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ABSTRACT
We obtain some mathematical properties of a new generator of continuous distributions with two additional shape parameters
called the odd log-logistic geometric family. We present some special models and investigate the asymptotes and shapes. The
family density function can be expressed as a linear combination of exponentiated densities based on the same baseline dis-
tribution. We derive a power series for its quantile function. We provide explicit expressions for the ordinary and incomplete
moments and generating function. We estimate the model parameters by maximum likelihood. We propose a useful regression
model by varying the dispersion parameter to fit real data. We illustrate the potentiality of the proposed models by means of
three real data sets.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Recent developments on univariate continuous distributions have been focused to define new families by adding shape parameters to con-
trol skewness, kurtosis and tail weights, providing great flexibility in modeling skewed data in practice, including the two-piece approach
introduced by Hansen [1] and the generators pioneered by Eugene et al. [2], Cordeiro and de Castro [3], Alexander et al. [4] and Cordeiro
et al. [5]. Many subsequent articles apply these techniques to induce skewness into well-known symmetric distributions such as the sym-
metric Student t. For a review, see Aas and Haff [6].

In the last few years, new classes of distributions were proposed, for example, the generalized Weibull family by Cordeiro et al. [7], the
exponentiated G Poisson model (Gomes et al., [8]), the Poisson-X family presented by Tahir et al. [9], the extended-G geometric family by
Cordeiro et al. [10], the generalized odd half-Cauchy class by Cordeiro et al. [11] and the generalized odd log-logistic (LL) family studied
by Cordeiro et al. [12].

In this work, we introduce a new class of distributions called the odd log-logistic geometric-G (“OLLG-G” for short) family with two
additional shape parameters in order to attract wider applications in reliability, biology and other research areas, and study some of its
mathematical properties. The new family can extend several common models such as the normal and Weibull distributions by adding two
extra parameters to a parent G. The proposed family is an extension of that one introduced recently by Gleaton and Lynch [13].

One way to study the effects of the explanatory variables on the lifetime or survival time is through a regression location-scale model, also
known as the accelerated lifetimemodel. Regressionmodels can be proposed in different forms in survival analysis, for example, Hashimoto
et al. [14] defined the long-term survival model with interval-censored data. Ortega et al. [15] defined a power series betaWeibull regression
model for predicting breast carcinoma, Lanjoni et al. [16] proposed the extended Burr XII regressionmodel, Ortega et al. [17] introduced the
odd Birnbaum-Saunders regression model and, more recently, Ramires et al. [18] predicted the cure rate of breast cancer using a regression
model with four regression structures. In this paper, we develop a log-linear model using a new distribution called the log-odd log-logistic
geometric Weibull (“LOLLG-W” for short). The new regression model by varying the dispersion parameter can be applied to censored data
since it represents a parametric family of models that includes as sub-models several widely-known regression models and therefore can be
used more effectively in the analysis of survival data.
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This paper is organized as follows: In Section 2, we define the OLLG-G family and propose some new distributions. In Section 3, we
derive useful expansions for the new family. In Section 4, we present moments and quantile and generating functions. Maximum likelihood
estimation of the model parameters and various simulations for different parameter settings and sample sizes are performed in Section 5. In
Section 6, we define a regressionmodel of location-scale formwith varying dispersion. In Section 7, we provide some applications. Section 8
offers some concluding remarks.

2. MODEL DEFINITION

Gleaton and Lynch [13], da Cruz et al. [19], Braga et al. [20] and Cordeiro et al. [12] studied a class of distributions called the odd log-logistic
(“OLLG-G”) family with applications in different areas. Given a continuous baseline cumulative distribution function (cdf) G

(
y; 𝜏

)
with a

parameter vector 𝜏 of dimension k, the cdf of the OLL-G class with an additional shape parameter 𝛼 > 0 is defined by

F
(
y
)
= ∫

G(y;𝜏)
G(y;𝜏)

0

𝛼t𝛼−1

(1 + t𝛼)2 dt =
G(y; 𝜏)𝛼

G(y; 𝜏)𝛼 + G(y; 𝜏)𝛼
, (1)

where G
(
y; 𝜏

)
= 1 − G

(
y; 𝜏

)
. We can write

𝛼 =
log [ F(y)

F(y) ]

log [G(y)
G(y) ]

.

Thus, the parameter 𝛼 represents the quotient of the log odds ratio for the generated and baseline distributions. We note that there is no
complicated function in (1) in contrast with the beta generalized family Eugene et al. [2], which includes two extra parameters and also
involves the incomplete beta function. The baseline cdfG

(
y; 𝜏

)
is clearly a special case of (1) when 𝛼 = 1. IfG

(
y; 𝜏

)
= y/

(
1 + y

)
, becomes

the LL distribution. Some distributions can be generated from (1).

Suppose that {Yi}Mi=1 are independent and identically distributed (iid) random variables having the OLL-G cdf (1). Let M be a geometric
random variable with probability mass function given by P (M = m) =

(
1 − p

)
pm−1 form ∈ ℕ and p ∈ (0, 1). Let X = min

(
{Yi}Mi=1

)
. The

conditional density function of X givenM = m is

f
(
x|m; 𝜏

)
= m𝛼g (x; 𝜏)G𝛼−1 (x; 𝜏) [1 − G(x; 𝜏)]m𝛼−1

{G𝛼(x; 𝜏) + [1 − G(x; 𝜏)]𝛼}m+1 . (2)

Then, the probability density function (pdf) of the (k + 2)-parameter OLLG-G family reduces to

f
(
x; 𝛼, p, 𝜏

)
=

(
1 − p

)
𝛼g (x; 𝜏)G𝛼−1 (x; 𝜏) [1 − G(x; 𝜏)]𝛼−1

{G𝛼(x; 𝜏) + (1 − p) [1 − G(x; 𝜏)]𝛼}2
. (3)

The cdf corresponding to (3) is given by

F
(
x; 𝛼, p, 𝜏

)
= G𝛼 (x; 𝜏)

G(x; 𝜏)𝛼 +
(
1 − p

)
[1 − G(x; 𝜏)]𝛼

. (4)

Henceforth, a random variable X having density function (3) is denoted by X ∼ OLLG-G
(
𝛼, p, 𝜏

)
. For 𝛼 = 1, we obtain the geometric-G

family with (k+1) parameters
(
𝜏, p

)
. We should emphasize that (4) is the extended generalized log-logistic distribution defined by Gleaton

and Lynch [21]. However, the mathematical properties of the OLLG-G family and the associated regression derived in this paper represent
new results. The OLL-G class is the limiting family (the limit is defined in terms of the convergence in distribution) of the OLLG-G class
when p → 0+. Setting p = 1 − p∗, we obtain the Marshall-Olkin family Marshall and Olkin [22]. On the other hand, if p → 1−, we have
the distribution of a random variable Y such that P (Y = 0) = 1. Hence, the parameter p can be interpreted as a degeneration parameter.
The OLLG-normal and OLLG-Weibull distributions are obtained by taking G (x; 𝜏) to be the normal andWeibull cumulative distributions,
respectively.Pdf_Folio:279
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2.1. Special Models

We present two special cases of the new family: the OLLG-Weibull (OLLG-W) and OLLG-normal (OLLG-N) distributions. First, the
OLLG-W distribution is defined from (3) by taking G (x; 𝜏) and g (x; 𝜏) to be the cdf and pdf of the Weibull,W (a, b), distribution, respec-
tively, where 𝜏 = (a, b)T. Its pdf is given by

fOLLG−W =
a𝛼

(
1 − p

)
xa−1 exp [− (𝛼 − 1)

(
x
b

)a
] {1 − exp [−

(
x
b

)a
]}
𝛼−1

ba {{1 − exp [−
(

x
b

)a
]}
𝛼
+ (1 − p) exp [−𝛼

(
x
b

)a
]}

2 , (5)

where the scale parameter b > 0, a > 0, 𝛼 > 0 and 0 < p < 1 are shape parameters. A random variable with pdf (5) is denoted by
X ∼OLLG-W

(
𝛼, p, a, b

)
.

For p → 0+, we obtain the odd log-logistic Weibull (OLL-W) distribution da Cruz et al. [19] and for 𝛼 = 1 we have the geometric
Weibull (Geo-W) distribution. We display plots of the OLLG-W densities and hazards in Figures 1 and 2, respectively. These plots reveal
the bimodality of the density function and increasing, decreasing, unimodal, bathtub and increasing-decreasing-increasing of the hazard
rate function (hrf)

Second, theOLLG-Ndistribution is defined from (3) by takingG (x; 𝜏) and g (x; 𝜏) to be the cdf and pdf of the normalN
(
𝜇, 𝜎2) distribution,

respectively, where 𝜏 = (𝜇, 𝜎)T.

Figure 1 Plots of the odd log-logistic geometric (OLLG)-Weibull density function for some parameter values.
(a) Fixed.

Pdf_Folio:280
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Figure 2 Plots of the odd log-logistic geometric (OLLG)-Weibull hazard function for some parameter values.
(a) Fixed.

Its density function is given by

fOLLG−N =
𝛼
(
1 − p

)
𝜙( x−𝜇

𝜍
)
{Φ

( x−𝜇
𝜍

)
[1−Φ

( x−𝜇
𝜍

)
]}𝛼−1

{Φ𝛼 ( x−𝜇
𝜍

)+ (1− p) [1−Φ𝛼 ( x−𝜇
𝜍

)
]}2

, (6)

where 𝜇 ∈ ℝ is the location parameter, 𝜎 > 0 is the scale parameter, 𝛼 > 0 and 0 < p < 1 are shape parameters, and 𝜙 (.) and Φ (.) are the
pdf and cdf of the standard normal distribution, respectively. A random variable with pdf (6) is denoted by X ∼OLLG-N

(
𝛼, p, 𝜇, 𝜎2).

For p → 0+, we obtain the odd log-logistic normal (OLL-N) distribution Braga et al. [20] and when 𝛼 = 1 we have the geometric normal
(Geo-N) distribution. For 𝜇 = 0 and 𝜎 = 1, we have the standard OLLG-N distribution. Plots of the OLLG-N densities are displayed
in Figure 3. These plots reveal that this density provides great flexibility in its forms, such as bimodality, asymmetry with bimodality and
symmetry.

3. USEFUL EXPANSION

Theorem 3.1. Let X be a random variable having the OLLG-G family. The cdf of X can be expressed as

F (x) =
∞
∑
r=0

dr Hr (x) . (7)
Pdf_Folio:281
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Figure 3 Plots of the odd log-logistic geometric (OLLG)-normal density function for some parameter values.
(a) Fixed.

Here, d0 = s0/c0 and, for r ≥ 1,

dr = c−1
0

(
sr −

r

∑
m=1

cm sr−m

)
,

where the quantities involved are defined below and Hr (x) = G (x)r is the exponentiated-G (exp-G) cdf with power parameter r.

Proof:We consider the power series

(1 − z)b =
∞
∑
k=0

(−1)k
(

b
k

)
zk. (8)

which holds for any real non-integer b > 0 and |z| < 1.

Thus, we can rewrite (4) using (8) as

F (x) = G𝛼 (x)
G𝛼 (x) +

(
1 − p

)
∑∞

k=0 bk Gk (x)
, (9)

where bk = bk(𝛼, p) = (−1)k(1 − p)

(
𝛼
k

)
.
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Further, for z ∈ (0, 1), and real non-integer 𝛼 > 0, we have

z𝛼 =
∞
∑
r=0

sr (𝛼) zr. (10)

where

sr = sr (𝛼) =
∞
∑
l=r

(−1)l+r

(
𝛼
l

)(
l
r

)
.

Combining (9) and (10), we obtain

F (x) =
∑∞

r=0 sr (𝛼)G
r (x)

∑∞
j=0 sj (𝛼)Gj (x) +∑∞

i=0 JiGi (x)
=

∑∞
r=0 sr (𝛼)G

r (x)

∑∞
t=0 ct

(
𝛼, p

)
Gt (x)

,

where ct = ct
(
𝛼, p

)
= st (𝛼) + Jt and Jt = Jt

(
𝛼, p

)
= ∑∞

k=0 bk st (k).

(7) follows from the ratio of two power series in the last equation.

Corollary 3.1. The pdf of X is given by

f (x) =
∞
∑
r=0

dr+1 hr+1 (x) , (11)

where dr+1 is given in (7) and hr+1 (x) is the exp-G pdf with power parameter r + 1.

Theorem 3.1 and Corollary 3.1 are the main results of this section.

4. MATHEMATICAL PROPERTIES

4.1. Quantile Function

(4) has tractable properties especially for simulations, since the quantile function (qf) of X is given by

xu = QG

( u1/𝛼(1 − p)1/𝛼

(1 − u)1/𝛼 + u1/𝛼(1 − p)1/𝛼

)
, (12)

where QG (u) = G−1 (u) is the baseline qf.

Figures 4(a) and 4(b) display some plots of the OLLG-W kurtosis and skewness for some parameter values, respectively. We have positive
kurtosis and positive and negative skewness. These plots reveal the flexibility of the proposed family with respect to the skewness.

4.2. Moments

In this section, we obtain the ordinary and incomplete moments of X from the moments of Yr+1 having the exp-G (r + 1, 𝜏) distribution.
The nth ordinary moment of X is given by

𝜇′n = E (Xn) =
∞
∑
r=0

dr+1 E
(
Yn
r+1

)
=

∞
∑
r=0

(r + 1) dr+1 𝜏 (n, r) ,

where dr+1 is given in Theorem 3.1 and 𝜏 (n, r) = ∫∞−∞ xn g (x)Gr (x) dx = ∫ 1
0
Qn

G (u) u
a du.

Expressions for moments of several exp-G distributions are given in Nadarajah and Kotz [23].

The nth incomplete moment of X can be obtained from (11) as

mn
(
y
)
=

∞
∑
r=0

dr+1 ∫
y

0
xnhr+1 (x) =

∞
∑
r=0

(r + 1) dr+1 ∫
G(y)

0
Qn

G (x) u
rdu.

The large number of applications of the ordinary and incomplete moments are well-known in the literature.Pdf_Folio:283
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Figure 4 Plots of the kutosis and skewness of the odd log-logistic geometric-Weibull (OLLG-W) and odd
log-logistic geometric-normal (OLLG-N) models for some parameter values.

4.3. Generating Function

The moment generating function (mgf)M (t) of X follows from (11) as

M (t) =
∞
∑
r=0

dr+1 Mr+1 (t) =
∞
∑
r=0

(r + 1) dr+1 𝜌 (t, r) ,

whereMr+1 (t) is the mgf of Yr+1 and

𝜌 (t, r) = ∫
∞

−∞
exp (tx) g (x)Ga (x) dx = ∫

1

0
exp {tQG (u)} urdu.

Thus,M (t) can be determined from the exp-G generating function or from the baseline qf.

5. MAXIMUM LIKELIHOOD ESTIMATION

The parameters of the OLLG-G family are estimated by maximum likelihood from complete samples only. Let x1,⋯ , xn be a random
sample of size n from the OLLG-G

(
𝛼, p, 𝜏

)
distribution. The log-likelihood function for the vector of parameters 𝜃 =

(
𝛼, p, 𝜏T

)T follows
from (3) asPdf_Folio:284
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l (𝜃) = n [log
(
1 − p

)
+ log (𝛼)] +

n

∑
i=1

log [g (xi; 𝜏)] + (𝛼 − 1)
n

∑
i=1

log [G (xi; 𝜏)]

+ (𝛼 − 1)
n

∑
i=1

log [1 − G (xi; 𝜏)] −
n

∑
i=1

log {G𝛼 (xi; 𝜏) +
(
1 − p

)
[1 − G(xi; 𝜏)]𝛼} . (13)

Let ̂𝜃 be the maximum likelihood estimate (MLE) of 𝜃. The log-likelihood can be maximized either directly by using the NLMixed script of
SAS, theMaxBFGS sub-routine of the Ox programR software or by solving the nonlinear likelihood equations simultaneously. By using any
optimization code to find ̂𝜃, we face to the problem if (13) has more than one local maximum since in this situation the optimizer function
with different initial values can lead to different local maximums. So, a simple procedure for finding initial parameter values is: first, plot
the density function with some parameter values on the histogram of the data; second, find a good vector of parameters with good fit to the
histogram and choose this vector as the initial parameter vector to the optimization problem.

The asymptotic distribution of
( ̂𝜃 − 𝜃

)
isNk+2

(
0, J

( ̂𝜃
)−1)

under standard regularity conditions, where J (𝜃) is total observed information
matrix. Based on this distribution, we can construct approximate confidence intervals for the individual parameters.

We can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio (LR) statistics for testing

some sub-models of the OLLG-G distribution. To ensure that p ∈ (0, 1), we adopt the following re-parametrization for p =
exp

(
p∗
)

1 + exp
(
p∗
) ,

where p∗ ∈ ℝ. This procedure is used in the simulations and applications.

So, we can construct LR statistics to check if the fit using the OLLG-G distribution is statistically “superior” to a fit using the OLL-G, and
geometric-G family for a given data set. In any case, hypothesis tests of the type H0 ∶ 𝜓 = 𝜓0 versus H1 ∶ 𝜓 ≠ 𝜓0, where 𝜓 is a vector
formed with some components of 𝜃 and 𝜃0 is a specified vector, can be performed using LR statistics. For example, the test of H0 ∶ 𝛼 = 1
versus H1 ∶ H0 is not true is equivalent to compare the OLLG-G and geometric family and the LR statistic reduces to

w = 2 {ℓ
(
𝛼̂, p̂, ̂𝜏

)
− ℓ (𝛼̃, 1, ̃𝜏)} ,

where 𝛼̂, p̂, and ̂𝜏 are the MLEs under H and 𝛼̃ and ̃𝜏 are the estimates under H0.

5.1. Simulation Study

In this section, we assess the finite sample performance of the MLEs in the OLLG-W and OLLG-N distributions, respectively, by varying
the true parameter and the sample size n. We perform a Monte Carlo simulation (with 1, 000 replications) to quantify some asymptotic
properties of the MLEs of the model parameters using the R software.

First, we consider the OLLG-W model under some parametric variation structure and measure the effects of the MLEs â, b̂, 𝛼̂ and p̂. To
that end, we consider a ∈ {3.53, 11.5, 5.50}, b ∈ {2.15, 1.25}, 𝛼 ∈ {0.35, 0.21} and p ∈ {0.25, 0.60, 0.90} for the sample sizes n = 80, 150 and
300. For each parametric point, the Monte Carlo averages of the MLEs and the mean square errors (MSEs) are determined. The figures in
Table 1 reveal that the average estimates (AEs) tend to the parameter values when n increases. Thus, the first-order asymptotic properties
of the MLEs hold for the OLLG-W distribution.

Next, we consider theOLLG-Nmodel tomeasure both the effects of theMLEs 𝜇̂, ̂𝜎, p̂ and 𝛼̂. To that end, we consider𝜇 ∈ {2.00, 0.00, −1.00},
𝜎 ∈ {1.00, 0.75, 1.00}, 𝛼 ∈ {0.50, 0.15, 0.20} and p ∈ {0.40, 0.90, 0.15} for the sample sizes n = 80, 150 and 300. For each parametric point,
the Monte Carlo averages of the MLEs and MSEs are determined. The figures in Table 2 reveal that the AEs become closer to the true
parameter values when the sample size increases. This fact proves empirically that the first-order asymptotic properties of the MLEs are
satisfied for the OLLG-N distribution.

Table 1 Simulations for the OLLG-Wmodel.(
a, b, 𝛼, p

)
n AEs MSEs

a b 𝛼 p a b 𝛼 p

(3.53,2.15,0.35,0.25) 80 4.3287 2.2555 0.3277 0.2963 4.0096 0.1164 0.0088 0.0538
150 3.8360 2.2012 0.3421 0.2667 0.8711 0.0542 0.0046 0.0336
300 3.6832 2.1767 0.3464 0.2566 0.3894 0.0320 0.0023 0.0236

(11.5,1.25,0.21,0.60) 80 13.5820 1.2582 0.1993 0.5932 28.4536 0.0049 0.0043 0.0193
150 12.4670 1.2547 0.2041 0.5964 8.8640 0.0023 0.0018 0.0095
300 11.9975 1.2537 0.2068 0.6020 3.4259 0.0010 0.0009 0.0043

(5.50,1.25,0.21,0.90) 80 9.4602 1.2924 0.1806 0.8895 51.0649 0.0649 0.0183 0.0075
150 7.1223 1.2703 0.2020 0.8929 13.8234 0.0379 0.0124 0.0025
300 6.2040 1.2623 0.2042 0.8988 4.1319 0.0159 0.0041 0.0007

OLLG-W, odd log-logistic geometric-Weibull; AE, average estimate; MSE, mean square error.
Pdf_Folio:285
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Table 2 Simulations for the OLLG-N model.(
𝜇, 𝜎, 𝛼, p

)
n AEs MSEs

𝜇 𝜎 𝛼 p 𝜇 𝜎 𝛼 p

(2.00,1.00,0.50,0.40) 80 2.0534 1.0035 0.5074 0.3733 0.4381 0.2232 0.0971 0.0577
150 2.0120 0.9893 0.5022 0.3722 0.1966 0.1627 0.0779 0.0550
300 2.0080 1.0007 0.5026 0.3885 0.0548 0.0391 0.0186 0.0217

(0.00,0.75,0.15,0.90) 80 −0.0036 0.8056 0.1945 0.8854 3.5090 0.3043 0.0405 0.0031
150 −0.0357 0.7817 0.1752 0.8938 0.2753 0.0713 0.0137 0.0015
300 −0.0064 0.7602 0.1606 0.8962 0.0953 0.0309 0.0055 0.0012

(−1.00,1.00,0.20,0.15) 80 −0.9114 1.0140 0.2142 0.2139 0.1436 0.0944 0.0119 0.0304
150 −0.9345 1.0180 0.2105 0.1840 0.0823 0.0475 0.0059 0.0200
300 −0.9462 1.0097 0.2057 0.1853 0.0405 0.0199 0.0023 0.0136

OLLG-N, odd log-logistic geometric-normal; AE, average estimate; MSE, mean square error.

6. THE LOG-OLLG-W REGRESSION MODEL WITH VARYING DISPERSION

In this section, we define a location-scale regressionmodel with varying dispersion based on theOLLG-Wdistribution called the LOLLG-W
regression model with varying dispersion. We consider a classic analysis for this regression model and the inferential part is carried out
using the asymptotic distribution of the MLEs.

Henceforth, X is a random variable following the OLLG-W density function (5) and Y is defined by Y = log (X). The density function of Y
by replacing a = 1/𝜎 and b = exp (𝜇) reduces to

f
(
y
)
=

(
1 − p

)
𝛼

𝜎 exp [
(y − 𝜇

𝜎
)
− 𝛼 exp

(y − 𝜇
𝜎

)
] {1 − exp [− exp

(y − 𝜇
𝜎

)
]}
𝛼−1

×

{{1 − exp [− exp
(y − 𝜇

𝜎
)
]}
𝛼
+ (1 − p) exp [−𝛼 exp

(y − 𝜇
𝜎

)
]}
−2
, (14)

where y ∈ ℝ, 𝜇 ∈ ℝ, 𝛼 > 0, 𝜎 > 0 and 0 < p < 1. We refer to (14) as the LOLLG-W distribution, say Y ∼ LOLLG-W
(
p, 𝛼, 𝜎, 𝜇

)
, where

𝜇 ∈ ℝ is the location parameter, 𝜎 > 0 is the scale parameter and p and 𝛼 are shape parameters.

The survival function of Y reduces to

S
(
y
)
=

(
1 − p

)
exp [−𝛼 exp

( y−𝜇
𝜍

)
]

{1− exp [−exp
( y−𝜇

𝜍
)
]}𝛼 +

(
1 − p

)
exp [−𝛼 exp

( y−𝜇
𝜍

)
]
. (15)

The random variable Z = (Y − 𝜇) /𝜎 has density function

f (z) =
(
1 − p

)
𝛼 exp [z − 𝛼 exp (z)] {1 − exp [− exp (z)]}𝛼−1

{{1 − exp [− exp (z)]}𝛼 +
(
1 − p

)
exp [−𝛼 exp (z)]}2

. (16)

A parametric model that provides a good fit to lifetime data tends to yield more precise estimates of the quantities of interest. Based on the
LOLLG-W density, we propose a linear location-scale regression model with varying dispersion for the response variable yi given by

yi = 𝜇i + 𝜎izi, i = 1, … , n, (17)

where the random error zi has density function (16), and the parameters 𝜇i and 𝜎i are parametrized as

𝜇i = 𝜇i (𝛽1) and 𝜎i = 𝜎i (𝛽2) ,

where 𝛽1 =
(
𝛽11, … , 𝛽1p1

)T and 𝛽2 =
(
𝛽21, … , 𝛽2p2

)T. The usual systematic component for the location parameter is 𝜇i = dTi 𝛽1, where
di =

(
di1, … , dip1

)T is a vector of known explanatory variables, i.e.,  𝜇 = D𝛽1, with 𝜇 = (𝜇1, … , 𝜇n)T and D = (d1, … , dn)T is a specified
n × p1 matrix of full rank and p1 < n. Analogously, for the dispersion parameter, we consider the systematic component g (𝜎i) = 𝜂i = vTi 𝛽2,
where g (⋅) is a dispersion link function, and vi =

(
vi1, … , viq

)T is a vector of known explanatory variables, i.e., the linear structure in
g (𝜎i) measures the dispersion for the ith observation. Then, we have g (𝛽) = 𝜂 = V𝛽2, where 𝛽 = (𝜎1, … , 𝜎n)T, 𝜂 = (𝜂1, … , 𝜂n)T and
V = (v1, … , vn)T is a specified n × p2 matrix of full rank and p2 < n. The dispersion covariates in V are commonly, but not necessary,
regression covariates in X. It is assumed that 𝛽1 is functionally independent of 𝛽2. Further, we consider that g (⋅) is a known one-to-one
continuously twice differentiable function.Pdf_Folio:286
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The LOLLG-W regression model with varying dispersion (17) opens new possibilities for fitting many different types of data. The LOLL-W
regression model with varying dispersion is a special case when p → 0+. For p → 0+ and 𝜎1 = 𝜎, we have the LOLL-W regression model
defined by da Cruz et al. [19]. We obtain the log-Weibull (LW) regression model with varying dispersion when p → 0+ and 𝛼 = 1. For
p → 0+, 𝛼 = 1 and 𝜎i = 𝜎, we have the classical LW regression model Lawless [24].

Consider a sample
(
y1, d1, v1

)
,⋯ ,

(
yn, dn, vn

)
of n independent observations, where each random response is defined by yi =

min {log (xi) , log (ci)}. We assume non-informative censoring such that the observed lifetimes and censoring times are independent. Let
F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respectively. Conventional likelihood estimation tech-
niques can be applied here. The log-likelihood function for the vector of parameters 𝜃 =

(
p, 𝛼, 𝛽T

1 , 𝛽T
2
)T from model (17) has the form

l (𝜃) = ∑
i∈F

li (𝜃)+ ∑
i∈C

l (c)i (𝜃), where li (𝜃) = log [f
(
yi
)
], l (c)i (𝜃) = log [S

(
yi
)
], f

(
yi
)
is the density (14) and S

(
yi
)
is the survival function (15)

of Yi. The total log-likelihood function for 𝜃 reduces to

l (𝜃) = r log [
(
1 − p

)
𝛼

𝜎i
] + (n − r) log

(
1 − p

)
+∑

i∈F
zi − 𝛼∑

i∈F
exp (zi)+

(𝛼 − 1)∑
i∈F

log {1 − exp [− exp (zi)]} − 𝛼∑
i∈C

exp (zi)−

2∑
i∈F

log { {1 − exp[− exp(zi)]}𝛼 +
(
1 − p

)
exp [−𝛼 exp (zi)] } +

∑
i∈C

log { {1 − exp[− exp(zi)]}𝛼 +
(
1 − p

)
exp [−𝛼 exp (zi)] } , (18)

where zi =
(
yi − 𝜇i

)
/𝜎i and r is the number of uncensored observations (failures). The MLE ̂𝜃 of the vector of unknown parameters can

be evaluated by maximizing the log-likelihood (18). We use the R software to calculate ̂𝜃. Initial values for 𝛽1 and 𝛽2 are taken from the fit
of the LW regression model with varying dispersion with p → 0+ and 𝛼 = 1. The fit of the LOLLG-W model yelds the estimated survival
function for yi ( ̂zi =

(
yi − 𝜇i

)
/ ̂𝜎i) given by (15) at ̂𝜃, say S

(
yi; p̂, 𝛼̂, 𝜇i, 𝜎i

)
The asymptotic distribution of

( ̂𝜃 − 𝜃
)
is multivariate normalNp1+p2+2

(
0,K (𝜃)−1) under standard regularity conditions, whereK (𝜃) is the

informationmatrix. The asymptotic covariancematrixK (𝜃)−1 of ̂𝜃 can be approximated by the inverse of the
(
p1 + p2 + 2

)
×
(
p1 + p2 + 2

)
observed information matrix −L̈ (𝜃). The elements of the observed information matrix −L̈ (𝜃) can be evaluated numerically. The approx-
imate multivariate normal distribution Np1+p2+2

(
0, −L̈ (𝜃)−1) for ̂𝜃 can be used in the classical way to construct approximate confidence

regions for some parameters in 𝜃. We can adopt LR statistics for comparing some special models with the LOLLG-W regression model in
the usual way.

7. APPLICATIONS

In this section, we provide three applications to real data to prove empirically the flexibility of the OLLG-W and OLLG-N models. The
computations are performedusing theR software. In the first application,we compare theOLLG-Nwith geometric normal (Geo-N),OLL-N,
Kumaraswamy normal (Kw-N), exponentiated normal (EN), gamma normal (GN) and normal distributions. In the second application, we
compare the OLLG-Wmodel with the geometricWeibull (Geo-W), OLL-W, KumaraswamyWeibull (Kw-W), exponentiatedWeibull (EW),
gamma Weibull (GW), flexible Weibull (FW) and Weibull models. In the third application, a regression model is investigated considering
the OLLG-W distribution.

The FW distribution Bebbington et al. [25], having two parameters a1 > 0 and b1 > 0, has pdf given by

f (t) =
(
a1 +

b1
t2

)
exp [

(
a1 t −

b1
t

)
− exp

(
a1 t −

b1
t

)
] , t > 0.

The gamma-G density function Zografos and Balakrishnan [26] is given by

f (t) = g (t)
Γ (k) {− log[1 − G(t)]}k−1, t > 0,

where k > 0 is the shape parameter. The GW and GN are obtained by assuming the Weibull and normal baselines, respectively.

The Kumaraswamy-G (Kw-G) family was defined by Cordeiro and de Castro [3]. The associated density function, with two positive shape
parameters 𝜆 and 𝜑, is given by

f (t) = 𝜆 𝜑 g (t)G(t)𝜆−1[1 − G(t)𝜆]𝜑−1.

The exponentiated-G (Exp-G) is a special case of Kw-G when 𝜑 = 1. The Kw-W and Kw-N models are obtained by assuming the Weibull
and normal baselines, respectively. The EW and EN distributions are obtained by fixing 𝜑 = 1.Pdf_Folio:287
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We report the MLEs (and the corresponding standard errors in parentheses) of the model parameters and the following goodness-of-fit
measures: Cramr-von Mises (W∗), Anderson Darling (A∗) and Kolmogarov-Smirnov (KS) statistics. The smallest values of these measures
can provide the best fit among some fitted models. These measures, as well as the estimates, are obtained through the R software using the
AdequacyModel package and the optim function for regression model estimates, using in both cases the BFGS method.

7.1. Uncensored Data

First, we consider two uncensored data sets described below.

Guinea pig survival times (E1): The data refer to survival times on days of 72 guinea pigs analyzed after being injected with infectious
bacteria in a medical experiment.

Voltage data (E2): The data set was studied by Meeker and Escobar ([27], p. 383), which gives the times of failure and running times for
a sample of devices from a field-tracking study of a larger system. At a certain point in time, 30 units were installed in normal service
conditions. Two causes of failure were observed for each unit that failed: the failure caused by an accumulation of randomly occurring
damage from power-line voltage spikes during electric storms and failure caused by normal product wear.

To analyze the E1 data, we consider theOLLG-Nmodel and for the E2 data we take theOLLG-Wmodel. Table 3 gives a descriptive summary
for these data showing different degrees of skewness and kurtosis. We note that the E1 data have positive asymmetry and kurtosis and that
the E2 data have negative values for both.

Tables 4 and 5 list the MLEs and standard errors (in parentheses) of the parameters of the fitted models to both data sets. The values of the
statistics are presented in Table 6 to verify the goodness-of-fit of the models under study. The results in this table indicate that the OLLG-N
and OLLG-Wmodels have the lowest values of these statistics among all fitted models to both data sets.

A comparison of the proposed distributions with some of their sub-models using LR statistics is provided in Table 7. The p-values indicate
that the proposedmodels yield the best fits for the two data sets. However, for the E2 set, the OLL-Wmodel can be considered a competitive
model for the OLLG-Wmodel, because the p-value is close to the usual limit of 5%.

Table 3 Descriptive statistics for the two data sets.

Data Mean Median SD Skewness Kurtosis Min. Max.

E1 141.8 102.5 109.2086 2.4631 6.0742 43.0 598.0
E2 177.0 196.5 144.9922 −0.2699 −1.6416 2.0 300.0

Table 4 MLEs of the model parameters for the E1 data set.

Model 𝜇 𝜎 𝛼 p

OLLG-N 374.7037 30.7166 0.1058 0.9837
(0.0852) (0.0859) (0.0106) (0.0080)

OLL-N 125.6653 246.6182 3.1757 (0)
(9.6367) (63.4368) (0.9672) (−)

Geo-N 395.4403 106.1374 (1) 0.9957
(52.3187) (10.9766) (−) (0.0040)

𝜇 𝜍 𝜆 𝜑

Kw-N −335.3843 132.0140 961.8518 0.4019
(0.2126) (0.2141) (194.1546) (0.0539)

EN −500.6958 209.3812 528.9657 1
(0.0002) (0.0244) (0.0852) (−)

Normal 141.8156 108.5312 1 1
(12.7905) (9.0547) (−) (−)

𝜇 𝜍 k

GN −99.4173 125.2552 3.9278
(48.7530) (9.6677) (0.8960)

OLLG-N, odd log-logistic geometric-normal; MLE, maximum likelihood estimate; OLL-N, odd log-logistic nor-
mal; Geo-N, geometric normal; Kw-N, Kumaraswamy normal; EN, exponentiated normal; GN, gamma normal;
OLLG-W, odd log-logistic geometric-Weibull; OLL-W, odd log-logistic Weibull; Geo-W, geometric Weibull; Kw-
W, KumaraswamyWeibull; EW, exponentiated Weibull, GW, gammaWeibull, FW, flexible Weibull.
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Table 5 MLEs of the model parameters for the E2 data set.

Model a b 𝛼 p

OLLG-W 18.8383 247.9113 0.0506 0.1864
(0.0008) (0.0008) (0.0075) (0.00024)

OLL-W 10.5453 218.1834 0.0772 (0)
(0.0398) (0.0407) (0.0115) (−)

Geo-W 1.2650 188.0544 (1) 2.06x10−09
(0.0068) (0.0246) (−) (1.41x10−09)

a b 𝜆 𝜑

Kw-W 71.1698 295.9313 0.0052 0.2713
(22.2411) (2.8993) (0.0024) (0.0755)

EW 20.2227 10228.0700 0.0109 1
(0.0046) (109.1352) (0.0019) (−)

Weibull 1.2650 188.0544 1 1
(0.2044) (28.2172) (−) (−)

a b k

GW 7.0283 351.5713 0.1282
(0.0025) (0.0026) (0.0231)

a1 b1

FW 0.0032 15.8889
(0.0004) (5.2696)

MLE, maximum likelihood estimate; OLLG-W, odd log-logistic geometric-Weibull; OLL-W, odd log-
logisticWeibull; Geo-W, geometricWeibull; Kw-W, KumaraswamyWeibull; EW, exponentiatedWeibull,
GW, gammaWeibull, FW, flexible Weibull.

Table 6 Goodness-of-fit for the two data sets.

E1 Data

Model AIC CAIC BIC HQIC W∗ A∗ KS

OLLG-N 820.3 820.9 829.4 823.9 0.3636 2.0453 0.1119
OLL-N 865.1 865.4 871.9 867.8 0.9985 5.7098 0.1568
Geo-N 832.8 833.1 839.6 835.5 0.5186 3.0225 0.1182
Kw-N 833.8 833.4 841.9 836.4 0.5292 3.1417 0.1914
EN 843.9 844.3 850.8 846.6 0.7104 4.1636 0.1830

Normal 883.1 883.3 887.7 884.9 1.3648 7.5981 0.2310
GN 879.1 879.5 886.0 881.9 1.2726 7.1386 0.2277

E2 Data

Model AIC CAIC BIC HQIC W∗ A∗ KS

OLLG-W 331.4 333.0 337.0 333.2 0.0808 0.7022 0.1543
OLL-W 339.8 340.7 344.0 341.1 0.0850 0.7955 0.1688
Geo-W 374.6 375.5 378.8 375.9 0.3035 1.8208 0.2192
Kw-W 331.5 333.1 337.2 333.3 0.1129 0.9476 0.1494
EW 437.6 438.5 441.8 438.9 0.3701 2.1273 0.5391

Weibull 372.6 373.0 375.4 373.5 10.7180 56.4562 0.9987
GW 359.8 360.7 364.0 361.1 0.1963 1.2839 0.2277
FW 387.6 388.0 390.4 388.5 0.3246 2.0498 0.3942

OLLG-N, odd log-logistic geometric-normal; OLL-N, odd log-logistic normal; Geo-N, geometric normal; Kw-N,
Kumaraswamy normal; EN, exponentiated normal; GN, gamma normal; OLLG-W, odd log-logistic geometric-Weibull;
OLL-W, odd log-logistic Weibull; Geo-W, geometric Weibull; Kw-W, Kumaraswamy Weibull; EW, exponentiated
Weibull, GW, gammaWeibull, FW, flexible Weibull.

In order to assess if the model is appropriate, plots of the fitted OLLG-N, Geo-N, Kw-N and normal density functions are displayed in
Figure 5(a) and survival functions and the plots of the empirical distributions are displayed in Figure 5(b). Figure 6(a) provides plots of the
fitted density functions of the OLLG-W, OLL-W, Kw-N and Weibull models and Figure 6(b) gives the survival functions and the plots to
the empirical distributions. These plots indicate that the OLLG-N and OLLG-W distributions provide better fits to the current data sets.Pdf_Folio:289
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Table 7 LR tests for the two data sets.

E1 Data

Models Hypotheses Statistic w p-value

OLLG-N vs Normal H0 ∶ p = 0 and 𝛼 = 1 vs H1 ∶ H0 is false 7.0 0.0301
OLLG-N vs OLL-N H0 ∶ p = 0 vs H1 ∶ H0 is false 6.2 0.0121
OLLG-N vs Geo-N H0 ∶ 𝛼 = 1 vs H1 ∶ H0 is false 4.0 0.0455

E2 Data

OLLG-W vs Weibull H0 ∶ p = 0 and 𝛼 = 1 vs H1 ∶ H0 is false 6.2 0.0430
OLLG-W vs OLL-W H0 ∶ p = 0 vs H1 ∶ H0 is false 3.5 0.0604
OLLG-W vs Geo-W H0 ∶ 𝛼 = 1 vs H1 ∶ H0 is false 6.1 0.0131
OLLG-N, odd log-logistic geometric-normal; OLL-N, odd log-logistic normal; Geo-N, geometric normal;
OLLG-W, odd log-logistic geometric-Weibull; OLL-W, odd log-logisticWeibull; Geo-W, geometricWeibull;
LR, likelihood ratio.

Figure 5 (a) Estimated densities of the odd log-logistic geometric-normal (OLLG-N), geometric normal (Geo-N),
Kumaraswamy normal (Kw-N) and Normal models for E1 data. (b) Estimated survival functions of the OLLG-N, Geo-N,
Kw-N and Normal models for E1 data.

7.2. Regression Model with Varying Dispersion for Life Expectancy Data

The data were analyzed byWeindruch et al. [28] who compared the life expectancy of fieldmice under different diets. The authors randomly
assigned 244 mice to one of four dietary treatments. The data are available in asbio package of the R software, which contains a data frame
with 244 observations on the following two variables: ti = lifetime in months of the ith individual in the jth treatment, xij = ith individual
at the jth level of treatment, for i = 1, … , 244 and j = 1, 2, 3 and 4. The treatments correspond to a factor levels N/N85: mice were fed
normally both before and after weaning (the slash distinguishes pre and post weaning). After weaning the diet consisted of 85kcal/week, a
conventional total for mice rearing, N/R40: mice were fed normally before weaning, but were given a severely restricted diet of 40 kcal per
week after feeding, N/R50: mice were restricted to 50kcal per week before and after weaning, R/R50:mice were fed normally before weaning,
but their diet were restricted to 50 kcal per week after weaning. The analysis considering the LOLLG-W regressionmodel is performed with
the definition of dammy variables as follows: levels N/N85 (di1 = 1, di2 = 0 and di3 = 0), levels N/R40 (di1 = 0, di2 = 1 and di3 = 0), levels
N/R50 (di1 = 0, di2 = 0 and di3 = 1) and levels R/R50 (di1 = 0, di2 = 0 and di3 = 0).

• Exploratory analysis for life expectancy data
Here, we perform an exploratory analysis of these data. Table 8 gives a descriptive summary of the data showing different degrees of
skewness and kurtosis. In Figure 7(a) the boxplot of the response variable is shown and in Figure 7(b) the box-plots considering the
treatment levels.
Table 9 lists the MLEs and standard errors between parentheses of the parameters of the fitted models to the current data. The values of
the statistics are given in Table 10 to verify the goodness-of-fit of the fitted models. The results indicate that the OLLG-Wmodel has
the lowest values of these statistics among all fitted models to the data.
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Figure 6 (a) Estimated densities of the odd log-logistic geometric-Weibull (OLLG-W), odd log-logistic
Weibull (OLL-W), KumaraswamyWeibull (Kw-W) and Weibull models for E2 data. (b) Estimated survival functions of
the OLLG-W, OLL-W, Kw-W andWeibull models for E2 data.

Table 8 Descriptive statistics for the life expectancy data.

Mean Median SD Skewness Kurtosis Min. Max.

General 40.88 42.30 8.1321 −0.5547 −0.3514 17.90 54.60
N/N85 32.69 33.10 5.1252 −1.0390 1.0485 17.90 42.30
N/R40 45.12 46.05 6.7034 −1.1755 2.0750 19.60 54.60
N/R50 42.30 43.90 7.7681 −0.9814 0.2534 18.60 51.90
R/R50 40.88 42.30 6.6831 −0.9005 0.1414 24.20 50.70

Figure 7 Plots of the response variable. (a) General response variable. (b) Variable response per treatment level.

A comparison of the proposed distributions with some of their sub-models using LR statistics is given in Table 11. The OLL-Wmodel
can be considered a more competitive model to the OLLG-Wmodel, because the corresponding p-value is greater than the usual 5%.
In order to assess if the model is appropriate, plots of the fitted OLLG-W, OLL-W, Kw-W andWeibull density functions are displayed
in Figure 8(a). The estimated survival functions and the plots of the empirical distributions are displayed in Figure 8(b). They indicate
that the OLLG-W distribution is gives a good fit to the corresponding data set, thus capturing a slight bimodality with left asymmetry.

• Regression model for life expectancy data
The LOLLG-W regression model for the life expectancy data can be expressed as follows

yi = 𝜇i + 𝜎izi,
Pdf_Folio:291
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Table 9 MLEs of the model parameters for the life expectancy data.

Model a b 𝛼 p

OLLG-W 16.6162 46.1443 0.3669 0.4177
(2.8540) (0.8573) (0.0564) (0.2076)

OLL-W 12.1710 44.2047 0.4414 (0)
(1.4587) (0.4768) (0.0629) (−)

Geo-W 6.1866 44.1086 (1) 0.0002
(0.3245) (0.4805) (−) (0.0091)

a b 𝜆 𝜑

Kw-W 45.2322 54.1885 0.1038 1.8377
(13.7890) (1.4377) (0.0551) (0.4821)

EW 20.1619 50.6639 0.2035 1
(5.5796) (0.8541) (0.0674) (−)

Weibull 6.1866 44.1076 1 1
(0.3243) (0.4791) (−) (−)

a b k

GW 21.8598 51.7215 0.1875
(2.0613) (0.3878) (0.0232)

a1 b1

FW 0.0686 132.8122
(0.0034) (7.5067)

MLE, maximum likelihood estimate; Kw-N, Kumaraswamy normal; OLLG-W, odd log-
logistic geometric-Weibull; OLL-W, odd log-logistic Weibull; Geo-W, geometricWeibull;
Kw-W, Kumaraswamy Weibull; EW, exponentiated Weibull, GW, gamma Weibull, FW,
flexible Weibull.

Table 10 Goodness-of-fit measures for the life expectancy data.

Model AIC CAIC BIC HQIC W∗ A∗ KS

OLLG-W 1676.5 1676.6 1690.5 1682.1 0.0388 0.2610 0.0365
OLL-W 1678.8 1678.8 1689.3 1683.0 0.1152 0.6285 0.0619
Geo-W 1702.1 1702.2 1712.6 1706.3 0.2701 1.7463 0.0894
Kw-W 1683.5 1683.6 1697.5 1689.1 0.1352 0.7567 0.0537
EW 1684.8 1684.9 1695.3 1689.1 0.1949 1.0666 0.0578

Weibull 1700.1 1700.2 1708.1 1702.9 25.4435 125.1121 0.9899
GW 1685.0 1685.1 1695.5 1689.3 0.1996 1.0912 0.0583
FW 1700.6 1700.6 1707.6 1703.4 0.2583 1.7219 0.0910

OLLG-W, odd log-logistic geometric-Weibull; OLL-W, odd log-logistic Weibull; Geo-W, geometric Weibull; Kw-W,
KumaraswamyWeibull; EW, exponentiated Weibull, GW, gammaWeibull, FW, flexible Weibull.

Table 11 LR tests for the life expectancy data.

Models Hypotheses Statistic w p-value

OLLG-W vs Weibull H0 ∶ p = 0 and 𝜆 = 1 vs H1 ∶ H0 is false 5.25 0.0720
OLLG-W vs OLL-W H0 ∶ p = 0 vs H1 ∶ H0 is false 1.60 0.1968
OLLG-W vs Geo-W H0 ∶ 𝜆 = 1 vs H1 ∶ H0 is false 5.26 0.0217
OLLG-W, odd log-logistic geometric-Weibull; OLL-W, odd log-logisticWeibull; Geo-W, geometricWeibull.

where z1, … , z244 are independent random variables with density function (14) and the model parameters are defined by

𝜇i = 𝛽10 + 𝛽11 di1 + 𝛽12 di2 + 𝛽13 di3 and 𝜎i = exp (𝛽20 + 𝛽22 di1 + 𝛽23 di2) .

The MLEs for the LOLLG-Wmodel are presented in Table 12. Thus, when establishing a significance level of 5%, we note that the
regression model with varying dispersion capture significant difference between the levels of the diets.
In order to assess if the model is appropriate, the plots comparing the empirical survival function and estimated survival function for
the LOLLG-W regression model are displayed in Figures 9(a) and 9(b). These plots indicate that the LOLLG-W regression model with
varying dispersion provides a better fit to the data set in Figure 9(b) compared to the homoscedastic regression model Figure in 9(a).Pdf_Folio:292
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Figure 8 (a) Estimated densities of the odd log-logistic geometric-Weibull (OLLG-W), odd log-logistic Weibull (OLL-W),
KumaraswamyWeibull (Kw-W) and Weibull models for the life expectancy data. (b) Estimated survival functions of the
OLLG-W, OLL-W, Kw-W andWeibull models and the empirical cdf for the life expectancy data.

Table 12 MLEs, SEs and p-values for the LOLLG-W regression model fitted to the life expectancy data.

Regression model with constant dispersion Regression model with varying dispersion

Parameter Estimate SE p-Value Parameter Estimate SE p-Value

𝜍 0.0738 0.0082 − 𝛼 0.5276 0.0729 −
𝛼 0.5194 0.0722 − p 0.00006 0.0063 −
p 0.0285 0.0075 − 𝛽10 3.8373 0.0141 < 0.0001
𝛽10 3.8337 0.0139 < 0.0001 𝛽11 −0.2883 0.0175 < 0.0001
𝛽11 −0.2887 0.0181 < 0.0001 𝛽12 0.0046 0.0182 0.8006
𝛽12 −0.0183 0.0168 0.2771 𝛽13 −0.0431 0.0237 0.0702
𝛽13 −0.0078 0.0167 0.6408 𝛽20 −2.6363 0.1201 < 0.0001

𝛽22 −0.2864 0.1337 0.0331
𝛽23 0.5276 0.1272 0.0197

Figure 9 Estimated survival considering the log-odd log-logistic geometric Weibull (LOLLG-W) regression model for the
life expectancy data. (a) Regression model with constant variance. (b) Regression model with varying dispersion.

8. CONCLUDING REMARKS

The odd log-logistic geometric-G (OLLG-G) family provides a rather general and flexible framework for statistical analysis of data. It unifies
some previously known distributions and yields a general overview of these distributions for theoretical studies. It also represents a ratherPdf_Folio:293
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flexible mechanism for fitting a wide spectrum of real world data sets. The OLLG-G family is motivated by the wide use of the odd LL
and geometric distributions in practice, and also for the fact that the generalization provides more flexibility to analyze skewed data. This
extension provides a continuous crossover toward cases with different shapes (e.g., a particular combination of skewness and kurtosis).
We derive an expansion for the density function as a linear combination of exp-G density functions. We obtain explicit expressions for
the moments and generating function. Also, based on the odd log-logistic geometric-Weibull (OLLG-W) distribution, we propose a very
suitable regression model with varying dispersion for modeling lifetime data, which allows us to jointly model the location and dispersion
parameters. The estimation of parameters is approached by the method of maximum likelihood. Applications of the OLLG-G family to real
data reveal that it could provide a better fit than other statistical models frequently used in lifetime data analysis.
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