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1. INTRODUCTION

In the past years, the quality of food products has been an important 
characteristic for consumers [1]. The definition of honey explains 
that it is a natural product which is produced by Apis mellifera 
(honey bees) from the nectars of different kinds of plants [2–4] or 
other secretions [3,4] and that has high viscosity, sweetness, and a 
particular aroma [5]. Honey can be categorized as blossom honey 
or honeydew honey [4]. Honey is composed of different sugars and 
other elements such as enzymes, organic acids, vitamins, or aro-
matic substances, among others [6].

Honey is a product widely consumed due to its health benefits [2]. 
Honey’s composition and properties depend on the botanical origin 
of the nectar, or secretions, used by the bees during honey produc-
tion [4,7]. Honey presents in its composition phenolic constituents 
that give it anticarcinogenic, immune-modulating, and analgesic 
properties, among others [4]. These properties, together with their 
anti-inflammatory, antimicrobial, and antioxidant effects, make 
honey a very valuable food product [4]. Besides this, their specific 
botanical sources and their geographical origins imply, in a large 
number of cases, a higher price due to their properties (pharmaco-
active or organoleptic) [8]. In this sense, European Union safeguards 
their foods under many ways [8], such as: (i) protected designations 
of origin or (ii) protected geographical indications, inter alia [9]. 
Due to its limited availability, and its high price, there is high proba-
bility that honey is a product that can be adulterated [6].

Fraud is becoming an increasing phenomenon to report an extra 
profit, hence the use of trustworthy control methods are necessary 

to limit, even eliminate, the risks of falsification [10] to ensure 
the food authenticity. The most common methods to adulter-
ate honey is through addition of cheap sweeteners (corn syrup 
and maltose syrup, among others) or through use of honeybees 
that are fed sugar or other types of sucrose [6,11,12]. These two 
methods are in line with the assertion of Cotte et al. [10] that also 
reports another method of fraud consisting of misuse of the name 
of origin by mixing (voluntarily or not) different honeys of diverse 
varieties.

Different techniques to control and combat the adulteration of 
honey were reported by Cotte et al. [10]: (i) pollen analysis, (ii) 
method based on stable carbon isotope ratio analysis, or (iii) 
method based on site-specific natural isotope fractionation–
nuclear magnetic resonance (SNIF–NMR) of ethanol deuterium. 
Nevertheless, there are important limitations with these two isoto-
pic methods, hence it is necessary to consider new parameters to 
use in control methods to ensure honey authenticity [10]. In this 
sense, Cotte et al. [10] proposed a gas and liquid chromatography 
method combined with principal components analysis to detect the 
addition of different kinds of sugars. Other methods that do not 
require the specific compound identification can be interesting as 
the specific composition depends on the honey category [13]. For 
this reason, Azevedo et al. [13] extracted the protein to discrimi-
nate honeys using principal component analysis. Honey’s protein 
content depends on different factors, including the species of the 
bee that produced the honey; in fact, honey from Apis cerana pres-
ents an amount between 0.1 and 3.3%, whereas honey from A. mel-
lifera contains proteins in the range of 0.2–1.6% [6,14,15], although 
the normal content is <0.5% [16]. It is clear that sugars and proteins 
can be used to categorize the honey type or sugar addition. It is 
also possible to classify the origin of honey using proteins, aroma 
compounds, and pollen analysis, among other components [17].
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Different separated protein fractions by the electrophoretic method in polyacrylamide gel were used to classify two different 
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In this research three kinds of models were developed to differenti-
ate between Galician honeys and commercial honeys: (i) a Random 
Forest (RF) model, (ii) an Artificial Neural Network (ANN) model, 
and (iii) a Support Vector Machine (SVM) model.

   (i) RF is a method that can be used for classification or regression 
purposes [18,19], which was introduced in 2001 by Breiman 
[20]. RF is a powerful prediction method [21] that can be 
applied in multiple research fields, such as social sciences 
[22,23] or environmental sciences [24,25], among others. 

   (ii) ANN models are a computational technique inspired by the bio-
logical neural system [26,27] and can be used for different pur-
poses such as prediction, clustering, or pattern recognition [26]. 
ANNs are formed by artificial units called neurons [26–28]. ANN 
is formed by input, intermediate, and output layers [29]. ANN 
models used in this research are based on multilayer perceptron 
that is a supervised network requiring desired output for each 
case of study [30]. Artificial neural models are good models for 
systems with incomplete data, fuzzy information, and complex 
and ill-defined problems [31]. ANNs are able to find complex 
relationships between input and output variables [30]. Owing to 
these advantages, ANNs can be used in different areas, such as 
environmental sciences [26,27], energy fields [28,32], food tech-
nology [30,33,34], or chemistry [35,36], inter alia.

 (iii) SVM was proposed in 1992 by Boser et al. [37] for classifi-
cation problem [38]. SVM is a supervised learning method 
[38,39] that can construct a hyperplane to separate data into 
many classes [38,39], even a group of hyperplanes, which can 
be used for different tasks such as regression or classification 
[18,39]. SVM models present an advantage in comparison with 
other methods, for example, partial least square- discriminant 
analysis, to model classification of nonlinear problems [39]. As 
a result of this advantage, the SVM can be applied in different 
research areas such as agricultural sciences [38,40], medicine 
[41,42], or Economics [43,44], inter alia. 

In this research paper, different separated protein fractions by the 
electrophoretic method in polyacrylamide gel [45] obtained by 
Rodríguez-Otero et al. [46] were used to classify two different types 
of honeys, Galician honeys and commercial honeys produced and 
packaged outside of Galicia. Therefore, the main aim of this research 
is to develop a prediction model as a tool for honey authenticity 
between Galician honeys and the rest of commercial honeys.

2. MATERIALS AND METHODS

2.1. Data Set

The commercial honeys were purchased in Santiago de Compostela 
and the Galician honeys (belonging to the four Galician prov-
inces) were provided to Rodríguez-Otero et al. [46] by the Regional 
Centre for Agrarian Extension of Santiago de Compostela. In this 
research, a total of 104 multifloral honeys have been used. Of these, 
82 are Galician honeys and 22 are commercial honeys produced 
and packaged outside of Galicia.

The gel used to carry out the electrophoretic separation was prepared 
from four working solutions (two buffer solutions, one gel mono-
mer solution, and one ammonium peroxydisulfate solution). The 
electrophoresis tubes are loaded with the gel and 25 mg of sample, 

and an electrical current of 1.5 mA per tube was applied. The inten-
sity of the electrical current is increased up to 3 mA per tube when 
the penetration of the tracer dye into the tubes is observed. When 
the bromophenol blue reaches the lower edge of the tube (about  
5 mm from the edge), the electrical current is turned off, the gels are 
removed, and they are stained and excess dye is removed by washing. 
Afterward, the gels are scanned. For more details consult the com-
plete procedure by Rodríguez-Otero et al. [46].

Twelve different fractions have been found according to their 
relative mobility; nevertheless, these fractions were not found in 
all Galician and commercial honeys [46]. The relative mobilities 
were measured using as reference the distance covered by bro-
mophenol blue [46].

According to the experimental work carried out by Rodríguez-
Otero et al. [46], the most frequent band present in the honeys 
analyzed were: seven, eight, eleven, and twelve, which present rel-
ative mobilities between 18.6 and 68.9 for the Galician honeys and 
between 17.1 and 63.6 for the commercial honeys. These four bands 
were used to develop different prediction models in this article.

2.2. Methodologies

According to the purpose of this research, it is possible to find 
in the research literature the prediction models (RFs, ANNs, and 
SVMs) used in this research but applied to different fields related 
to the honey.

It is possible to find research papers about RF used with visible/
near infrared (VIS-NIR) hyperspectral imaging to classify differ-
ent honey types based on floral origin and compare its results with 
other methods such as radial basis function network, principal 
component analysis, or SVM [47]. It is also possible to find research 
on neural models to authenticate honey samples using rheological 
and physicochemical parameters (comparing its performance with 
other models such as principal component analysis and linear 
discriminant analysis) [5]. It is also possible to compare ANNs 
with other techniques such as cluster analysis, principal component 
analysis, Bayesian method, and partial least-squares regression [17] 
to differentiate Galician honey from non-Galician honeys. Finally, 
ANN can be used to authenticate honeys labelled as “Corsica”, a 
European protected designation of origin [48] or to predict the 
botanical origin of honeys (monofloral or multifloral) using chem-
ical and physical parameters [49]. Finally, SVMs have been used to 
detect adulterants in honey using near-infrared spectroscopy and 
then it was compared to other methods such as ANNs or linear 
discriminant analysis [50]. SVM can be used combined with near 
infrared spectroscopy to predict the botanical origin of honey sam-
ples [51] or using an electronic nose, electronic tongue, and spectral 
analysis to evaluate raw honey samples [52].

The RF is an algorithm where many decision trees are developed 
using bootstrap cases from the database used for training [53]. 
Each decision tree is developed using a subset of independent char-
acteristics while the training phase takes place [47]. Each of these 
trees represents an individual classifier conforming, together, an 
ensemble classifier [53]. In comparison with a single decision tree, 
an RF model achieves better precision values [53]. To find the best 
RF model must be tested not only the number of trees but also the 
maximum depth, the criteria for attributes selection (criterion), 
among other parameters.
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Different ANN topologies with different hidden layer configura-
tions were developed using trial and error method to determine 
the neurons in the output layer [30]. ANN models have two con-
tour layers: (i) a first layer or “input layer” where the experimental 
values are introduced and (ii) a second layer called output layer 
where the predicted values are generated. Between these two layers 
exist one or more layers called hidden layer or layers.

During the neural training phase, different parameters minimize the 
errors between the input and the predicted variable [54]. The learn-
ing process occurs in the intermediate and output layers. To find the 
best model, it is necessary to use the trial and error approach where 
different topologies and training cycles are analyzed.

In this research, ANN models were developed using the backprop-
agation algorithm and the sigmoidal function in the hidden and 
output neurons. These models consume time and computational 
resources to optimize the parameters involved in the learning  
process [55,56].

Finally, the last model was the SVM model. SVM is a powerful 
technique used for regression and classification [18]. In our case, 
it was used to classify tasks using C-support vector classification 
(C-SVC) type for classification tasks. SVM models find an optimal 
hyperplane to obtain a good separation and maximize the decision 
surface limit [55]. The learner of the SVM proposed by Chang and 
Lin, LibSVM [18,57,58], was used in this research. The parame-
ters used were chosen according to the updated guide “A Practical 
Guide to Support Vector Classification” [59].

2.3. Statistical Analysis

The analysis of data reported by Rodríguez-Otero et al. [46] was 
carried out by means of a Trial/Free version of RapidMiner Studio 
from RapidMiner Inc. This software was used to develop the different 
models, and to fit and to plot the results. All models were imple-
mented in an Intel Core i7-8700 processor 3.20 GHz with 16 GB RAM.

3. RESULTS AND DISCUSSION

All models were developed using trial and error method to find the 
best model configuration. In this sense RF was implemented using: 
(i) the number of trees (1–100 in 99 steps with linear scale), (ii) 
the criterion (gain ratio, information gain, Gini index, and accu-
racy), (iii) maximal depth (−1 to 100 in 101 steps with linear scale),  
(iv) apply pruning (true or false), and (v) apply pre-pruning (true 
or false). The best RF model was chosen according to its valida-
tion accuracy. ANN was developed with different: (i) topologies 
(varying the number of hidden neurons between 1 and 2n + 1, 
with n being the number of input variables), (ii) training cycles,  

(iii) learning rates (0.1, 0.2, and 0.3), (iv) momentum (0.1, 0.2, and 
0.3), and (v) decay (true or false). The value range of the attributes 
was automatically normalized between −1 and 1 by the neural net 
operator. The best neural network model was chosen according 
to its validation accuracy. SVM was developed with different: (i) 
type (C-SVC), (ii) gamma values (2−15 to 23 in 36 steps with a log-
arithmic scale), and (iii) C values (2−5 to 215 in 40 steps with a 
logarithmic scale). The SVM model was chosen according to its 
validation accuracy. Each input variable used for the SVM model 
was normalized between −1 and 1 for training phase, then this nor-
malization was applied to validation and querying phases. Once the 
best model of each approach has been chosen, the final model is 
selected based on its accuracy for validation and training phase. 
Finally, the chosen model is tested with the querying group.

3.1.  Models Implemented with  
Four Input Variables

To identify honey, the model must be accuracy to reduce material 
costs and save time. To develop the models with four input variables, 
honeys with bands seven, eight, eleven and twelve were selected. In 
this research, a total of 104 honeys have been used. Of these, 22 are 
commercial honeys and 82 are Galician honeys. These data were 
divided into three groups, the first group was to train the models (52 
Galician honeys and 10 commercial honeys), the second group to 
validate the models and choose the best model (14 Galician honeys 
and seven commercial honeys), and finally, the third group to query 
and check the correct prediction of the selected model (16 Galician 
honeys and five commercial honeys). The model’s predictive power 
was determined as a function of the accuracy in the validation phase.

Table 1 shows the adjustments of the different models developed 
with four input variables. The seven, eight, eleven and twelve bands 
of the electrophoretic gel were selected as input variables to obtain 
the predictive models. Values are presented as a percentage of the 
accuracy value for training (T), validation (V), querying (Q) phase, 
and overall phases (O).

At first, it can be seen how the different values of accuracy are homo-
geneous among them (Table 1). It can be seen that all models pres-
ent the same accuracy for the validation phase (100.0%). If we take 
into account the accuracy provided in the training phase, it can be 
concluded that the artificial neural network (ANN1) and the support 
vector machine (SVM1) models present the worst accuracy (93.5%).

The prediction errors obtained, during the training phase, by the 
ANN1 and SVM1 models are due to the low classification power of 
commercial honeys, where only six of 10 commercial honeys are cor-
rectly classified (60.0% of accuracy). In the case of Galician honeys, 
both models predict with total accuracy of 100.0%. The RF model 
(RF1) is the best predictive model according to validation (100.0%) 

Table 1 | Accuracy (%) for training (subscript T), validation (subscript V), querying (subscript Q), and overall (subscript O) 
phases for each model developed with four input variables: Random Forest (RF), Artificial Neural Network (ANN), and Support 
Vector Machine (SVM) 

Model B7 B8 B11 B12 AccuracyT AccuracyV AccuracyQ AccuracyO

RF1  95.2  100.0  90.5  95.2
ANN1  93.5  100.0  90.5  94.2
SVM1  93.5  100.0  90.5  94.2
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Figure 1 | Bar graph for validation cases according to the confidence value (%) of each prediction for the random forest model with four input variables.

Figure 2 | Bar graph for querying cases according to the confidence value (%) of each prediction for the random forest model with four input variables.

and training phase [95.2%, where of the 52 Galician honeys, 51 are 
correctly classified (98.1%) and for the 10 commercial honeys, eight 
are correctly classified (80.0%)]. All models present an accuracy of 
100.0% in the validation phase, therefore, there are no significant dif-
ferences between them. Related to the querying phase and using the 
best model selected, RF (RF1), the querying phase presents an accu-
racy of 90.5% [where all the Galician honeys are correctly classified 
and only three of the five commercial honeys (60.0%) are correctly 
classified].

It can be concluded that the best model chosen according to both 
accuracies (validation and training) is the RF model, which pres-
ents an accuracy of 90.5% in the querying phase. In overall phases, 
the RF model presents an accuracy of 95.2%.

In Figure 1 we can see the behavior of the best predictive model 
developed with four input variables, the RF model. In this sense, 
Figure 1 shows the 21 cases for the validation phase, 14 cases corre-
spond to Galician honeys and 7 to commercial honeys. The predic-
tive model classifies all the honeys perfectly but the behavior of each 
prediction must be analyzed. It can be seen that most of the Galician 

honeys (10 samples) have a high confidence level (around 98.5%). 
Besides these 10 honeys, another four Galician honeys present con-
fidence levels between 63.7% and 68.2%. Despite these relatively low 
confidence level values, in comparison with the 10 Galician honeys, 
it can be concluded that the faith in the prediction is good. For the 
commercial honeys (seven cases), the confidence level varies, for six 
honeys it is between 65.1% and 97.6%. The remaining commercial 
honey presents a prediction confidence level close to 51.5%. If the 
last case is not taken into account then the RF1 model can predict 
with high confidence level for both types of honeys.

Figure 2 shows the 21 cases of querying phase of the RF model 
among which 16 cases are Galician honeys and the remaining five 
cases are commercial honeys. In this case, not all honeys are clas-
sified correctly. All Galician honeys are classified correctly with a 
confidence level above 98% with three exceptions where the con-
fidence level reaches a maximum around 81.9% as opposed to the 
other cases where the confidence level reaches a 98.5%. The five 
commercial honeys present a very contrasted classification (three 
correct cases and two incorrect). Within the correct cases, two 
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commercial honeys present a confidence level of around 97.6%, 
whereas the other case presents a confidence of 65.1%. For the mis-
classified honeys the confidence level varies between 34.8% and 
36.3%. According to these results, it can be concluded that the RF 
model developed with four input variables presents low prediction 
confidence for commercial honeys.

3.2.  Models Implemented with  
Two Input Variables

It has been decided to simplify the model of four input variables for a 
simpler model and to compare our results with the model obtained, 
with the bands eleven and twelve, by Rodríguez-Otero et al. [46].

Table 2 shows the adjustments of the models developed with two 
input variables. In these models, developed with bands eleven and 
twelve, the adjustments present greater heterogeneity in comparison 
to models developed with four bands. In this case, the SVM2 model 
has the worst accuracy value in line with the adjustments obtained 
for the validation phase [90.5%—13 Galician honeys (92.9%) and six 
commercial honeys (85.7%) were classified correctly]. This model 
presents a relativity low accuracy for the training phase [90.3%–
due to the low classification power for commercial honeys, where 
only four honeys are correctly predicted (40.0%)]. For the querying 
phase, the accuracy improves slightly over the accuracy of the train-
ing phase, but still remains low (90.5%), which suggests that SVM 
developed with two bands is not good enough to be used in the food 
authenticity field. This low predictive power in the querying phase is 
due to the low classification of commercial honeys, where only three 
of the five honeys are correctly classified (60.0%).

The second-best model, in agreement with the values obtained for 
the validation phase, is the model based on ANNs (Table 2). This 
model, developed with two input variables, provides good accu-
racy value for the validation phase of around 95.2% (where 13 of 
the 14 Galician honeys and 100% of the commercial honeys have 
been correctly classified), but this accuracy descends quickly in 
the training phase where the value drops to 87.1%. This decrease 
in the accuracy in training phase is due to the poor classification 
of the model for Galician honeys (92.3%) and, above all, for com-
mercial honeys (60.0%). For the querying phase, the ANN2 model 
provides a relatively high accuracy value of 95.2% (where only one 
commercial honey is incorrectly classified). These accuracy values 
for training and validation phases suggest that the neural model 
developed with two bands is not a good model to food authenticity.

Finally, the model with the best accuracy for the validation phase is 
the RF developed with bands eleven and twelve. This model obtains 
the best result for the validation phase, reaching an accuracy value 
of 100%, which means that all honeys have been correctly classified 
by the model (Table 2). This fact is reinforced with the adjustment 
in the training phase where the adjustment is kept very high (96.8%, 

with only one honey incorrectly classified for each type). These two 
accuracy values are high and, consequently, we understand that the 
RF model can be a very useful tool for food authenticity on honeys. 
In fact, this is confirmed by the high-accuracy value for querying 
phase where it reaches 95.2% (only one commercial honey is mis-
classified). To our understanding, the values obtained from the RF 
model developed with two bands (95.2% for querying phase and 
97.1% for overall phase) make this prediction model a good model 
to be considered for ensuring food authenticity in honeys.

Figure 3 shows the 21 honeys used for validation phase (14 Galician 
honeys and seven commercial honey). This RF model classifies cor-
rectly all honeys with good confidence values for Galician honeys 
(around 99.4%), although there are three cases that present a lower 
confidence level, two of them close to 57.0% and 52.5%. On the 
right side of Figure 3, it can be seen that the commercial honeys are 
correctly classified but with lower confidence level (within a range 
of 54.0–78.1%) than the Galician honeys.

Finally, Figure 4 shows the honeys used for querying phase. All the 
Galician honeys are correctly classified (16 out of 16), thus, honeys 
from Galicia show a high confidence level, reaching 99.4%, except 
for two cases where the confidence levels are 62.5% and 93.8%. In the 
case of commercial honeys (five cases), the confidence level range is 
14.9–78.1%. Four honeys are correctly classified with a confidence 
level between 65.4% and 78.1%; conversely, one case it is erroneously 
classified as Galician honey (confidence level of 14.9%). Owing to 
this, the accuracy value of RF2 for querying phase is 95.2%. With the 
exception of this last honey, it can be said that the confidence level for 
the commercial honey predictions is adequate.

Once the best model has been developed, the results can be com-
pared with those from the model developed by Rodríguez-Otero 
et al. [46] (Table 3). This model was developed using the program 
BMDP7M to the relative mobility data of bands eleven and twelve 
of the 82 Galician honeys and 22 commercial honeys to obtain 
a model based on discriminant analysis [46]. The classification 
matrix for the different models is shown in Table 3. Regarding the 
results obtained by Rodríguez-Otero et al. [46], it can be observed 
that for the 104 total honeys, 71 of the 82 honeys from Galicia 
were classified correctly, which represents 86.6%, and 19 of the 
22 commercial honeys were classified correctly with an accuracy 
of 86.4%. Considering the RF model selected in this research, it 
can be seen that for Galician honey the accuracy is higher (98.8%) 
in comparison with the model developed by Rodríguez-Otero et 
al. [46] (86.6%). This result can be explained by the fact that 81 
Galician honeys were correctly classified and the predictions for 
the commercial honeys were incorrect for only two honeys (accu-
racy of 90.9%). Finally, the improvement is remarkable taking into 
account the general accuracy value presented by the RF model. In 
this sense, the accuracy value goes from 86.5% to 97.1%.

Therefore, it can be concluded that the use of RF classification 
model with two input variables can be used to predict the origin of 

Table 2 | Accuracy (%) for training (subscript T), validation (subscript V), querying (subscript Q), and overall (subscript O) 
phases for each model developed with two input variables: random forest (RF), artificial neural network (ANN), and support 
vector machine (SVM) 

Model B7 B8 B11 B12 AccuracyT AccuracyV AccuracyQ AccuracyO

RF2 96.8  100.0  95.2  97.1
ANN2 87.1  95.2  95.2  90.4
SVM2 90.3  90.5  90.5  90.4
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Figure 4 | Bar graph for querying cases according to the confidence value (%) of each prediction for the random forest model with two input variables.

Table 3 | Classification matrix for the models developed by Rodríguez-
Otero et al. [46] (top) and the best model (RF2) developed in this research 
(bottom) 

Model developed by 
Rodríguez-Otero  
et al. [46]

Honey classification

Galician 
honey

Commercial 
honey

Correct 
classification 

(%)

Galician honeys (82 samples) 71 11 86.6
Commercial honeys  

(22 samples)
3 19 86.4

Accuracy 86.5

Random forest (RF2) 
developed in this research

Honey classification

Galician 
honey

Commercial 
honey

Correct 
classification 

(%)

Galician honeys (82 samples) 81 1 98.8
Commercial honeys  

(22 samples)
2 20 90.9

Accuracy 97.1

Figure 3 | Bar graph for validation cases according to the confidence value (%) of each prediction for the random forest model with two input variables.

the Galician honey. The possible reason for better results provided 
by the RF models may be due to the fact that this type of models are 
specially oriented to classification tasks and that the multiple trees 
that constitute the RF (RF1 has six trees and RF2 has eight trees) are 
able to offer a weighted value with more precision than an SVM or 
ANN model. The model could be used within the Galician geo-
graphical area to determinate with accuracy the native honeys.

4. CONCLUSION

Honey quality is very important for European consumers. To safeguard 
this product, the European Union has different geographical indica-
tion. Nevertheless, honey is a product that can be easily adulterated 
with different methods and to ensure its authenticity it is necessary 
to apply different techniques to control and combat this adulteration.

In this research, RF, ANN, and SVM models were tested to dif-
ferentiate Galician honeys and other commercial honeys produced 
and packaged outside of Galicia. In addition to this, our best model 
was compared with the original model developed by Rodríguez-
Otero et al. [46].
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The results obtained for the best RF model allowed us to determine 
the honey’s origin with an accuracy of 95.2%. To our understanding, 
the RF model, and the SVM and ANN models, could be improved 
with the inclusion of new data from different commercial honeys.
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