

(
y
)
− 1 + pi(

j + 1
)
p + 1

fVj

(
y
)
} ,

(33)
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where

𝒮⋆
(
p, i

)
=

ℵ(i−1)

∑
ℓ=0

ℵ(ℓp)
∑
c=0

(−1)ℓ+c

(
i − 1
j

)(
ℓp
c

)
(c + 1)n

and

𝒮⋆⋆
(
p, i

)
=

ℵ(i−1)

∑
ℓ=0

ℵ(p(ℓ+1))
∑
c=0

(−1)ℓ+c

(
i − 1
ℓ

)(
p (ℓ + 1)

ℓ

)
(ℓ + 1)n .

Moreover, if 𝜇(k)
Rn
= E

(
Rk
n
)
, k = 1, 2, ..., then,

𝜇(k)
Rn
= 𝜇k (𝜃2, 𝛼2) +

m
∑
i=1
𝜆i
(
m
i

)
[𝒮⋆

(
p, i

)
−
(
1 + pi

)
𝒮⋆⋆

(
p, i

)
]𝒟

(
k; p, i

)
. (34)

Proof. Clearly, (34) is a simple consequence of (33). Therefore, we have only to prove the relation (33). Now, we have

[n]
(
y
)
= fY

(
y
)
+

m
∑
i=1
𝜆i

(
m
i

)
(1− FY(y)p(y))i−1 [1−

(
1+ pi

)
F p
Y
(
y
)
]

× ∫
∞

0
(1− F p

X(x))
i−1 [1−

(
1+ pi

)
F p
X (x)]

(− log(1− FX(x)))n−1

Γ (n)
fX (x) dx

= fY
(
y
)
+

m
∑
i=1
𝜆i

(
m
i

) ℵ(i−1)
∑
j=0

(
i− 1
i

)
(−1)j { 1

jp+ 1
fUj

(
y
)
−

1+ pi(
j+ 1

)
p+ 1

fVj

(
y
)
}

ℵ(j−1)
∑
ℓ=0

(
i− 1
ℓ

)
(−1)ℓ

1
Γ (n) ∫

∞

0
F ℓp
X (x) (− log(1− FX(x)))n−1fX (x) dx

−
(
1+ pi

) ℵ(i−1)
∑
ℓ=0

(
i− 1
j

)
(−1)ℓ ∫

∞

0
F (ℓ+1)p
X (x) (− log(1− FX(x)))n−1fX (x) dx.

Upon using the transformation− log
(
1− FX (x)

)
= t in the above two integrations and applying the binomial theorem on the terms

(
1− e−t

)ℓp
and

(
1− e−t

)(ℓ+1)p , in the first and second integrations, respectively, we get the representation (33). □

Corollary 4.1. Form = 1, i.e., for HK-FGM-GE model, we get

𝜇(k)
Rn
= 𝜇k (𝜃2, 𝛼2) + 𝜆 [𝒮⋆

(
p, 1

)
−
(
1 + p

)
𝒮⋆⋆

(
p, 1

)
]𝒟

(
k; p, 1

)
= 𝜇k (𝜃2, 𝛼2) + 𝜆 [𝜇k (𝜃2, 𝛼2) −

(
1 + p

)
𝜇k

(
𝜃2, 𝛼2p

)
]
⎡
⎢
⎢
⎢
⎣

1 −
(
1 + p

) ℵ(p)
∑
ℓ=0

(−1)ℓ

(
p
ℓ

)
(ℓ + 1)n

⎤
⎥
⎥
⎥
⎦

.

Moreover, Form = 1 and p = 1, i.e., for FGM-GE family, we get

𝜇(k)
Rn
= 𝜇k (𝜃2, 𝛼2) + 𝜆 [𝒮⋆ (1, 1) −

(
1 + p

)
𝒮⋆⋆ (1, 1)]𝒟 (k; 1, 1)

= 𝜇k (𝜃2, 𝛼2) [1 − 𝜆
(
2−(n−1) − 1

)
] .

Proof. The proof is obvious, since it follows after simple algebra. □Pdf_Folio:321
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