
International Journal of Networked and Distributed Computing
Vol. 7(4); September (2019), pp. 167–174

DOI: https://doi.org/10.2991/ijndc.k.190917.002; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

*Corresponding author. Email: nishimoto.masashi@ca.info.hiroshima-cu.ac.jp
1GDB: https://www.gnu.org/software/gdb/, jdb: http://docs.oracle.com/javase/7/docs/
technotes/tools/windows/jdb.html
2Valgrind: http://valgrind.org/, VisualVM: https://visualvm.github.io

Research Article

SAIFU: Supporting Program Understanding by Automatic
Indexing of Functionalities in Source Code

Masashi Nishimoto*, Keiji Nishiyama, Hideyuki Kawabata, Tetsuo Hironaka

Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan

1.  INTRODUCTION

Application software is a complex mixture of functionalities. The
complexity is, for one thing, due to the event-driven style of soft-
ware for mobile and/or Web applications where each functionality
constituting the software is implemented by combining descrip-
tions that are scattered all over the source code, i.e., each function-
ality is not clearly separated in the source code. Such complexity
of software structure is a serious obstacle to the smooth and safe
modification and maintenance of software.

There are various ways to help you understand the source code [1–8].
For example, a high-performance editor that allows syntax highlight-
ing or pretty printing, and an integrated development environment
with a functionality to offer an easy way to refer the definition part
of each identifier in the source program cannot only be used as a
tool for software development but also be usable as a tool to sup-
port program understanding. In addition, tools such as debuggers1
and profilers,2 which are indispensable tools for analyzing program
behavior and solving problems, can also be regarded as tools for sup-
porting program understanding in a broad sense. However, as far as
we know, there is no tool that can directly support the user under-
stand what is (and how) written in source programs.

For the purpose of reducing the burden put on software develop-
ers while reading source code to understand its structure and the
details, we propose a tool for supporting program understand-
ing, named SAIFU. SAIFU automatically extracts implemented
functionalities from source code and puts annotations, which

we call summaries, to them. SAIFU lets the user focus on the
statements of source code and check the implementation details
corresponding to each functionality. SAIFU helps the user grasp
the behavior and the structure of a whole program by showing a
clickable list of the annotations of functionalities.

Extracting individual functionalities is carried out by separating
and relating program elements in the source code by constructing
dependency graphs. Each program element corresponds to a node
of an abstract syntax tree that denotes the source code. Since closely
related parts in a program are connected by dependency relations,
such as the producer–consumer relation of data and the relation
between two method calls where one is a generator of an object and
the other is a method that belongs to the object, dependency graphs
consisting of program elements reveals sets of program lines, each
of which implements a particular functionality.

Although dependency analysis of ordinary monolithic applications
might yield a huge single dependency graph where all statements
in the program would be included, event-driven applications that
are typical of mobile applications and Web applications are not the
case. On the other hand, event-driven applications usually consist
of method definitions that bundle several method calls that are
unrelated to each other. SAIFU can extract functionalities beyond
the borders of those method definitions.

An extracted set of program elements almost always include a set
of API method calls, where Application Programming Interfaces
(APIs) provide commonly used software components. Names of
API methods usually possess useful information for grasping their
behaviors. In addition, names of packages and classes to which those
methods belong can be utilized to extract a suggestive summary of
the part of the program from which the set of program elements

A RT I C L E I N F O
Article History

Received 14 March 2019
Accepted 12 May 2019

Keywords

Program understanding
dataflow graph
tag cloud
event-driven programming

A B S T R AC T
Programs in the event-driven style that are typical of mobile and/or Web applications are becoming complex and hard to maintain.
For the purpose of reducing the burden put on software developers while reading source code to understand its details, we propose a
tool for supporting program understanding, named SAIFU (a tool for Supporting program understanding by Automatic Indexing of
Functionalities). SAIFU automatically extracts implemented functionalities from source code and puts annotations to them. SAIFU
helps the user grasp the behavior and the structure of a whole program by showing a list of the annotations of functionalities. SAIFU
highlights a set of statements of the source code that are related to any functionality on the annotation list so that the user can investigate
the implementation details of a particular functionality. Experimental results obtained by applying SAIFU to 16 applications in Google
Samples confirm that the tool is effective for finding out important statements from existing Android application programs.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.2991/ijndc.k.190917.002
https://www.atlantis-press.com/journals/ijndc
mailto:nishimoto.masashi%40ca.info.hiroshima-cu.ac.jp?subject=
https://www.gnu.org/software/gdb/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://valgrind.org/
https://visualvm.github.io
http://creativecommons.org/licenses/by-nc/4.0/

168	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174

are obtained. Because a plain set of words might not be useful as an
annotation for a part of a program, SAIFU weights each extracted
word to generate a tag cloud to represent a summary of the program
part so that frequently used words and apparently characteristic
words for the part are emphasized.

In this paper, we describe the design of SAIFU and its prototype
implementation for Android applications. We also show the results
of subjective evaluation based on the prototype to confirm the
effectiveness of the proposed system.

The rest of the paper is organized as follows. In Section 2, we pres-
ent an overview of SAIFU by showing a motivating example. In
Section 3, we describe the design and implementation of SAIFU.
In Section 4, we discuss the usability of SAIFU. Section 5 shows a
summary of related work.

2.  OVERVIEW OF SAIFU

2.1.  Motivation and Aims

Figure 1a shows a code segment of a typical Android application
program. You can see three method definitions in the program.
However, in a sense, each of the three is not implementing a sep-
arate functionality; those method definitions are used just for
handling incoming events. The fact that the borders that divide a
source program into separate functionalities do not coincide with
the borders of methods, which is common for event-driven pro-
grams, makes it hard to read and maintain existing programs.

The program shown in Figure 1a is virtually a merger of those
shown in Figure 1b1 and b2. When you are to read a lengthy source
program to understand its behavior, you might have to separate the
descriptions related to each functionality that may concern in your
head, like separating Figure 1a into Figure 1b1 and b2. The burden
posed to the developer is summarized as follows:

•• It is not easy to pinpoint where and how each functionality is
implemented in the source code.

•• It is not easy to grasp what functionalities are implemented in the
source code and how the program behaves.

These are what we want to eliminate by offering a tool named
SAIFU, to help the user read and understand existing event-driven
style programs.

In the rest of this section, we describe the GUI of SAIFU to show
the usage, the essence of the functionality extraction, and the idea
of annotation generation, in each subsection.

2.2.  GUI of SAIFU

Figure 2 shows a screenshot of SAIFU’s GUI, illustrating the scene
where a source file of AccelerometerPlayActivity.java from Google
Samples3 is loaded. SAIFU works as a source code browser which has
been implemented to be used through a Web interface. Each line of the
opened source file is displayed on the right pane as shown in Figure 2.

When a source file is opened, SAIFU analyzes the source code and
extracts relations among program elements such as method calls
and variable references. Then, SAIFU extracts sets of program ele-
ments that are closely connected by such as data dependency rela-
tions and object-belonging method relations. We call each extracted
set here a functionality; we expect that the elements in a set are used
to implement a particular functionality in an ordinary sense.

Once a set of functionalities are extracted from the source code,
SAIFU constructs an annotation for each functionality in the form
of a tag cloud. The annotations are listed on the left pane as shown
in Figure 2. By examining the annotations, the user would be able
to grasp what functionalities are implemented in the source code. It
would not be difficult to find out, for example, that the fourth and
the fifth items of the list in Figure 2 are related to code segments
for managing a WakeLock component and an acceleration sensor,
respectively.

Figure 1 | Typical example of an application program for Android.

3https://github.com/googlesamples

https://github.com/googlesamples

	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174	 169

The list of annotations is clickable. When a tag cloud is selected
(clicked by mouse), the corresponding statements of the source
code related to the annotation are highlighted on the right pane.
In the case of Figure 2, the fourth tag cloud should be the right
choice if the user wished to check the source code description
related to the WakeLock management. In Figure 2, related lines
to the fourth annotation are highlighted and are easily located.
As such, SAIFU helps the user detect lines related to a particu-
lar functionality to inspect implementation details, as well as to
search coding patterns.

2.3. � Extracting Functionalities
from Source Code

To extract groups of statements where each group is related to
separate functionality, we use a dependency analysis to obtain
statements that interact with common objects beyond method
boundaries. While analyzing, relations between program elements
such as data dependency relations and object-belonging method
relations are extracted from source code. The relations can be rep-
resented as dependency graphs. A dependency graph consists of
two kinds of nodes and directed edges that link nodes of different
kinds. Each node of a dependency graph represents either an object
(an instance of a class or a value of a basic type) or an API method.
Figure 3 shows the dependency graphs obtained from the source
code in Figure 1a.

A statement described in the source code is expressed by a set of
nodes connected by edges. For example, the directed edge labeled
with gen from the node Activity.getSystemService to the node
mPowerManager expresses a part of the statement a in Figure 1a.
Two statement sets {a, c, d, f} and {b, e, g, h} are identified from two
separate graphs in Figure 3. These two statement sets are consistent
with the statements appearing in programs b1 and b2 in Figure 1.

2.4.  Summarizing Functionalities

Each extracted group of statements consists of API method calls.
Since the name of an API method usually indicates its meaning and
behavior, a set of words extracted from API method names used in
the group of statements might be used for expressing the behavior
of the set of statements well. We extract words from API method
names including names of packages and classes to construct a
readable and suggestive summary of the part of the program from
which the set of statements are obtained.

In a tag cloud, the importance of each word is represented by its size
and place. Basically, words with high frequency should be empha-
sized. However, common words like “get” and “set” should not be
treated as important words. To balance the weighting, we use the
Term Frequency-Inverse Document Frequency (TF-IDF) measure
which has been commonly used in the field of document search.
From the examples annotations shown in Figure 1, the approach
for constructing tag cloud annotations seems to be appropriate.

Figure 2 | Source Code Browser (SCBrowser) of SAIFU displaying AccelerometerPlayActivity.java.

170	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174

3. � DESIGN AND IMPLEMENTATION
OF SAIFU

3.1.  Structure of SAIFU

SAIFU works as a source code viewer that shows detailed infor-
mation on one given source file. Figure 4 shows the structure of
SAIFU. As shown in the figure, SAIFU consists of four components:
the Data Dependency Graph Generator (DDGGen), the Statement
Sets Extractor, the Tag Cloud Generator (TCGen), and the Source
Code Browser (SCBrowser). SAIFU is controlled via SCBrowser, a
GUI of the system. When a source file is given, SAIFU analyzes it to
produce statement sets, makes annotations to each set and displays
information of the source program in the SCBrowser’s screen.

SAIFU processes one source program at a time as follows. First,
data dependency graphs are generated from the source code. Then,
statement sets are extracted based on the graphs. Each statement
set is then annotated by a tag cloud that is generated from the state-
ment set itself. Annotated set of statements are, together with the
original source code, supplied to the SCBrowser.

In the rest of this section, the implementation details of each com-
ponent of SAIFU is described.

3.2.  Data Dependency Graph Generator

Data Dependency Graph Generator (DDGGen) extract subtrees
of the abstract syntax tree of the source code, where each subtree
corresponds to a statement.4 Then, DDGGen transforms each
extracted subtree into basic dependency graphs based on the fol-
lowing rules:

•• Elements on the left- and the right-hand side of an assignment
statement are under gen-relation.

•• A reference to a variable that points to an object and the invoca-
tions of its belonging methods are under points to-relation.

•• A method invocation and references to its arguments are under
arg-relation.

Finally, basic dependency graphs are mutually connected to make a
small number of larger graphs.

Figure 5 shows the abstract syntax tree of the program in Figure 1a.
The tree is composed of subtrees shown in Figure 6a that corres
pond to statements. Eight basic dependency graphs shown in

Figure 3 | Dependency graph corresponding to the source code in Figure 1.

Figure 4 | Structure of the program understanding support tool, SAIFU.

4Including a few special elements such as conditional expression used for if- or for-
constructs.

	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174	 171

Figure 6b are obtained from Figure 6a and connected to make the
graphs shown in Figure 3.

3.3.  Statement Set Extractor

Statement Set Extractor collects statements related to each con-
nected component of the data dependency graphs generated by the
DDDGen. This is done by gathering invoked methods in the graphs.
Location information of their invocation sites is attached to each set.

3.4.  Tag Cloud Generator

Tag Cloud Generator is two-phased; extracting words from state-
ment sets and weighting them to construct tag clouds.

In the first phase, first, API method names are cut into smaller
pieces by parsing those names taking common forms of com-
bined words such as camel case and snake case into account. For

example, the sets of words {power, manager} and {number,
elements} are obtained from PowerManager and number_
elements, respectively. Next, each word is normalized by using
the morphological analysis to remove variations in word forms
(e.g., “started” and “elements” are normalized to “start” and “ele-
ment”, respectively).

Each set of words are arranged in the second phase to make a tag
cloud. The position and the size of each word in a tag cloud are
determined by calculating the TF-IDF value among all word sets.
During the process, stop words such as in and on are excluded.
Words of the same TF-IDF values are ranked in the lexicograph-
ical order.

3.5  Source Code Browser

The Source Code Browser displays a list of tag clouds. The list of tag
clouds is sorted in the descending order of the number of compo-
nents in each tag cloud annotation.

Figure 5 | Abstract syntax tree of the program in Figure 1a.

Figure 6 | Statements extracted from Figure 5 and transformed data dependency graphs.

172	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174

3.6.  A Prototype Implementation of SAIFU

We have implemented a prototype of SAIFU. The prototype is
described in Java language. To construct the DDGGen, Java parser
library of Eclipse Java development tools5 was used. Stanford Core
NLP6 was also used for the morphological analysis in TCGen.
SCBrowser7 of SAIFU was implemented as a Web application by
using the SpringBoot framework.8

The elapsed time spent to process the source file and display the
result on the SCBrowser’s screen was, in the case of Figure 2, <2 s,
which is acceptable.

4.  EVALUATION

To evaluate the usefulness of SAIFU, we apply it to some Android
programs and investigate the results. We evaluate SAIFU from
the following viewpoints: the appropriateness of the functionality
extraction capability from source code, the quality of the annotations
in the form of tag clouds, and the usability of the system as a whole.

We apply SAIFU to 16 sample programs taken from Google Samples
in January 2017. Table 1 shows an overview of them. Each number
in columns labeled LOC and M represents the number of lines and
the number of method definitions in the source code, respectively.

Columns labeled VP1 and VP2 are explained in the following sections.

4.1. � Appropriateness of the Functionality
Extraction Capability of SAIFU

SAIFU extracts functionalities implemented in a source file and rep-
resents them as sets of statements. To evaluate the appropriateness
of the extraction method, we examine each extracted statement sets.

As described in Section 2.2 and illustrated in Figure 2, many of
extracted statement sets are intuitively judged as valid. In fact, nine

Table 1 | Sixteen programs from Google Samples

Name of the Android project Name of the source file LOC M VP1 VP2

AccelerometerPlay AccelerometerPlayActivity.java 430 22 ´†1 ✓
BasicNetworking MainActivity.java 130 5 ´†2 ✓
Camera2Basic Camera2BasicFragment.java 1030 41 ✓ ✓
ActionBarCompat-Basic MainActivity.java 88 3 ✓ ✓
ActionBarCompat-ListPopupMenu PopupListFragment.java 135 6 ✓ ✓
ActionBarCompat-ShareActionProvider MainActivity.java 210 11 ✓ ✓
ActionBarCompat-Styled MainActivity.java 81 5 ✓ ✓
ActiveNotifications ActiveNotificationsActivity.java 67 5 ✓ ✓
ActiveNotifications ActiveNotificationsFragment.java 194 7 ´†1 ✓
ActiveNotifications MainActivity.java 111 5 ´†2 ✓
ActiveNotifications SampleActivityBase.java 53 3 ´†2 ✓
ActiveNotifications LogFragment.java 109 4 ´†1 ✓
ActivityInstrumentation MainActivity.java 111 1 ✓ ✓
ActivitySceneTransitionBasic DetailActivity.java 160 5 ✓ ✓
ActivitySceneTransitionBasic MainActivity.java 130 6 ✓ ✓
AppRestrictionEnforcer AppRestrictionEnforcerFragment.java 593 34 ´†1 ✓

LOC: Lines of code, M: Number of method definitions.

out of 16 source files shown in Table 1, including Camera2Basic
whose source file was longer than 1000 lines, were considered to
be appropriately processed in the sense that they almost agree with
what was understood from comments written in the source files.

A few files listed in Table 1 are not observed as perfectly treated. For
example, in the case of AccelerometerPlay, an extracted set of state-
ment sets were too large to be called as “the set of sentences that
implements one functionality.” The corresponding tag cloud anno-
tation to the large set of statements is shown at the top of the list
displayed in the left pane in Figure 2. In fact, the annotation hints
that the set of statements performs setting views on the screen,
managing sensors, generating layouts of displayed objects, calcu-
lating coordinates of objects, and so on. Actually, the application
shows “iron balls” that keep rolling on the screen whose motions
are affected by the gravity, tilt and the speed and acceleration of the
motion of the smartphone device; many aspects are tightly con-
nected to realize displaying moving iron balls. The same situation
was observed for those applications marked ´†1 in Table 1.

It is obvious that any “functionality” can be seen as a combination
of the set of smaller subfunctionalities. Simple application of the
dependency analysis to the source code tend to generate very large
sets of statements. SAIFU’s functionality partitioning capability
apparently has room for improvements.

Another situation where the extracted sets of statements were not
appropriate, observed for those applications marked ´†2 in Table 1,
was caused by the limitation of the current version of SAIFU; the
incapability of dealing multiple source files simultaneously.

4.2.  Quality of Annotations as Tag Clouds

Extracted functionalities are annotated by tag clouds by SAIFU. As
illustrated in Figure 2, extracted words and their weights put by
SAIFU are considered to be appropriate on the whole and consis-
tent with what is described in the source code.

To evaluate the property of SAIFU’s tag cloud generation in detail,
we compare tag cloud annotations generated by SAIFU with the
output generated by using a simpler method, which weights each
word depending only on its frequency. Note that SAIFU is based on

5https://www.eclipse.org/jdt
6https://stanfordnlp.github.io/CoreNLP
7Available at http://capis.ca.info.hiroshima-cu.ac.jp:8090/codereading
8https://projects.spring.io/spring-boot

5https://www.eclipse.org/jdt
https://stanfordnlp.github.io/CoreNLP
http://capis.ca.info.hiroshima-cu.ac.jp:8090/codereading
https://projects.spring.io/spring-boot

	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174	 173

the TF-IDF measure that takes not only frequency of a word but also
the “peculiarity” or “scarcity” of the word among all sets of words into
account while calculating the weight put to the word. Figure 7 shows
the top five tag cloud annotations generated by using the two methods
out of the sets of sentences extracted from BasicNetworking. We can
see several differences between the lists shown in Figure 7a and b.

•• In Figure 7a, common words such as “get” and “find” are treated
as less important.

•• In Figure 7b, tag clouds made of equally frequently appearing
words are not treated appropriately, as in the fifth tag cloud.

Note that, in the tag cloud annotations shown in Figure 2, “get”
and “set” appear at the first positions in some tag clouds. This is
because, in the case of AccelerometerPlayActivity.java, the fact that
those words appear very frequently in the corresponding sets of
words while the number of sets of words that include “get” or “set”
is small. It might be preferable to treat “get” and “set” as stop words
to exclude in each word set.

Source programs are not ordinary text documents. Thus, ranking
each code segment or set of statements by using TF-IDF for search-
ing might not be the best way. However, ranking each word in a set
of statements based on the TF-IDF measure seems to be preferable.

4.3.  Usability of SAIFU

There should be many cases SAIFU would be useful. For example,
when you are to

•• read unfamiliar source files and grasp what functionalities are
implemented in them and how,

•• modify or refactor existing lengthy programs, or

•• find coding patterns for implementing some functionalities by
investigating a bunch of source files obtained from somewhere
on the Net.

To give a concrete example, suppose we are to modify Accelerometer
Play’s source code to dim the device’s screen by managing a WakeLock
component. In this case, it would be suitable to check the part related
to the fourth tag cloud annotation in Figure 2. When we click the
annotation, SAIFU would display the statements in the source code
that are related to the management of a WakeLock, and the user could
confirm the highlighted statements on the source code. Concretely,
lines 70, 72, 73, 85, and 100 are related to the annotation. By looking
through these small number of lines, it would be easy to find out that
the named constant PowerManager.SCREEN_DIM_WAKE_LOCK
referred to on line 73 should be modified.

5.  RELATED WORK

Several tools have been studied to support the understanding of
programs. Myers [9] classifies the various visualization systems
for program understanding into four categories: static code visu-
alization, static data visualization, dynamic code visualization, and
dynamic data visualization. We introduce related studies based on
these four categories.

Rigi [1] is a static code visualization system which extracts soft-
ware elements such as functions and variables from source code
and visualizes their relationships (e.g., function calls and data refer-
ence relations). SHriMP [2] extends Rigi [1] by introducing a hier-
archical display mechanism and Whorf [3] presents information

Figure 7 | Comparison of annotations in the tag cloud generated from MainActivity.java.

174	 M. Nishimoto et al. / International Journal of Networked and Distributed Computing 7(4) 167–174

between software components by multiple views help understand
programs of large software. SAIFU is also a static code visualization
tool. SAIFU does not support graphical presentations but supports
direct and summarized text-based view of source code.

Code Crawler [4] and Pinzger et al. [5] are systems that visualize
static data, i.e., visualize the dependency between objects and the
relation between classes and packages. SAIFU does not visualize
data dependencies but uses the information to extract functional-
ities consisting of program elements.

BALSA [6] and PV [7] are systems for dynamic code visualization.
These tools illustrate how the values of variables change while show-
ing the current program execution location on the source code.

Jeliot 3 [8] is a dynamic data visualization tool that visualizes how
variables are changed by program execution. SAIFU does not use
the dynamic information but shows a kind of program slices that
could be of help for grasping behaviors of programs.

Some visualization systems do not fall into these four categories.
Code Canvas [10] can arrange the layout of multiple source code edi-
tors to present effective visualizations so that various source code can
be smoothly moved between related source codes. CodeCity [11] and
CodeForest [12] are tools that visualize software metrics such as the
number of lines of the source code, the number of classes and meth-
ods to be called, and so on. These studies use a three-dimensional
graphical representation that is intuitively understandable by grasp-
ing the structure and characteristics of the program. SAIFU cur-
rently does not support editing or measurement of code. Integration
of those functionalities to SAIFU should be straightforward.

6.  CONCLUSION

In this paper, we described the design and implementation of SAIFU
that supports program understanding. SAIFU is expected to be
useful for developers who are to maintain and expand existing pro-
grams. The result of a subjective evaluation confirms that SAIFU
is applicable for understanding event-driven applications. Future
work includes the improvement of the preciseness of functionality
extraction, the refinement of weighting for better tag cloud represen-
tations, and the extension of analyzing across multiple source files.

CONFLICTS OF INTEREST

The author declares they have no conflicts of interest.

REFERENCES

  [1]	 H.A. Muller, K. Klashinsky, Rigi: a system for programming-in-
the-large, Proceedings of the 10th International Conference on
Software Engineering, (ICSE) IEEE, Singapore, 1988, pp. 80–86.

  [2]	 M.D. Storey, H.A. Muller, Manipulating and documenting soft-
ware structures using SHriMP views, Proceedings of International
Conference on Software Maintenance, IEEE, Opio, France,
France, 1995, pp. 275–284.

  [3]	 K. Brade, M. Guzdial, M. Steckel, E. Soloway, Whorf: a visu-
alization tool for software maintenance, Proceedings of IEEE
Workshop on Visual Languages, IEEE, Seattle, WA, USA,
USA, 1992, pp. 148–154.

  [4]	 M. Lanza, S. Ducasse, H. Gall, M. Pinzger, CodeCrawler - an infor-
mation visualization tool for program comprehension, Proceedings
of the 27th International Conference on Software Engineering
(ICSE), IEEE, Saint Louis, MO, USA, 2005, pp. 672–673.

  [5]	 M. Pinzger, K. Graefenhain, P. Knab, H.C. Gall, A tool for visual
understanding of source code dependencies, 2008 16th IEEE
International Conference on Program Comprehension, IEEE,
Amsterdam, Netherlands, 2008, pp. 254–259.

  [6]	 M.H. Brown, R. Sedgewick, A system for algorithm animation,
SIGGRAPH Comput. Graph. 18 (1984), 177–186.

  [7]	 D.A. Kramlich, G.P. Brown, R.T. Carling, P. Souza, C.F. Herot,
Program visualization: graphical support for software develop-
ment, Computer 18 (1985), 27–35.

  [8]	 A. Moreno, N. Myller, E. Sutinen, M. Ben-Ari, Visualizing programs
with jeliot 3, Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI), ACM, Gallipoli, Italy, 2004, pp. 373–376.

  [9]	 B.A. Myers, Visual programming, programming by example, and
program visualization: a taxonomy, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI),
ACM, Boston, MA, USA, 1986, pp. 59–66.

[10]	 R. DeLine, K. Rowan, Code canvas: zooming towards better
development environments, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE), ACM,
Cape Town, South Africa, 2010, pp. 207–210.

[11]	 R. Wettel, M. Lanza, R. Robbes, Software systems as cities: a
controlled experiment, Proceedings of the 33rd International
Conference on Software Engineering (ICSE), ACM, Waikiki,
Honolulu, HI, USA, 2011, pp. 551–560.

[12]	 K. Maruyama, T. Omori, S. Hayashi, A visualization tool recording
historical data of program comprehension tasks, Proceedings of
the 22nd International Conference on Program Comprehension
(ICPC), ACM, Hyderabad, India, 2014, pp. 207–211.

https://doi.org/10.1109/ICSM.1995.526549
https://doi.org/10.1109/ICSM.1995.526549
https://doi.org/10.1109/ICSM.1995.526549
https://doi.org/10.1109/ICSM.1995.526549
https://doi.org/10.1109/WVL.1992.275771
https://doi.org/10.1109/WVL.1992.275771
https://doi.org/10.1109/WVL.1992.275771
https://doi.org/10.1109/WVL.1992.275771
https://doi.org/10.1145/1062455.1062602
https://doi.org/10.1145/1062455.1062602
https://doi.org/10.1145/1062455.1062602
https://doi.org/10.1145/1062455.1062602
https://doi.org/10.1109/ICPC.2008.23
https://doi.org/10.1109/ICPC.2008.23
https://doi.org/10.1109/ICPC.2008.23
https://doi.org/10.1109/ICPC.2008.23
http://doi.acm.org/10.1145/964965.808596
http://doi.acm.org/10.1145/964965.808596
https://doi.org/10.1109/MC.1985.1662972
https://doi.org/10.1109/MC.1985.1662972
https://doi.org/10.1109/MC.1985.1662972
http://doi.org/10.1145/989863.989928
http://doi.org/10.1145/989863.989928
http://doi.org/10.1145/989863.989928
http://doi.acm.org/10.1145/22627.22349
http://doi.acm.org/10.1145/22627.22349
http://doi.acm.org/10.1145/22627.22349
http://doi.acm.org/10.1145/22627.22349
http://doi.acm.org/10.1145/1810295.1810331
http://doi.acm.org/10.1145/1810295.1810331
http://doi.acm.org/10.1145/1810295.1810331
http://doi.acm.org/10.1145/1810295.1810331
http://doi.org/10.1145/1985793.1985868
http://doi.org/10.1145/1985793.1985868
http://doi.org/10.1145/1985793.1985868
http://doi.org/10.1145/1985793.1985868
http://doi.acm.org/10.1145/2597008.2597802
http://doi.acm.org/10.1145/2597008.2597802
http://doi.acm.org/10.1145/2597008.2597802
http://doi.acm.org/10.1145/2597008.2597802

