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1.  INTRODUCTION

Recent years, even client nodes can easily have enough storage 
area owing to the spread of inexpensive storage devices. In many 
cases, the large amount of an unused storage area is left on stor-
age devices over the network. It is important to utilize such frag-
mented unused storage area. Hence, we have for our object to build 
an environment which not only file servers but also client nodes 
can provide their surplus storage area as public storage. However, 
such computing environment has essentially heterogeneity. The 
heterogeneity of the system causes difficulty for properly allocat-
ing data blocks onto the storage devices. We consider that system 
heterogeneity is brought by even a dynamic aspect. It means that 
both a static aspect (e.g. differences of hardware configuration) 
and a dynamic aspect (e.g. imbalance of I/O workload) make such 
heterogeneity. This dynamic heterogeneity is not able to be solved 
statically. Therefore, data blocks should be located on a suitable 
storage device according to their access patterns at runtime. For 
example, frequently accessed data blocks are better to locate on 
high-performance storage, and it may cause no inconvenience 
when rarely accessed data blocks are located on low-performance 
storage. However, such location optimization in accordance with 
access patterns of data blocks makes the burden too heavy for 
system administrators.

We have proposed a distributed storage system which migrates a 
data block autonomously to a suitable storage device [1]. In our 
storage system, each storage node which provides public storage 
area monitors other storage nodes and migrates a data block to 
more proper storage node if necessary.

In our system, because data migration is performed over the net-
work, the cost of migration is unignorable. The inefficient migra-
tion should be avoided to the utmost in order to prevent to disturb 
activity of the other network nodes or to consume extra processing 
power for the migration. Our investigation clarifies that the migra-
tion effect is excessively limited because of avoiding overconcentra-
tion to a specific storage node. It might degrade I/O performance, 
especially in a large system. In our previous work [2], we proposed 
an improved method of data migration aims to enhance migration 
efficiency in a large distributed storage system. However, our sub-
sequent investigations show that aggressive data migration pre-
vents performance improvement in certain cases. Accordingly, we 
propose a further improved method to refrain from data migration 
causes an excessive degradation of I/O performance.

The rest of this paper is organized as follows. First, we present 
related work in Section 2. Section 3 describes a summary of the 
autonomous distributed storage system which has been proposed 
in our previous works. Section 4 provides details of revised migra-
tion policies to improve migration efficiency. In Section 5, we show 
the results of experiments and the considerations. Finally, we con-
clude this paper in Section 6.

2.  RELATED WORK

Easy Tier [3] and Fully Automated Storage Tiering [4] are com-
mercial storage tiering systems implemented for storage server 
products. They support up to three storage tiers which are stati-
cally classified by device technology. Btier [5] is a block device with 
automatic migration for Linux kernel. In Btier, though the arbi-
trary numbers of storage tiers can be made, most systems use only 
two tiers, such as an Solid State Drive (SSD) tier and an Hard Disk 
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Drive (HDD) tier, to save administrators’ effort. In those practical 
systems, they mainly focus that which data should be migrated to 
which storage tier.

Hystor [6] and On-The-Fly Automated Storage Tiering [7] provide 
automated data migration function. They perform data migration 
between statically defined two storage tiers, SSD and HDD. Cost 
Effective Storage [8] also proposed storage with dynamic tiering. 
It focuses on configuring a system with the optimal number of 
devices per storage tier to achieve performance goals at minimum 
cost. Lipetz et al. [9] proposed an automated tiering using three 
storage tiers, SSD, performance-oriented HDD, and inexpensive 
HDD. They are designed for a stand-alone storage server, and data 
migration is concluded only inside the server. In those systems, 
because there is no need to consider the influence on the network 
and the other network nodes, the impact of overhead for data 
migration is less than a distributed storage system.

3. � AUTONOMOUS DISTRIBUTED  
STORAGE SYSTEM

3.1.  Classification of Network Nodes

We assume that all the network nodes are under the control of one 
administration group.

In our storage system, network nodes are classified as the following 
two types, the storage node, and the client node. Figure 1 shows a 
classification of network nodes in the assumed environment. We 
refer the network node which has a public storage area as the stor-

age node, and the node which remotely mounts that storage area as 
the client node. Some storage nodes which access to remote storage 
also act as client nodes.

Each storage node periodically exchanges its current status by using 
a small data structure named storage information [10]. Figure 2 
shows the structure of storage information segment [11]. In Figure 2,  
the third field represents the available storage space in megabytes. 
The two throughput fields represent the effective throughput and 
are expressed in megabytes per second. The storage information 
has total of 16 bytes length.

We also showed a scheme to reduce network traffic for exchang-
ing the storage information in the Storage Area Network environ-
ment which is using the Internet Small Computer System Interface 
(iSCSI) [12] protocol. Our observations [11] indicated that short 
packets about 100 bytes length are frequently transmitted in the 
iSCSI environment. It is because the iSCSI protocol is based on the 
SCSI protocol designed for a non-packet environment. In other 
words, there is a large gap between the data size using for iSCSI pro-
tocol and transmittable data size in the IP network. Accordingly, 
we proposed a scheme that plural segments of the storage infor-
mation are appended to an Ethernet jumbo frame [13] including 
iSCSI packet up to the size of the Maximum Transfer Unit. Our 
previous investigations [10] show that sufficient capacity in such 
an Ethernet frame can be used for transmitting the storage infor-
mation. Thus because of reducing the number of dedicated frames 
for the propagation of the storage information, we can share the 
status of storage nodes with low network overhead.

3.2.  Storage Tiering

To locate data blocks into the proper storage node, storage nodes 
are first ranked according to their effective performance [14]. The 
effective performance of a storage node is calculated by unifying its 
reading and writing performance according to reading and writing 
ratio of accessing by a client node and is also reflected the influence 
of the performance drop caused by access concentration. Next, 
the ranked storage nodes are stratified as storage tiers. The stor-
age nodes which have a near level of performance of the migration 
source node are recognized as belonging in the same storage tier.

Figure 3 shows an example of ranking five storage nodes. In this 
figure, initiator storage denotes the node which intends to initiate 
a data block migration. In Figure 3a, the vertical and the horizon-
tal axes are writing and reading performance of the storage nodes, 
respectively. The foot of a perpendicular from a plot of a storage 
node to a line of ranking direction shows the unified performance 
of the storage. In the case of the frequency of the reading and the 
writing operation to a data block is identical, the slope of ranking 
direction is set to 1. If you prefer to migrate a data block which has 
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read intensive access pattern, the slope of ranking direction should 
be set as lower than 1. The unified performance of a storage node 
will be plotted on the straight line like Figure 3b, and it is used for 
ranking the storage nodes.

After ranking the storage nodes, the migration source node makes 
storage tiers. The migration source node regards the storage node 
having the performance exceeding a threshold Th as belonging to the 
upper storage tier. Similarly, the storage node having the performance 
less than a threshold Tl is regarded as belonging to the lower storage 
tier. The threshold values, Th and Tl, are led by using statically defined 
tiering parameter p(0 ≤ p ≤ 1). The parameter p is set by a system 
administrator to prevent ineffectual data migration to a nearly same 
performance destination node considering migration overhead in the 
target system. Th and Tl are defined by Equations (1) and (2).

	 T P ph = (1 )+ 	 (1)

	 T P pl = (1 )− 	 (2)

Here P is the unified performance value of the migration source 
node.

The migration source node set the lowermost node in the upper 
storage tier as the migration destination in order to moderate over-
concentration of the data migration to a few storage nodes.

When the amount of storage used is nearing its maximum capac-
ity of the storage node, it will initiate data migration to keep certain 
free space. The uppermost node in the lower storage tier is set as the 
migration destination in order to mitigate sudden performance drop.

4. � IMPROVEMENT OF MIGRATION  
EFFICIENCY

As stated in the previous section, the data block migration is per-
formed in a conservative manner. This policy helps to prevent that 
frequently accessed data blocks concentrate to a specific storage 
node. However, it might defer a spreading speed of data blocks 
to be migrated. For example, in the environment which has a 
large number of storage nodes, there might be a lot of destination  
candidate nodes in the upper or lower storage tier. When a migration  

source node has an extremely frequently accessed data block, the 
block should be migrated to as higher performance node as it can. 
If the performance improvement by a data migration is limited by 
the tiering parameter p, the performance gain expected by a migra-
tion might be insufficient. This may cause a series of data block 
migration and increase network traffic.

We revise a part of migration strategy to enhance an effect of the 
data block migration. Figure 4 shows three policies for migrating a 
data block to the upper storage tier.

4.1.  Policy (1): Original Migration Policy

Policy (1) is the original one presented by our previous work [14]. 
The lowermost storage node in the upper storage tier or the top-
most storage node in the lower storage tier will be selected as the 
destination by this policy. A destination of data migration will be 
able to be highly dispersed in this policy. However, when a storage 
node migrates a data block to the upper storage node, the estimated 
performance gain is limited by the threshold Th. Especially, when 
there is a number of storage nodes in the upper tier, it may lose an 
opportunity of much improvement in performance.

4.2. � Policy (2): Most Aggressive  
Migration Policy

Policy (2) is the most aggressive data migration. If a storage node 
migrates a data block to the upper storage tier, the migration source 
node chooses the top storage node in the upper storage tier as the 
destination. In data migration to the upper storage tier, although 
the estimated improvement of performance reaches the maximum, 
the I/O workload may be concentrated on the specific storage 
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Figure 5 | Migration destination by policy (4).

node. If a storage node migrates a data block to the lower storage 
tier, the migration source node chooses the bottom storage node 
in the lower storage tier as the destination. Though performance 
degradation will be significant, this migration expects to minimize 
an impact for priority I/O requests issued from another client node.

4.3. � Policy (3): Moderate Aggressive  
Migration Policy

Policy (3) is a moderate one. The migration source node chooses 
the middle storage node in the upper or lower storage tier as the 
destination. In data migration to the upper storage tier, this policy 
expects to obtain a higher performance gain by one migration 
than the Policy (1) though the gain will not reach the gain by the 
Policy (2). Moreover, in data migration to the lower storage tier, 
the migrated data block might disturb priority I/O requests at the 
destination node. The Policy (2) and (3) hereinafter are referred to 
as enhanced migration policies.

In the Policy (1), as stated as Equations (1) and (2), the threshold 
values Th and Tl are defined as the relative from the performance 
of the migration source node. If the absolute performance value of 
the migration source node is low, both of the two threshold values  
become nearly equal to the performance of the source node. Therefore, 
the effect of performance improvement by data block migration may 
be limitative. When the unified performance value of the migration 
source node is situated at low, the performance improvement using 
the enhanced migration policies is expected to be large.

4.4.  Policy (4): Combined Migration Policy

Policy (4) is a mixture of the Policy (1) and the Policy (3). It is aimed 
to restrain a sudden performance drop at the time of migrating data 
to the lower storage tier. A data block might have been placed into 
a high-performance storage node due to a previous migration for 
improving I/O performance. In this policy, the aggressiveness for 
migration to the lower storage tier differs from migration to the 
upper storage tier. A migration to the lower storage tier will be per-
formed more modestly than a migration to the upper storage tier. 
This aims to prevent excessive-performance drop accompanying 
making storage space.

Figure 5 shows an example of the destination candidates for data 
migration by the Policy (4). Data migration to the upper storage 
tier is executed the same as the Policy (3), but a migration to the 
lower tier follows the manner of the Policy (1) in order to slacken 
the performance degradation. The Policy (4) hereinafter is referred 
to as combined migration policy.

The combined migration policy will mitigate performance drop 
caused by the enhanced migration policies at a time of data migra-
tion to the lower storage tier.

4.5. � Procedure to Choose a Migration  
Destination

The followings are the procedure details to choose a migration des-
tination node. First, the migration source node sorts all the other 

storage nodes in descending order by the unified performance. 
Next, the migration source node picks an appropriate storage node 
as the destination from the upper or lower storage tier. In the case of 
data migration to the upper storage tier by the Policy (3), if the top n 
storage nodes have superior performance than the migration source 
node, the (n/2)th node will be chosen as the destination node.

5.  EVALUATION

5.1.  Simulation Environment

We evaluated the execution times of the four policies described in 
the previous section.

The evaluations were made on a simulator coded in C language. The  
static parameters used for the simulation are shown in Table 1. The 
number of storage nodes is set smaller than the number of client 
nodes to make a concentration of I/O operations.

Because previous work [14] shows that relative better performance 
is obtained in the tiering parameter p = 0.2 or 0.3, we defined the 
parameter p as a range of 0.1–0.4.

The parameter Nio is the total number of I/O operations per a client 
node. Each client node performs I/O operations in accordance with 
statically defined read/write ratio.

The parameter Ln is latency for switching a packet on an Ethernet 
switch. It was measured on Corega CG-SSW08GTR network switch 
which has wire-speed forwarding capability. In this evaluation, we 
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use an ideal configuration that network latency among all nodes 
is uniform in order to focus upon observing the behavior of the 
proposed method.

Two timing parameters, Td and Tm, have been defined by the results of 
preparatory experiments same as the previous work [14]. The destina-
tion selection time Td is constant regardless of the number of storage 
nodes because each node manages other nodes by using an array struc-
ture and picks a destination directly from the array. The parameter Tm 
is the time of merging the storage information to an iSCSI packet.

The parameter Tw is used for a threshold to decide whether to 
initiate data block migration to the upper storage tier. When the 
estimated waiting time which is calculated with the waiting queue 
length and averaged read/write latency exceeds Tw, the migration to 
the upper storage tier will be initiated.

The parameter Sf is used for a threshold to decide whether to initiate 
data block migration to the lower storage tier. When the size of free 
storage space is below Sf of the total storage space, the migration to 
the lower storage tier will be initiated. This threshold is the same as 
the value used for our previous simulation [14]. We decided that 
the definition of Sf is reasonable from the result of large investi-
gation in the real environment reported by Douceur and Bolosky 
[15]. It reported that the mean space usage of 10,568 file systems of 
4801 Windows PC in a commercial environment is only 53%.

Table 2 shows six types of typical storage devices used for the sim-
ulation. In this table, three device type each of HDD and SSD are 
listed from consumer- to enterprise-grade products. These devices 
are chosen from various type of HDD and SSD to emphasize system 
heterogeneity.

We prepared storage templates from the device type listed in Table 2.  
The configurations of the storage templates are shown in Table 3.  
The latency values are calculated with performance information 

collected from their data sheet published by the manufacturer. The 
initial capacity shows the size of public storage shared for client nodes. 
We also configured another storage template from each device type by 
adding 10% variations to the parameters. In such manners, 12 storage 
templates are made from six device type. The storage nodes are instan-
tiated evenly from the storage templates. For example, in the case of 
the total number of storage nodes is 60, five instances per a storage 
template are created.

Table 4 shows parameter configurations of nine types of templates 
for the client node. Each client template is set to issue an I/O request 
at intervals of 2, 4, and 8 µs. Reading and writing ratio of the I/O 
requests from each client template is shown in the I/O ratio column 
in Table 4. In this simulation, the frequency of reading and writing 
is set to nearly equal. In a similar manner as the storage node, the 
client nodes are created from these templates.

The unit size of data migration is set as ten megabytes. The latency 
time of one data migration is set as 200 ms. It is the average time 
measured in the 1000BASE-T network.

Initially, all the client nodes access data blocks located on one of the 
storage nodes created from the storage template S1.

5.2.  Results and Considerations

We measured the average execution time Ta to complete Nio times I/O 
requests by each client node. It is calculated by using Equation (3).

	 T
N

ta
c i

Nc

i= 1
=1
å 	 (3)

Table 1 | Simulation parameters

Nc Total number of client nodes 135, 180, 225
Ns Total number of storage nodes 60, 120, 180
p Tiering parameter 0.1, 0.2, 0.3, 0.4
Nio Number of I/Os per a client node 20,000
Ln Network latency 4 (µs)
Td Destination selection time 4 (µs)
Tm Merging time 0.4 (µs)
Tw Upper limit of waiting time 200 (µs)
Sf Lower limit of unused storage ratio 30%

Table 2 | Assumed storage devices

Device type Major specifications Vendor and model name

D1 SATA2 Seagate
7200 rpm HDD ST3400620NS

D2 SATA3 Seagate
7200 rpm HDD ST6000NM0235

D3 SAS3 Seagate
15,000 rpm HDD ST900MP0146

D4 PCIe 3.0 × 4 Intel
MLC SSD SSD 750

D5 SATA3 Intel
TLC SSD SSD D3-S4610

D6 SATA2 Intel
MLC SSD X25-M

Table 3 | Configurations of storage templates

Storage 
templates

Device 
type

Read latency 
(µs)

Write latency 
(µs)

Initial capacity 
(MB)

S1 D1 110 110 2000
S2 D1 121 121 2200
S3 D2 36 36 4000
S4 D2 39 39 4400
S5 D3 25 25 2000
S6 D3 27 27 2200
S7 D4 3 4 500
S8 D4 4 5 550
S9 D5 11 20 1000
S10 D5 12 22 1100
S11 D6 29 116 2000
S12 D6 32 127 2200

Table 4 | Configurations of client templates

Client templates I/O interval (µs) I/O ratio (R:W)

C1 2 55:45
C2 4 55:45
C3 8 55:45
C4 2 50:50
C5 4 50:50
C6 8 50:50
C7 2 45:55
C8 4 45:55
C9 8 45:55
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Here ti denotes the time to complete all I/O requests on the ith 
client node. Next, we define Ta,n as the average execution time mea-
sured using the migration policy n [i.e. Policy (n)].

Figures 6–8 show results of the simulation. Each result is labeled as 
the concatenation of the number of client nodes and the migration 
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(Ns = 180).

policy. For example, the result labeled ‘‘C180P2’’ denotes the result 
which is measured under the condition of 180 client nodes and the 
Policy (2) migration policy.

In these figures, the execution time ratio Rn,1 for the Policy (n) is 
calculated by using Equation (4).

	 R
T
Tn

a n

a
,1

,

,1

= 	 (4)

Here Ta,n and Ta,1 denote the average execution time Ta under the 
Policy (n) and the Policy (1) respectively.

5.2.1. � Performance Comparison between 
Original Migration Policy and  
Enhanced Migration Policies

As seen in Figure 6, the Policy (3) reduces the execution time from 
the Policy (1) in all conditions. Especially, in the condition p = 0.1, 
the Policy (3) reduces around 20% execution time. In this condition, 
because the tiering parameter p is relatively small, advantages of 
data migration to the upper storage tier by the Policy (1) is limited. 
In contrast to the Policy (1), in the Policy (3), a migration source 
node can migrate data blocks beyond the cap of performance gain 
defined by the parameter p. Hence, the Policy (3) contributes to 
improve the system I/O performance even if the parameter p is set 
lower than the best value.

On the other hand, the Policy (2) shows smaller improvements 
than the Policy (3). Particularly, the result under the condition 
combined Nc = 135 and p = 0.4 shows 7.3% worse than the Policy 
(1). In the condition of larger p, an opportunity of data migration 
is fewer than the condition of smaller p because of a small number 
of candidates of migration destination. Addition to such a limited 
number of data migration, a concentration of migration to a spe-
cific storage node had a more harmful effect upon the execution 
time rather than a good effect taken from an effectual migration in 
the Policy (2).

In Figure 7, the execution time by the Policy (2) in the condition of 
Nc = 135 are longer than the Policy (1). In the Policy (2), because a 
lot of storage nodes migrate data to the top node of the upper storage 
tier, a bad influence by the I/O concentration becomes unignorable 
when the number of storage nodes in the system is large. Figure 7 
shows that the effect of performance improvement by aggressive 
data migration is insufficient to the performance decline caused by 
a concentration of the destination of data migration. Nevertheless, 
the Policy (3) achieves 23% performance gain at maximum because 
the performance improvement by the migration and the preven-
tion of I/O concentration are designed to be compatible.

Figure 8 shows that the performance improvements by the 
enhanced migration policies are overall declined. Especially, in the 
condition of p = 0.4, the reduction of the execution time is <5% 
even the Policy (3). When there are a sufficient number of storage 
nodes in the system, enlargement of the parameter p, like p = 0.4, 
helps speeding up distributing I/O workloads because the perfor-
mance gain by one migration becomes large even in the Policy (1). 
Hence, the performance difference between the Policy (1) and the 
Policy (3) becomes small in such conditions.
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In Figures 7 and 8, some of the execution time ratios exceed one 
in the Policy (2). Because there is relatively little demand for data 
migration from a small number of client nodes, the problem of 
concentrate data blocks onto a specific storage node may have been 
marked more than the performance gain obtained by a few migra-
tions. On the other hand, the execution time ratio of the Policy 
(3) almost below the ratio one. This shows that the Policy (3) can 
achieve consistent performance improvement in most cases not 
only in a large system.

5.2.2. � Performance Comparison between 
Enhanced Migration Policies

In all cases, the execution time using the Policy (3) is shorter than 
the execution time using the Policy (2). The maximum reduc-
tion ratio of the execution time reached 26% in the conditions of  
Nc =180, Ns = 120, and p = 0.3 combination. Because the perfor-
mance improvement by the Policy (3) is always superior than the 
Policy (2), we can use only the Policy (3) as the enhancement over 
the original migration policy.

5.2.3. � Performance Improvement by  
Combined Migration Policy

We also evaluated the effectiveness of the combined migration 
policy. In this section, we compare the execution time in the Policy 
(3) and the Policy (4) by using Equation (5).

	 R
T
T

a

a
4,3

,4

,3

= 	 (5)

Table 5 shows the execution time ratio R4,3 calculated by Equation (5).  
In Table 5, the first column lists the number of client nodes, and the 
second column represents the number of storage nodes.

In the condition of Nc = 135, we cannot find a difference between 
the execution time in the two policies. The maximum reduction 
ratio of the execution time is 2.5% and observed in the conditions 
of Nc = 225, Ns = 60, and p = 0.1 combination. These conditions 
represent the environment of that many client nodes access the 
small number of storage nodes. And also, because the parameter p 
is set at small, frequently accessed data blocks spread into the upper 
storage tier slowly. In such a situation, a storage node which has 

become few storage capacities begins data migration to the lower 
storage tier. The combined migration policy can restrain I/O per-
formance drop for accessing the migrated data blocks.

6.  CONCLUSION

In this paper, we proposed two enhanced migration policies and 
one combined migration policy as an improvement of data migra-
tion in a distributed storage system with dynamic tiering function. 
We also evaluated the effect of these policies by simulation.

The policy which aims to maximize the migration efficiency 
degraded system I/O performance under a certain combination of 
conditions. We confirmed that the migration policy which balances 
an avoidance of data concentration and improvement of migra-
tion efficiency almost consistently improved the performance. 
Moreover, combining two migration policies can achieve further 
improvement in I/O performance when many migrations to the 
lower storage tier occur.

As future work, we will develop a scheme which can be applied for 
an actual network which has not uniform network latency, such 
as a network with cascaded switches. We will also build an experi-
mental system for more detailed evaluation.
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