
International Journal of Networked and Distributed Computing
Vol. 8(1); December (2019), pp. 1–8

DOI: https://doi.org/10.2991/ijndc.k.191115.001; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

Research Article

Performance Evaluation of Data Migration Policies for a
Distributed Storage System with Dynamic Tiering

Atsushi Nunome*, Hiroaki Hirata

Faculty of Information and Human Sciences, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan

1.  INTRODUCTION

Recent years, even client nodes can easily have enough storage
area owing to the spread of inexpensive storage devices. In many
cases, the large amount of an unused storage area is left on stor-
age devices over the network. It is important to utilize such frag-
mented unused storage area. Hence, we have for our object to build
an environment which not only file servers but also client nodes
can provide their surplus storage area as public storage. However,
such computing environment has essentially heterogeneity. The
heterogeneity of the system causes difficulty for properly allocat-
ing data blocks onto the storage devices. We consider that system
heterogeneity is brought by even a dynamic aspect. It means that
both a static aspect (e.g. differences of hardware configuration)
and a dynamic aspect (e.g. imbalance of I/O workload) make such
heterogeneity. This dynamic heterogeneity is not able to be solved
statically. Therefore, data blocks should be located on a suitable
storage device according to their access patterns at runtime. For
example, frequently accessed data blocks are better to locate on
high-performance storage, and it may cause no inconvenience
when rarely accessed data blocks are located on low-performance
storage. However, such location optimization in accordance with
access patterns of data blocks makes the burden too heavy for
system administrators.

We have proposed a distributed storage system which migrates a
data block autonomously to a suitable storage device [1]. In our
storage system, each storage node which provides public storage
area monitors other storage nodes and migrates a data block to
more proper storage node if necessary.

In our system, because data migration is performed over the net-
work, the cost of migration is unignorable. The inefficient migra-
tion should be avoided to the utmost in order to prevent to disturb
activity of the other network nodes or to consume extra processing
power for the migration. Our investigation clarifies that the migra-
tion effect is excessively limited because of avoiding overconcentra-
tion to a specific storage node. It might degrade I/O performance,
especially in a large system. In our previous work [2], we proposed
an improved method of data migration aims to enhance migration
efficiency in a large distributed storage system. However, our sub-
sequent investigations show that aggressive data migration pre-
vents performance improvement in certain cases. Accordingly, we
propose a further improved method to refrain from data migration
causes an excessive degradation of I/O performance.

The rest of this paper is organized as follows. First, we present
related work in Section 2. Section 3 describes a summary of the
autonomous distributed storage system which has been proposed
in our previous works. Section 4 provides details of revised migra-
tion policies to improve migration efficiency. In Section 5, we show
the results of experiments and the considerations. Finally, we con-
clude this paper in Section 6.

2.  RELATED WORK

Easy Tier [3] and Fully Automated Storage Tiering [4] are com-
mercial storage tiering systems implemented for storage server
products. They support up to three storage tiers which are stati-
cally classified by device technology. Btier [5] is a block device with
automatic migration for Linux kernel. In Btier, though the arbi-
trary numbers of storage tiers can be made, most systems use only
two tiers, such as an Solid State Drive (SSD) tier and an Hard Disk

A RT I C L E I N F O
Article History

Received 04 May 2019
Accepted 01 June 2019

Keywords

Distributed storage system
storage tiering
block relocation
performance evaluation

A B S T R AC T
We have proposed a distributed storage system which autonomously migrates data blocks into a suitable storage node by considering
their access frequency and read/write ratio. In this paper, we show that revised data migration policies can rapidly distribute input/
output (I/O) hot spot over the storage nodes and can improve I/O performance of the entire system. Our simulation results show
that the proposed method can reduce I/O execution time around 26% than the previous one at the maximum.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: nunome@kit.ac.jp

https://doi.org/10.2991/ijndc.k.191115.001
https://www.atlantis-press.com/journals/ijndc
http://creativecommons.org/licenses/by-nc/4.0/
mailto:nunome%40kit.ac.jp?subject=

2	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8

Drive (HDD) tier, to save administrators’ effort. In those practical
systems, they mainly focus that which data should be migrated to
which storage tier.

Hystor [6] and On-The-Fly Automated Storage Tiering [7] provide
automated data migration function. They perform data migration
between statically defined two storage tiers, SSD and HDD. Cost
Effective Storage [8] also proposed storage with dynamic tiering.
It focuses on configuring a system with the optimal number of
devices per storage tier to achieve performance goals at minimum
cost. Lipetz et al. [9] proposed an automated tiering using three
storage tiers, SSD, performance-oriented HDD, and inexpensive
HDD. They are designed for a stand-alone storage server, and data
migration is concluded only inside the server. In those systems,
because there is no need to consider the influence on the network
and the other network nodes, the impact of overhead for data
migration is less than a distributed storage system.

3. � AUTONOMOUS DISTRIBUTED
STORAGE SYSTEM

3.1.  Classification of Network Nodes

We assume that all the network nodes are under the control of one
administration group.

In our storage system, network nodes are classified as the following
two types, the storage node, and the client node. Figure 1 shows a
classification of network nodes in the assumed environment. We
refer the network node which has a public storage area as the stor-

age node, and the node which remotely mounts that storage area as
the client node. Some storage nodes which access to remote storage
also act as client nodes.

Each storage node periodically exchanges its current status by using
a small data structure named storage information [10]. Figure 2
shows the structure of storage information segment [11]. In Figure 2,
the third field represents the available storage space in megabytes.
The two throughput fields represent the effective throughput and
are expressed in megabytes per second. The storage information
has total of 16 bytes length.

We also showed a scheme to reduce network traffic for exchang-
ing the storage information in the Storage Area Network environ-
ment which is using the Internet Small Computer System Interface
(iSCSI) [12] protocol. Our observations [11] indicated that short
packets about 100 bytes length are frequently transmitted in the
iSCSI environment. It is because the iSCSI protocol is based on the
SCSI protocol designed for a non-packet environment. In other
words, there is a large gap between the data size using for iSCSI pro-
tocol and transmittable data size in the IP network. Accordingly,
we proposed a scheme that plural segments of the storage infor-
mation are appended to an Ethernet jumbo frame [13] including
iSCSI packet up to the size of the Maximum Transfer Unit. Our
previous investigations [10] show that sufficient capacity in such
an Ethernet frame can be used for transmitting the storage infor-
mation. Thus because of reducing the number of dedicated frames
for the propagation of the storage information, we can share the
status of storage nodes with low network overhead.

3.2.  Storage Tiering

To locate data blocks into the proper storage node, storage nodes
are first ranked according to their effective performance [14]. The
effective performance of a storage node is calculated by unifying its
reading and writing performance according to reading and writing
ratio of accessing by a client node and is also reflected the influence
of the performance drop caused by access concentration. Next,
the ranked storage nodes are stratified as storage tiers. The stor-
age nodes which have a near level of performance of the migration
source node are recognized as belonging in the same storage tier.

Figure 3 shows an example of ranking five storage nodes. In this
figure, initiator storage denotes the node which intends to initiate
a data block migration. In Figure 3a, the vertical and the horizon-
tal axes are writing and reading performance of the storage nodes,
respectively. The foot of a perpendicular from a plot of a storage
node to a line of ranking direction shows the unified performance
of the storage. In the case of the frequency of the reading and the
writing operation to a data block is identical, the slope of ranking
direction is set to 1. If you prefer to migrate a data block which has

Public
Storage
Device

Public
Storage
Device

Client
Node

Private
Storage Device

Storage
Node

Storage Node
(also acts as
Client Node)

Private
Storage
Device

Remote
Access

Network Switch

Figure 1 | A classification of network nodes.

Storage
ID

Time-
stamp

Available
Space

Throughput

4 bytes 4 bytes 4 bytes 4 bytes

recv send

16 bytes

Figure 2 | Structure of storage information segment.

	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8	 3

read intensive access pattern, the slope of ranking direction should
be set as lower than 1. The unified performance of a storage node
will be plotted on the straight line like Figure 3b, and it is used for
ranking the storage nodes.

After ranking the storage nodes, the migration source node makes
storage tiers. The migration source node regards the storage node
having the performance exceeding a threshold Th as belonging to the
upper storage tier. Similarly, the storage node having the performance
less than a threshold Tl is regarded as belonging to the lower storage
tier. The threshold values, Th and Tl, are led by using statically defined
tiering parameter p(0 ≤ p ≤ 1). The parameter p is set by a system
administrator to prevent ineffectual data migration to a nearly same
performance destination node considering migration overhead in the
target system. Th and Tl are defined by Equations (1) and (2).

	 T P ph = (1)+ 	 (1)

	 T P pl = (1)− 	 (2)

Here P is the unified performance value of the migration source
node.

The migration source node set the lowermost node in the upper
storage tier as the migration destination in order to moderate over-
concentration of the data migration to a few storage nodes.

When the amount of storage used is nearing its maximum capac-
ity of the storage node, it will initiate data migration to keep certain
free space. The uppermost node in the lower storage tier is set as the
migration destination in order to mitigate sudden performance drop.

4. � IMPROVEMENT OF MIGRATION
EFFICIENCY

As stated in the previous section, the data block migration is per-
formed in a conservative manner. This policy helps to prevent that
frequently accessed data blocks concentrate to a specific storage
node. However, it might defer a spreading speed of data blocks
to be migrated. For example, in the environment which has a
large number of storage nodes, there might be a lot of destination
candidate nodes in the upper or lower storage tier. When a migration

source node has an extremely frequently accessed data block, the
block should be migrated to as higher performance node as it can.
If the performance improvement by a data migration is limited by
the tiering parameter p, the performance gain expected by a migra-
tion might be insufficient. This may cause a series of data block
migration and increase network traffic.

We revise a part of migration strategy to enhance an effect of the
data block migration. Figure 4 shows three policies for migrating a
data block to the upper storage tier.

4.1.  Policy (1): Original Migration Policy

Policy (1) is the original one presented by our previous work [14].
The lowermost storage node in the upper storage tier or the top-
most storage node in the lower storage tier will be selected as the
destination by this policy. A destination of data migration will be
able to be highly dispersed in this policy. However, when a storage
node migrates a data block to the upper storage node, the estimated
performance gain is limited by the threshold Th. Especially, when
there is a number of storage nodes in the upper tier, it may lose an
opportunity of much improvement in performance.

4.2. � Policy (2): Most Aggressive
Migration Policy

Policy (2) is the most aggressive data migration. If a storage node
migrates a data block to the upper storage tier, the migration source
node chooses the top storage node in the upper storage tier as the
destination. In data migration to the upper storage tier, although
the estimated improvement of performance reaches the maximum,
the I/O workload may be concentrated on the specific storage

Uni�ed
Performance

Migration source node

Upper storage tier

Bottom of the upper
storage tier(Policy (1))

Top of the upper storage
tier (Policy (2))

Middle of the upper
storage tier (Policy (3))

Lower storage tier

Figure 4 | Three migration policies to the upper storage tier.

Write
Performance

Read Performance

Ranking Direction
Uni�ed

Performance
Storage A

Storage B

Storage CStorage D

Initiator Storage

Initiator Storage

Storage A

Storage B

Storage C

Storage D

Figure 3 | An example of ranking storage nodes. (a) Storage property in
read and write performance. (b) Storage rank in linear scale.

(a) (b)

4	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8

Uni�ed
Performance

Migration source node

Upper storage tier

Top of the lower
storage tier
(like Policy (1))

Middle of the
upper storage tier
(like Policy (3))

Lower storage tier

Figure 5 | Migration destination by policy (4).

node. If a storage node migrates a data block to the lower storage
tier, the migration source node chooses the bottom storage node
in the lower storage tier as the destination. Though performance
degradation will be significant, this migration expects to minimize
an impact for priority I/O requests issued from another client node.

4.3. � Policy (3): Moderate Aggressive
Migration Policy

Policy (3) is a moderate one. The migration source node chooses
the middle storage node in the upper or lower storage tier as the
destination. In data migration to the upper storage tier, this policy
expects to obtain a higher performance gain by one migration
than the Policy (1) though the gain will not reach the gain by the
Policy (2). Moreover, in data migration to the lower storage tier,
the migrated data block might disturb priority I/O requests at the
destination node. The Policy (2) and (3) hereinafter are referred to
as enhanced migration policies.

In the Policy (1), as stated as Equations (1) and (2), the threshold
values Th and Tl are defined as the relative from the performance
of the migration source node. If the absolute performance value of
the migration source node is low, both of the two threshold values
become nearly equal to the performance of the source node. Therefore,
the effect of performance improvement by data block migration may
be limitative. When the unified performance value of the migration
source node is situated at low, the performance improvement using
the enhanced migration policies is expected to be large.

4.4.  Policy (4): Combined Migration Policy

Policy (4) is a mixture of the Policy (1) and the Policy (3). It is aimed
to restrain a sudden performance drop at the time of migrating data
to the lower storage tier. A data block might have been placed into
a high-performance storage node due to a previous migration for
improving I/O performance. In this policy, the aggressiveness for
migration to the lower storage tier differs from migration to the
upper storage tier. A migration to the lower storage tier will be per-
formed more modestly than a migration to the upper storage tier.
This aims to prevent excessive-performance drop accompanying
making storage space.

Figure 5 shows an example of the destination candidates for data
migration by the Policy (4). Data migration to the upper storage
tier is executed the same as the Policy (3), but a migration to the
lower tier follows the manner of the Policy (1) in order to slacken
the performance degradation. The Policy (4) hereinafter is referred
to as combined migration policy.

The combined migration policy will mitigate performance drop
caused by the enhanced migration policies at a time of data migra-
tion to the lower storage tier.

4.5. � Procedure to Choose a Migration
Destination

The followings are the procedure details to choose a migration des-
tination node. First, the migration source node sorts all the other

storage nodes in descending order by the unified performance.
Next, the migration source node picks an appropriate storage node
as the destination from the upper or lower storage tier. In the case of
data migration to the upper storage tier by the Policy (3), if the top n
storage nodes have superior performance than the migration source
node, the (n/2)th node will be chosen as the destination node.

5.  EVALUATION

5.1.  Simulation Environment

We evaluated the execution times of the four policies described in
the previous section.

The evaluations were made on a simulator coded in C language. The
static parameters used for the simulation are shown in Table 1. The
number of storage nodes is set smaller than the number of client
nodes to make a concentration of I/O operations.

Because previous work [14] shows that relative better performance
is obtained in the tiering parameter p = 0.2 or 0.3, we defined the
parameter p as a range of 0.1–0.4.

The parameter Nio is the total number of I/O operations per a client
node. Each client node performs I/O operations in accordance with
statically defined read/write ratio.

The parameter Ln is latency for switching a packet on an Ethernet
switch. It was measured on Corega CG-SSW08GTR network switch
which has wire-speed forwarding capability. In this evaluation, we

	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8	 5

use an ideal configuration that network latency among all nodes
is uniform in order to focus upon observing the behavior of the
proposed method.

Two timing parameters, Td and Tm, have been defined by the results of
preparatory experiments same as the previous work [14]. The destina-
tion selection time Td is constant regardless of the number of storage
nodes because each node manages other nodes by using an array struc-
ture and picks a destination directly from the array. The parameter Tm
is the time of merging the storage information to an iSCSI packet.

The parameter Tw is used for a threshold to decide whether to
initiate data block migration to the upper storage tier. When the
estimated waiting time which is calculated with the waiting queue
length and averaged read/write latency exceeds Tw, the migration to
the upper storage tier will be initiated.

The parameter Sf is used for a threshold to decide whether to initiate
data block migration to the lower storage tier. When the size of free
storage space is below Sf of the total storage space, the migration to
the lower storage tier will be initiated. This threshold is the same as
the value used for our previous simulation [14]. We decided that
the definition of Sf is reasonable from the result of large investi-
gation in the real environment reported by Douceur and Bolosky
[15]. It reported that the mean space usage of 10,568 file systems of
4801 Windows PC in a commercial environment is only 53%.

Table 2 shows six types of typical storage devices used for the sim-
ulation. In this table, three device type each of HDD and SSD are
listed from consumer- to enterprise-grade products. These devices
are chosen from various type of HDD and SSD to emphasize system
heterogeneity.

We prepared storage templates from the device type listed in Table 2.
The configurations of the storage templates are shown in Table 3.
The latency values are calculated with performance information

collected from their data sheet published by the manufacturer. The
initial capacity shows the size of public storage shared for client nodes.
We also configured another storage template from each device type by
adding 10% variations to the parameters. In such manners, 12 storage
templates are made from six device type. The storage nodes are instan-
tiated evenly from the storage templates. For example, in the case of
the total number of storage nodes is 60, five instances per a storage
template are created.

Table 4 shows parameter configurations of nine types of templates
for the client node. Each client template is set to issue an I/O request
at intervals of 2, 4, and 8 µs. Reading and writing ratio of the I/O
requests from each client template is shown in the I/O ratio column
in Table 4. In this simulation, the frequency of reading and writing
is set to nearly equal. In a similar manner as the storage node, the
client nodes are created from these templates.

The unit size of data migration is set as ten megabytes. The latency
time of one data migration is set as 200 ms. It is the average time
measured in the 1000BASE-T network.

Initially, all the client nodes access data blocks located on one of the
storage nodes created from the storage template S1.

5.2.  Results and Considerations

We measured the average execution time Ta to complete Nio times I/O
requests by each client node. It is calculated by using Equation (3).

	 T
N

ta
c i

Nc

i= 1
=1
å 	 (3)

Table 1 | Simulation parameters

Nc Total number of client nodes 135, 180, 225
Ns Total number of storage nodes 60, 120, 180
p Tiering parameter 0.1, 0.2, 0.3, 0.4
Nio Number of I/Os per a client node 20,000
Ln Network latency 4 (µs)
Td Destination selection time 4 (µs)
Tm Merging time 0.4 (µs)
Tw Upper limit of waiting time 200 (µs)
Sf Lower limit of unused storage ratio 30%

Table 2 | Assumed storage devices

Device type Major specifications Vendor and model name

D1 SATA2 Seagate
7200 rpm HDD ST3400620NS

D2 SATA3 Seagate
7200 rpm HDD ST6000NM0235

D3 SAS3 Seagate
15,000 rpm HDD ST900MP0146

D4 PCIe 3.0 × 4 Intel
MLC SSD SSD 750

D5 SATA3 Intel
TLC SSD SSD D3-S4610

D6 SATA2 Intel
MLC SSD X25-M

Table 3 | Configurations of storage templates

Storage
templates

Device
type

Read latency
(µs)

Write latency
(µs)

Initial capacity
(MB)

S1 D1 110 110 2000
S2 D1 121 121 2200
S3 D2 36 36 4000
S4 D2 39 39 4400
S5 D3 25 25 2000
S6 D3 27 27 2200
S7 D4 3 4 500
S8 D4 4 5 550
S9 D5 11 20 1000
S10 D5 12 22 1100
S11 D6 29 116 2000
S12 D6 32 127 2200

Table 4 | Configurations of client templates

Client templates I/O interval (µs) I/O ratio (R:W)

C1 2 55:45
C2 4 55:45
C3 8 55:45
C4 2 50:50
C5 4 50:50
C6 8 50:50
C7 2 45:55
C8 4 45:55
C9 8 45:55

6	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8

Here ti denotes the time to complete all I/O requests on the ith
client node. Next, we define Ta,n as the average execution time mea-
sured using the migration policy n [i.e. Policy (n)].

Figures 6–8 show results of the simulation. Each result is labeled as
the concatenation of the number of client nodes and the migration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4

E
xe

cu
tio

n
Ti

m
e

R
at

io

Tiering Parameter p

C135P2
C135P3
C180P2
C180P3
C225P2
C225P3

Figure 6 | Execution time ratio of the Policy (2) and (3) to the Policy (1)
(Ns = 60).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4

E
xe

cu
tio

n
Ti

m
e

R
at

io

Tiering Parameter p

C135P2
C135P3
C180P2
C180P3
C225P2
C225P3

Figure 7 | Execution time ratio of the Policy (2) and (3) to the Policy (1)
(Ns = 120).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4

E
xe

cu
tio

n
Ti

m
e

R
at

io

Tiering Parameter p

C135P2
C135P3
C180P2
C180P3
C225P2
C225P3

Figure 8 | Execution time ratio of the Policy (2) and (3) to the Policy (1)
(Ns = 180).

policy. For example, the result labeled ‘‘C180P2’’ denotes the result
which is measured under the condition of 180 client nodes and the
Policy (2) migration policy.

In these figures, the execution time ratio Rn,1 for the Policy (n) is
calculated by using Equation (4).

	 R
T
Tn

a n

a
,1

,

,1

= 	 (4)

Here Ta,n and Ta,1 denote the average execution time Ta under the
Policy (n) and the Policy (1) respectively.

5.2.1. � Performance Comparison between
Original Migration Policy and
Enhanced Migration Policies

As seen in Figure 6, the Policy (3) reduces the execution time from
the Policy (1) in all conditions. Especially, in the condition p = 0.1,
the Policy (3) reduces around 20% execution time. In this condition,
because the tiering parameter p is relatively small, advantages of
data migration to the upper storage tier by the Policy (1) is limited.
In contrast to the Policy (1), in the Policy (3), a migration source
node can migrate data blocks beyond the cap of performance gain
defined by the parameter p. Hence, the Policy (3) contributes to
improve the system I/O performance even if the parameter p is set
lower than the best value.

On the other hand, the Policy (2) shows smaller improvements
than the Policy (3). Particularly, the result under the condition
combined Nc = 135 and p = 0.4 shows 7.3% worse than the Policy
(1). In the condition of larger p, an opportunity of data migration
is fewer than the condition of smaller p because of a small number
of candidates of migration destination. Addition to such a limited
number of data migration, a concentration of migration to a spe-
cific storage node had a more harmful effect upon the execution
time rather than a good effect taken from an effectual migration in
the Policy (2).

In Figure 7, the execution time by the Policy (2) in the condition of
Nc = 135 are longer than the Policy (1). In the Policy (2), because a
lot of storage nodes migrate data to the top node of the upper storage
tier, a bad influence by the I/O concentration becomes unignorable
when the number of storage nodes in the system is large. Figure 7
shows that the effect of performance improvement by aggressive
data migration is insufficient to the performance decline caused by
a concentration of the destination of data migration. Nevertheless,
the Policy (3) achieves 23% performance gain at maximum because
the performance improvement by the migration and the preven-
tion of I/O concentration are designed to be compatible.

Figure 8 shows that the performance improvements by the
enhanced migration policies are overall declined. Especially, in the
condition of p = 0.4, the reduction of the execution time is <5%
even the Policy (3). When there are a sufficient number of storage
nodes in the system, enlargement of the parameter p, like p = 0.4,
helps speeding up distributing I/O workloads because the perfor-
mance gain by one migration becomes large even in the Policy (1).
Hence, the performance difference between the Policy (1) and the
Policy (3) becomes small in such conditions.

	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8	 7

In Figures 7 and 8, some of the execution time ratios exceed one
in the Policy (2). Because there is relatively little demand for data
migration from a small number of client nodes, the problem of
concentrate data blocks onto a specific storage node may have been
marked more than the performance gain obtained by a few migra-
tions. On the other hand, the execution time ratio of the Policy
(3) almost below the ratio one. This shows that the Policy (3) can
achieve consistent performance improvement in most cases not
only in a large system.

5.2.2. � Performance Comparison between
Enhanced Migration Policies

In all cases, the execution time using the Policy (3) is shorter than
the execution time using the Policy (2). The maximum reduc-
tion ratio of the execution time reached 26% in the conditions of
Nc =180, Ns = 120, and p = 0.3 combination. Because the perfor-
mance improvement by the Policy (3) is always superior than the
Policy (2), we can use only the Policy (3) as the enhancement over
the original migration policy.

5.2.3. � Performance Improvement by
Combined Migration Policy

We also evaluated the effectiveness of the combined migration
policy. In this section, we compare the execution time in the Policy
(3) and the Policy (4) by using Equation (5).

	 R
T
T

a

a
4,3

,4

,3

= 	 (5)

Table 5 shows the execution time ratio R4,3 calculated by Equation (5).
In Table 5, the first column lists the number of client nodes, and the
second column represents the number of storage nodes.

In the condition of Nc = 135, we cannot find a difference between
the execution time in the two policies. The maximum reduction
ratio of the execution time is 2.5% and observed in the conditions
of Nc = 225, Ns = 60, and p = 0.1 combination. These conditions
represent the environment of that many client nodes access the
small number of storage nodes. And also, because the parameter p
is set at small, frequently accessed data blocks spread into the upper
storage tier slowly. In such a situation, a storage node which has

become few storage capacities begins data migration to the lower
storage tier. The combined migration policy can restrain I/O per-
formance drop for accessing the migrated data blocks.

6.  CONCLUSION

In this paper, we proposed two enhanced migration policies and
one combined migration policy as an improvement of data migra-
tion in a distributed storage system with dynamic tiering function.
We also evaluated the effect of these policies by simulation.

The policy which aims to maximize the migration efficiency
degraded system I/O performance under a certain combination of
conditions. We confirmed that the migration policy which balances
an avoidance of data concentration and improvement of migra-
tion efficiency almost consistently improved the performance.
Moreover, combining two migration policies can achieve further
improvement in I/O performance when many migrations to the
lower storage tier occur.

As future work, we will develop a scheme which can be applied for
an actual network which has not uniform network latency, such
as a network with cascaded switches. We will also build an experi-
mental system for more detailed evaluation.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number
JP18K11214.

REFERENCES

  [1]	 A. Nunome, H. Hirata, K. Shibayama, A distributed stor-
age system with dynamic tiering for iSCSI environment, Int. J.
Networked and Distrib. Comput. 3 (2015), 42–50.

  [2]	 A. Nunome, H. Hirata, An improvement of migration efficiency in a
distributed storage system with dynamic tiering, Proceedings of the
20th International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD), ACIS and IEEE, Toyama, Japan, 2019, pp. 455–460.

  [3]	 B. Dufrasne, B.A. Barbosa, P. Cronauer, D. Demarchi, H.P.
Drumm, R. Eliahu, et al., IBM System Storage DS8000 Easy
Tier, IBM Corporation, Armonk, New York, USA, 2013.
Available from: ibm.com/redbooks.

  [4]	 EMC, VNX FAST VP A detailed review, Dell EMC, Round Rock,
Texas, USA, 2013. Available from: http://www.emc.com/collateral/
software/white-papers/h8058-fast-vp-unified-storage-wp.pdf.

  [5]	 M. Ruijter, btier project, Available from: http://sourceforge.net/
projects/tier/.

  [6]	 F. Chen, D.A. Koufaty, X. Zhang, Hystor: making the best
use of solid state drives in high performance storage systems,
Proceedings of the International Conference on Supercomputing
(ICS), ACM Press, Tucson, Arizona, USA, 2011, pp. 22–32.

Table 5 | Execution time ratio of Policy (4) to Policy (3)

Nc Ns

Tiering parameter p

0.1 0.2 0.3 0.4

60 1.000 1.000 1.000 1.000
135 120 1.000 1.000 1.000 1.000

180 1.000 1.000 1.000 1.000
60 0.999 1.000 1.000 0.998

180 120 0.995 0.998 0.998 0.998
180 0.996 0.998 0.998 0.998

60 0.975 0.996 0.996 0.997
225 120 0.997 0.999 0.997 0.997

180 0.998 0.998 0.997 0.998

https://doi.org/10.2991/ijndc.2015.3.1.5
https://doi.org/10.2991/ijndc.2015.3.1.5
https://doi.org/10.2991/ijndc.2015.3.1.5
https://doi.org/10.1145/1995896.1995902
https://doi.org/10.1145/1995896.1995902
https://doi.org/10.1145/1995896.1995902
https://doi.org/10.1145/1995896.1995902

8	 A. Nunome and H. Hirata / International Journal of Networked and Distributed Computing 8(1) 1–8

  [7]	 K. Oe, T. Nanri, K. Okamura, On-the-fly automated storage tiering
with caching and both proactive and observational migration, 2015
Third International Symposium on Computing and Networking
(CANDAR), IEEE, Sapporo, Japan, 2015, pp. 371–377.

  [8]	 J. Guerra, H. Pucha, J. Glider, W. Belluomini, R. Rangaswami, Cost
effective storage using extent based dynamic tiering, Proceedings
of the Ninth USENIX conference on File and stroage technologies
(FAST), USENIX, San Jose, California, 2011, pp. 273–286.

  [9]	 G. Lipetz, E. Hazan, A. Natanzon, E. Bachmat, Automated tier-
ing in a QoS environment using coarse data, 2013 IEEE 10th
International Conference on High Performance Computing
and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing, IEEE, Zhangjiajie,
China, 2013, pp. 1022–1030.

[10]	 S. Shimano, A. Nunome, H. Hirata, K. Shibayama, An informa-
tion propagation scheme for an autonomous distributed storage
system in iSCSI environment, 2015 3rd International Conference on
Applied Computing and Information Technology/2nd International
Conference on Computational Science and Intelligence (ACIT),
IEEE, Okayama, Japan, 2015, pp. 142–147.

[11]	 A. Nunome, H. Hirata, K. Shibayama, An interval control
method for status propagation in an autonomous distrib-
uted storage system, 2016 15th International Conference on
Computer and Information Science (ICIS), IEEE, Okayama,
Japan, 2016, pp. 1–6.

[12]	 M. Chadalapaka, J. Satran, K. Meth, D. Black, Internet Small
Computer System Interface (iSCSI) Protocol (Consolidated),
2014, RFC 7143, Internet Engineering Task Force (IETF),
Available from: https://tools.ietf.org/pdf/rfc7143.pdf.

[13]	 Ethernet Jumbo Frames version 0.1, Ethernet Alliance, Beaverton,
Oregon, USA, 2009. Available from: http://www.ethernetalliance.
org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-
v0-1.pdf.

[14]	 S. Shimano, A. Nunome, Y. Yokoi, K. Shibayama, H. Hirata, A
dynamic configuration scheme of storage tiers for an autono-
mous distributed storage system, Inf. Eng. Exp. 3 (2017), 91–104.

[15]	 J.R. Douceur, W.J. Bolosky, A large-scale study of file-system con-
tents, Proceedings of the 1999 ACM SIGMETRICS International
Conference on Measurement and modeling of computer systems,
ACM Press, Atlanta, Georgia, USA, 1999, pp. 59–70.

https://doi.org/10.1109/CANDAR.2015.42
https://doi.org/10.1109/CANDAR.2015.42
https://doi.org/10.1109/CANDAR.2015.42
https://doi.org/10.1109/CANDAR.2015.42
https://doi.org/10.1109/HPCC.and.EUC.2013.145
https://doi.org/10.1109/HPCC.and.EUC.2013.145
https://doi.org/10.1109/HPCC.and.EUC.2013.145
https://doi.org/10.1109/HPCC.and.EUC.2013.145
https://doi.org/10.1109/HPCC.and.EUC.2013.145
https://doi.org/10.1109/HPCC.and.EUC.2013.145
https://doi.org/10.1109/ACIT-CSI.2015.36
https://doi.org/10.1109/ACIT-CSI.2015.36
https://doi.org/10.1109/ACIT-CSI.2015.36
https://doi.org/10.1109/ACIT-CSI.2015.36
https://doi.org/10.1109/ACIT-CSI.2015.36
https://doi.org/10.1109/ACIT-CSI.2015.36
https://doi.org/10.1109/ICIS.2016.7550844
https://doi.org/10.1109/ICIS.2016.7550844
https://doi.org/10.1109/ICIS.2016.7550844
https://doi.org/10.1109/ICIS.2016.7550844
https://doi.org/10.1109/ICIS.2016.7550844
https://doi.org/10.1145/301464.301480
https://doi.org/10.1145/301464.301480
https://doi.org/10.1145/301464.301480
https://doi.org/10.1145/301464.301480

