
Teaching Reform and Practice of Software Architecture Design Course 
under the Background of Engineering Education 

Weigang Li 
School of Software, Northwestern Polytechnical University, China 

Keywords: Software architecture, Engineering education, Flipped classroom, Teaching reform. 

Abstract. The increasing scale and complexity of software architecture in the Internet era is a great 
challenge for the teaching of software architecture design course. The course content and its teaching 
mode must be reformed to match the technology progress and the new software development 
practices. We report our teaching reform based on the case-based teaching, flipping classroom and 
project practice in this paper. The practice process and effect of teaching reform in senior 
undergraduates of software engineering specialty are expounded. 

Introduction 

In the Internet era, with the continuous expansion of software scale, the importance of software 
architecture design in the development of large and medium-sized software projects is becoming 
more and more prominent. Software architecture design course has become an important professional 
course in software engineering disciplines [1]. Its purpose is to improve students' ability to 
understand the problems and plan the solutions at the conceptual level, and to transform the learner 
from programmer to architect. 

In the software architecture point of view, it separates the overall structure of the system (including 
components and their connections) from the internal details of each component, and emphasizes the 
external view of components, that is, the interfaces provided and needed by components and the 
connections with other components. Therefore, architecture design is a high-level design, which 
needs to focus on the quality attributes of the system, including performance, security, 
maintainability, etc., while meeting the functional requirements. It is the starting point for detailed 
design and implementation. At present, the demand for software architects in industry is very urgent 
and high. This puts forward a new requirement for the teaching of software architecture design course, 
that is, close to the actual software development practice, so that students can truly grasp and flexibly 
use the principles and methods of software architecture design. 

Course Characteristics and Difficulties in Teaching 

The software architecture design course has characteristics as below [2]: 
1. Knowledge covers a wide range. The activities in each stage of software architecture design 

involve a lot of knowledge learned in other courses, such as network, database, operating system, 
distributed system, software engineering, etc. It is a comprehensive consideration and application of 
these knowledge. So it is important for the student to learn these courses well. 

2. The degree of abstraction of curriculum knowledge is high. Software architecture design focuses 
on exploring the macro level of software, which is very far from the specific coding that students are 
very familiar with. If it relies mainly on classroom teaching, it is difficult for students to understand 
and master the design methodology.  

3. The balance between theory and practice. Theoretical knowledge is the general knowledge that 
can be applied to all software architecture design. Practice requires a compromise between theory and 
real system as real as possible, so as to combine general knowledge with specific software projects 
and achieve better learning results. 

Software architecture design course of Northwestern Polytechnical University is offered to junior 
undergraduates majoring in software engineering. Although the students have systematically studied 

International Conference on Advanced Education, Management and Humanities (AEMH 2019)

Copyright © 2019, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Social Science, Education and Humanities Research, volume 352

17



the basic courses and most of the specialized courses of software engineering, the experiences of 
software research and development is limited to the homework or training projects of some 
specialized courses, without the training of medium-sized and large-scale software development, and 
lack of project experiences under the real scene.  

In recent years, we have found that using all the classroom time to teach abstract theory of software 
architecture design makes students feel bored. It is prone to turning this course into a course that 
needs to memorize a lot of principles but not being applied in practice. It is difficult to reflect and 
understand the important position of software architecture design in software development. In 
addition, after investigating most of the textbooks, we find that the cases in the textbooks are small in 
scale and only suitable for teaching, but not for students to practice. Finally, the class hours are 
limited, only 40 theoretical hours and 16 experimental hours. How to make good use of the class 
hours and longer teaching cycle and arrange the classroom and practical content has always been one 
of our key considerations. 

In view of the characteristics and problems of the course, we propose to improve the course 
teaching from the aspects of classroom teaching content, teaching form and practical links. 
Specifically, the teaching contents are mainly summarized after the students doing, the teaching form 
is mainly case-based teaching, and in the practical links the design and analysis of real software 
projects from enterprises are focused. We combine the three as far as possible. In a more real 
environment, the students experience and use software architecture design theory and technology in 
specific projects, so as to improve the teaching effect. 

Teaching Form Reformation and Practice 

The teaching plan is as follows: 20 lessons for basic knowledge of software architecture design; 8 
lessons for discussion of 4 design cases; 4 lessons taught by enterprise experts; 16 lessons for students 
to practice the whole design process of 4 cases discussed in the classroom, and 8 lessons for students 
to practice the architecture design of a real project from the enterprise and report the results of 
practice. 

The above contents are arranged in sequence, and the experimental links are synchronized with the 
teaching of the course. In the experiment teaching, we adopt the way that students design first and 
then teachers teach. The real project experiments and the teaching of invited enterprise experts do not 
affect each other. 

Combination of Case-based Teaching and Flipping Classroom  

In the course of teaching, teachers can first teach the basic knowledge of software architecture design, 
including definition, view, software quality attributes, software architecture design method and 
process. The theoretical teaching in this stage is indispensable, and it is the basis of subsequent 
courses and practice. At this stage, more theoretical knowledge should not be introduced, because the 
knowledge introduced is enough for students to start preliminary design practice. While the 
introduction of more knowledge, such as software architecture design patterns, will increase the 
burden of students rather than helpful to practice. 

When introducing the design method and process of software architecture, teachers can choose the 
ATM system implemented by Client/Server architecture style as a case study [3]. In the classroom, 
the teachers will introduce in detail how to get the process and method of the final architecture design 
from the analysis of software requirements, and at the same time they will insert a lot of in-class 
exercises. For example, for all the use cases of ATM system, a case is selected as a classroom 
demonstration. After introducing the design of static model, dynamic model and state machine for the 
use case in detail, students are required to complete the design of other use cases of ATM system in 
class in time, laying a good foundation for the follow-up practices. 

In the follow-up teaching, teachers can mainly conduct case-based teaching in the form of flipped 
classroom. The teaching cases in this stage are mainly collected from various textbooks. The purpose 
is to gradually enable students to gradually adapt to the design task of software architecture design. 

Advances in Social Science, Education and Humanities Research, volume 352

18



The cases we selected include online sales system based on service-oriented architecture style, 
emergency monitoring system based on component software architecture design pattern, automatic 
driving system based on real-time software architecture design, etc. In this teaching link, for each 
case, teachers can adopt the following teaching mode. 

1. Instead of introducing the theoretical knowledge related to the case in class, each case will be 
assigned to the students in the form of homework in order. Each student has one week to analyze the 
case and complete the design tasks required by the homework. The new knowledge involved in the 
homework needs the students to study by themselves. 

2. Students are required to hand in their homework before the next lesson. In the next lesson, the 
case of the last arrangement is explained in detail and introduced to the students in the form of 
reference design. 

3. At each design stage of the case, the common problems in students' homework are pointed out 
and students are guided to compare their homework with reference design to find out the 
shortcomings. 

4. In the course of case teaching, the knowledge of software architecture design pattern is gradually 
introduced. 

This teaching mode will be carried out for three rounds, and the selected cases will be taught and 
practiced separately. Through this teaching link, students can enter into the practice of larger projects 
in the early stage of the course, without waiting for all the theoretical knowledge to be introduced. 
Secondly, every design stage and result of each case has been thoroughly considered and practiced in 
the homework, so they can immediately grasp the key points of design in the classroom and find the 
shortcomings of their own design. Finally, the teacher introduces various software architecture 
design patterns with specific cases to materialize abstract knowledge, so that students can understand 
the meaning of architecture style through learning several architectural styles. 

Practice with Real Software 

After students have mastered and practiced the design method and process of software architecture, 
and have seen and understood some common software architecture design patterns, teachers can 
guide students to practice with real large-scale software. We chose the actual software project 
developed by the software enterprise which cooperates closely with our university after dealing with 
it as the main project of curriculum practice. Firstly, the students are divided into three to four groups. 
Each group is required to select a software from seven projects as the object of practice. The common 
characteristics of these projects are large scale, with many users and many documents, which are 
convenient for students to study and analyze. In practice, students will experience the following 
stages. 

1. Understanding the project. For the selected project, the students must read the document firstly 
to understand the software requirements, application background, architecture overview and other 
knowledge. 

2. Identifying stakeholders. The students must analyze of the selected project carefully, imagine as 
an architect to develop such a project. He or she must ask him or herself some questions such as 
which stakeholders will be involved in the project, what are their respective interests, etc. 

3. Identifying quality attributes. According to the quality attributes and their measurements, the 
main and potential quality attributes requirements of the selected items are analyzed, and the quality 
attributes are modeled by the methods introduced in class. 

4. Architectural description. According to the "4 + 1" view, the architecture view of the selected 
software is described and depicted. 

5. Architectural evaluation. According to the extracted architecture design and quality attributes, 
the students in the group play different stakeholders and practice software architecture design 
evaluation activities. 

6. Source code analysis. Read and analyze the source code of the selected project at the module 
level, draw the software structure diagram at the module level, and map with the view of software 
architecture design. 

Advances in Social Science, Education and Humanities Research, volume 352

19



These practices last for five weeks. The instructors and counselors follow the activities of each 
group throughout the course. Through this link, students can use real large-scale software projects to 
experience activities related to software architecture design, including requirements analysis, 
architecture design and evaluation. Through reading source code and comparing with architecture 
design, students can experience how to reflect the decision-making in the architecture design 
practices. Through the modeling of quality attributes and architecture evaluation activities, students 
can observe how to experience the compromise in architecture design. 

Joint School-Enterprise Teaching 

While using real software for practice, we invite front-line architects of cooperative enterprises to 
give lectures. The experts are from various industries with rich commercial projects experiences,  
such as hospital information management system, health information management system, online 
photo sharing system, intelligent building monitoring system, etc. These projects have practical 
application background, users, stakeholders, quality attributes, etc. They are no longer imaginary 
cases in textbooks. Experts will introduce the whole software development process from 
requirements to architecture design and software release with each specific case. They will take 
students to think and design together and arrange appropriate in-class exercises in class. In line with 
theoretical knowledge, experts focus on the specific considerations and trade-offs in the architecture 
design stage and their reasons. At the same time, experts will also talk about their understanding of 
software architecture design and some insights into software architecture design from their own point 
of view, such as software architecture design is not a design, but the result of repeated design 
iterations. 

Through this course, students will be able to see the work of front-line architects and their role in 
software teams. Front-line architects teach software architecture design in combination with specific 
projects in plain and concrete language, which is easier for students to accept and understand. 
Contrasting with the theoretical knowledge learnt in class, students can discover a deeper meaning of 
theoretical knowledge and find the application of theoretical knowledge in specific projects. 

We think that the most influential thing for students is the specific application method of general 
principles in software engineering. Each expert has his own unique analysis and design method. 
Although it looks different, the embodiments of design principles such as software engineering and 
software architecture design are consistent, which makes students realize how flexibly the general 
principles learned in class are embodied in the design. 

Reform Effect 

Since 2016, we have implemented this teaching reform program in the course of "Software 
Architecture Design" for software engineering specialty. The number of students in the three sessions 
is 76, 81 and 51 respectively. Classroom teaching is carried out in strict accordance with the 
scheduled hours. Teachers and counselors follow up and guide the whole course, and find problems 
in students' learning at any time. The whole course is completed within 10 weeks. Questionnaire 
survey shows that compared with the previous teaching students have a deeper understanding of 
software architecture design and its related technologies and methods, which is highlighted in the 
following aspects. 

1. By arranging experiments, students can start to practice as soon as possible while learning 
theory. The application of software architecture design method and technology is closely followed by 
theoretical learning, and the abstract knowledge is embodied. 

2. In case selection, from textbook cases to actual open source projects, step by step, students can 
immediately use the knowledge they have learned in various experiments, and there will be no 
situation that they cannot start. Experiments on practical open source projects can test students' 
comprehensive application ability and enhance their confidence. 

Advances in Social Science, Education and Humanities Research, volume 352

20



3. In the way of teaching, do it first and then talk about it. It can bring more challenges to students 
than simple preview and reading materials. Students have more questions in class and pay more 
attention during class. They can find their shortcomings and improve them in time. 

4. The teaching of front-line architects is very popular with students. Students realize how to use 
abstract principle knowledge in practice: follow the principle, and operate flexibly in practice. 

Summary 

We have explored and practiced the teaching of software architecture design course. The designed 
teaching content, teaching form and arrangement of experiments are very effective to improve the 
teaching effect. But in practice, we also find that in order to do this teaching plan, it puts forward high 
requirements for teachers and students. Every year, we need to redesign teaching cases and invite 
front-line architects from software companies. The workload is very large. For students, it takes a lot 
of time to persist in completing all the experiments. If they persist, they will get some results, but 
there is plagiarism in the actual teaching. In the future, in view of the new problems, we will continue 
to explore the teaching methodology of the software architecture design course, and seek better 
training model to achieve better training effect. 

Acknowledgement 

This research was financially supported by the Teaching Reform Project and High Level Course 
Construction Project of Northwestern Polytechnical University. 

References 

[1] T.K. Li, Teaching Content Design of Software Architecture Course in Engineering Collage, 
Computer Education. 6 (2018) 120-123. 

[2] H. Li, Y.J. Wen, W.W. Liu, W. Dong, Y. Luo, Planning and Implementation of Software 
Architecture Course Teaching Reform, Computer Education. 6 (2015) 19-21. 

[3] H. Gomaa, Software Modeling and Design: UML, Use Cases, Patterns, and Software 
Architectures, Cambridge: Cambridge University Press, 2011. 

Advances in Social Science, Education and Humanities Research, volume 352

21




