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1.  INTRODUCTION

The development of information technology and personal comput-
ers enable us to get various multimedia data. In order to retrieve 
these data quickly, it is necessary to construct a multi-dimensional 
index including the R-tree family [1–3]. However, when the index 
becomes large, insertion time and retrieval time become long. The 
previous researches of the parallel multi-dimensional index have 
tried to improve the retrieval performance, although these does 
not consider the insertion performance [3–7]. When we must 
store multimedia data continuously, it is required to construct a 
multi-dimensional index within a limited time.

Funaki et al. [8] have proposed the parallel multi-dimensional 
indexing system that constructs an index within a limited time 
and retrieves data quickly. This index system has three kinds of 
computing nodes: a Reception-Node (RN) for inserting data, a 
Normal-Node (NN) for storing data, and a Representative-Node 
(PN) for retrieving data. This index system also introduced three 
kinds of R-tree indexes: a Reception-Index (RI), a Whole-Index 
(WI), and a Partial-Index (PI). Data are indexed by an RI in the 
RN. After a certain number of data are indexed by an RI, it is 
moved to an NN and becomes a PI. A PI is managed by a WI in 
an NN. In the retrieval, a query is sent to a PN and is forwarded 
to the RN and all NNs. A PN is waiting for receiving results from 
the RN and the NNs. The indexing system mentioned above can 
quickly insert and retrieve a large number of multimedia data 
[9]. This parallel multi-dimensional indexing system was revised 
for improving the performance of insertion and retrieval [10].  

For insertion, two RNs were introduced, and insertion was exe-
cuted without a pause. An Administrative-Node (AN) was intro-
duced in order to control these RNs. To reduce the retrieval time, 
PIs are distributed so that each NN has the almost same number 
of PIs as one another. The performance evaluation showed that 
the revised methods could improve the performances of insertion 
and retrieval.

The revised parallel multi-dimensional indexing system was eval-
uated by using skewed data and real data [11]. The experimental 
results revealed that the revised system still could not uniformly 
distribute PIs and that the retrieval performance degraded in some 
cases. Nakanishi et al. [12] proposed the methods of uniformly 
distributing PIs to NNs. In the previous system, the dissimilarity 
(distance) of the RI and a WI in an NN is firstly evaluated, and the 
numbers of PIs in NNs are secondarily evaluated before an RI is 
sent to an NN. The method proposed by Nakanishi et al. changes 
this order. This method firstly evaluates the numbers of PIs in 
NNs and then evaluates the dissimilarity. This could distribute PIs 
more uniformly than the previous method. This will result in the 
improvement of retrieval performance. The new dissimilarity cal-
culation methods were also proposed [12]. These methods use PIs 
rather than the WI in calculating dissimilarity. This will be able to 
consider the distribution of PIs. This results in the precise decision 
of the NN to which the RI should be sent.

This paper experimentally shows that a combination of the evalu-
ation method and a dissimilarity calculation method gives us good 
retrieval performance, especially for skewed data.

The remainder of this paper is structured as follows. Section 2 
describes the parallel multi-dimensional indexing system [10]. 

A RT I C L E  I N F O
Article History

Received 25 April 2019
Accepted 26 May 2019

Keywords

Multi-dimensional index
parallel processing
retrieval performance
dissimilarity
distribution

A B S T R AC T
This paper experimentally evaluates the parallel multi-dimensional indexing system indexing data by using several multi-
dimensional indexes and retrieving required data from them in parallel. A constant number of data are indexed into a sub-index. 
The sub-index is inserted into an index in a computational node. After the number of sub-indexes in a computational node is 
evaluated, the area managed by each index is evaluated so that the numbers of sub-indexes become equal, and the data are widely 
distributed. It is experimentally shown that this method has good performance for skewed data.

© 2019 The Authors. Published by Atlantis Press SARL. 
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: hochin@kit.ac.jp

https://doi.org/10.2991/ijndc.k.191118.002
https://www.atlantis-press.com/journals/ijndc
http://creativecommons.org/licenses/by-nc/4.0/
mailto:hochin%40kit.ac.jp?subject=


26	 K. Nakanishi et al. / International Journal of Networked and Distributed Computing 8(1) 25–33

Section 3 describes the revised parallel multi-dimensional 
indexing system [12]. Section 4 evaluates the revised system. 
Section 5 gives some considerations. Finally, Section 6 concludes 
this paper.

2.  MULTI-DIMENSIONAL INDEXING SYSTEM

If data continue to be indexed by an index for a long time, the 
insertion time becomes long because of the decision of the inser-
tion place and reorganization of the index structure. The parallel 
multi-dimensional indexing system that can insert and retrieve a 
large number of data quickly was proposed [8,9], and improved 
[10]. Figure 1 shows the organization of the parallel multi-dimen-
sional indexing system [10].

This system has four kinds of computing nodes: an RN, an AN, an 
NN, and a PN. Each computing node has its own disk storage. All 
computing nodes are connected to one another through a bus.

2.1.  Overview

An RN receives new data and indexes them by RI.

An AN manages various manipulation of insertion in two RNs. 
The AN confirms which RN indexes data and checks the remaining 
number of data that could be indexed by the RI.

Normal-nodes, each of which has a serial number, store data in 
the form of indexes. An NN has a WI and PIs. In a WI, a PI is 
managed as a rectangle, which is represented with a Minimum 
Bounding Rectangle (MBR) and is an entry of a node of the R-tree 
structure index.

A PN receives a query. As soon as a PN forward a query to all 
NNs and the RN, these nodes start to search data by using R-tree 
indexes. The retrieval results are sent back to the PN from the RN 
and all the NNs. The PN returns the retrieval result to the user.

2.2.  Distribution Schemes

Data are indexed by an RI. When the RI grows to the predefined 
maximum size, the RI is moved to one of NNs. Here, it is important 
to select the destination node to which the RI is moved so that this 
selection can minimize the retrieval time. An RI is sent to the NN 
when the similarity is low, or the dissimilarity is high.

Three dissimilarity calculations are as follows:

•	 Area expansion: When an NN receives an RI, the NN calculates 
an expanded MBR area. The expanded MBR area is used as dis-
similarity. The RI is moved to the NN whose MBR’s area expan-
sion is the maximum one.

•	 Overlap: The area overlapped between the MBR of a WI of an 
NN and the MBR of the RI of the RN is used as the similarity. 
The RI is sent to the NN whose overlapped area between the two 
MBRs is the smallest one.

•	 Proximity: Proximity [4] of two MBRs is calculated by consid-
ering the degree of the overlap or distance of the MBRs. The 
formula for overlap MBRs is different from that for non-overlap 
MBRs [4]. The proximity of two MBRs is used as a similarity. 
Each NN calculates proximity between the own MBR of the WI 
and the MBR of the RI. The RI is moved to the NN whose MBR 
of the WI has low proximity with the RI.

Kamel and Faloutsos [4] showed that the Proximity index was the 
most successful heuristics among several distribution schemes.

2.3. � Methods for Balancing the Number  
of Partial-indexes

In order to obtain good performance, RIs must be distributed to all 
NNs equally.

Three methods for distributing RIs to all NNs equally were pro-
posed. These methods are as follows [10]:

•	 Method (a): When all dissimilarity values are the same, the RI is 
sent to the NN having the least PIs. If not all of the dissimilarity 
values but some dissimilarity values are the same, the RI is sent 
to the NN having the least PIs.

•	 Method (b): When some dissimilarity values of NNs are the 
same, the RN checks other dissimilarity values and deter-
mines the destination of the RI. If a certain dissimilarity 
value is larger than the others, the RI is sent to the NN having 
the largest dissimilarity value. Otherwise, if some dissimilar-
ity values, which are the same, are larger than the other, the 
RI is sent to the NN having the least PIs regardless of the 
dissimilarity values.

•	 Method (c): When some dissimilarity values are the same, the RI 
is sent to the NN having the least PIs, regardless of other dissim-
ilarity values.

When all NNs have the same dissimilarity value and store the same 
number of PIs, the destination of the RI is the NN firstly created.

3. � MULTI-DIMENSIONAL INDEXING  
SYSTEM REVISED

3.1. � The Decision before Dissimilarity  
Calculation

The system described in Section 2 tries to select the destination NN 
based on the dissimilarity value in order to balance the number of 
PIs among NNs. However, depending on the dissimilarity values, Figure 1 | Parallel multi-dimensional indexing system.



	 K. Nakanishi et al. / International Journal of Networked and Distributed Computing 8(1) 25–33	 27

only a part of NNs may be selected as the destination candidates. In 
this case, some NNs have more PIs than others. All of NNs could 
not have the same number of PIs.

To address this issue, Nakanishi et al. [12] proposed a method con-
sidering the number of PIs earlier than considering the dissimilar-
ity. The steps of the proposed method are as follows:

•	 Step 1: Find the NN which has the least PIs before calculating the 
dissimilarity.

•	 Step 2: If only one NN can be found, the RI is sent to the NN.

•	 Step 3: Otherwise, the dissimilarities are calculated for the NNs 
found.

•	 Step 4: If one NN has the maximum dissimilarity, the RI is sent to 
the NN.

•	 Step 5: Otherwise, the RI is sent to the NN having the smallest 
serial number of the NN.

This method gives priority for NNs to have the same number of PIs. 
This method is called the Decision before Dissimilarity Calculation 
(DBDC) method. The method described in Section 2 decides the 
destination NN after the calculation of dissimilarity. This method is 
called the Decision after Dissimilarity Calculation (DADC) method.

3.2.  Dissimilarity Calculation Methods

In order to prevent an RI from being sent to the NN having 
many PIs, additional three dissimilarity calculation methods 
were proposed [12].

3.2.1.  Mean distance

The mean of the distances between the center of the MBR of the RI, 
which will be sent from an RN to an NN, and the centers of MBRs 
of PIs in an NN is adopted as dissimilarity. It is considered that the 
larger the mean distance is, the more the MBRs are apart. When 
an NN has many PIs, and some of them are close to the RI, the 
distance may be small. This may prevent such an NN from being 
selected as the destination candidate. This may result in the selec-
tion of an NN having a few PIs.

3.2.2.  Proximity and the mean distance

Proximity has good performance for the dissimilarity [10,11]. 
Proximity and the mean distance are used in calculating dissimi-
larity. When two or more NNs have the same smallest proximity, 
the mean distance method is applied to only these NNs.

3.2.3.  Proximity and the shortest distance

The shortest distance is used instead of the mean distance in the 
method described in Section 3.2.2. That is, the shortest distance 
between the center of the MBR of the RI and the centers of MBRs of 
the PIs in an NN is used as the dissimilarity. The shortest distances 
are calculated for the NNs having the same smallest proximity.

4.  EVALUATION

We evaluate the methods described in Section 3 by using synthetic 
data and real data on a real machine.

4.1.  Data Used

We use the following data sets.

	(i)	 Synthetic data: We use uniformly distributed and skewed 
data as synthetic data. These are two-dimensional points. The 
number of data is 500,000, and 80 PIs are created for each kind 
of data.

	(a)	 Uniformly distributed data: 500,000 points were ran-
domly created. The range of coordinates of points is from 
zero to 232 − 1.

	(b)	 Skewed data: We created 20 PIs, whose range of coor-
dinates of points is from 0 and (232 − 1)/2. The points 
in these PIs follow the normal distribution with mean 
(232 − 1)/4 and variance (232 − 1)/20. We also created 
60 PIs, whose range of coordinates of points was from 
(232 − 1)/2 and 232 − 1. The points in these PIs follow 
the normal distribution with mean (232 − 1) * 3/4 and 
variance (232 − 1)/20.

	(ii)	 Real data: We use block-level location reference informa-
tion distributed from the location reference information 
download service of the Ministry of Land, Infrastructure, 
Transport, and Tourism, Japan [13]. Three values of the 
block identifier, the latitude, and the longitude are selected 
and used. We use the data of Nagano, Hokkaido, and Kyoto 
prefectures of the fiscal year 2018. The total number of data 
used is 1,072,619.

4.2.  Experimental Environment

Experimental environment is as follows:

•	 CPU: Intel Xeon(R) CPU E5-2630 v4 @ 2.20 GHz x 2.

•	 Memory: 32 GB.

•	 Hard Disk Drive (HDD): SATAIII 500 GB.

•	 Flash Memory: BUFFALO RUF3-HKS32G-TS 32 GB.

•	 OS: Ubuntu 16.04LTS.

•	 Compiler: GCC version 5.3.1.

•	 Library of R tree: libspatialindex version 1.8.5-3 [14].

The HDD is for RNs, while the flash memory is assigned to an NN.

4.3.  Experimental Method

The DBDC method is compared with the DADC method by using 
the insertion time, the retrieval time, and the distribution of the 
numbers of PIs.

Insertion is conducted five times for four, eight, and 16 NNs.
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The following retrievals are conducted by varying the number of 
NNs as four, eight, and 16:

	(i)	 Uniformly distributed data: The range queries, whose range is 
one-tenth of the whole range, are conducted.

	(ii)	 Skewed data: Twenty PIs, whose range of coordinates of points 
was from zero to (232 – 1)/2, are retrieved.

	(iii)	 Real data: The range queries, whose range is one-tenth of the 
whole range, to the data of Kyoto prefecture are conducted.

In the comparison, Method (b) of the DADC method is used 
because this method attained the best performance [11]. Every 
retrieval is conducted 10 times.

4.4.  Experimental Results

In the figures showing the experimental results, the dissimilarity cal-
culation method based on area expansion (overlap, proximity, mean 
distance, proximity and the mean distance, and proximity and the 
shortest distance, respectively) is abbreviated as “AE” (“OL,” “PR,” “DI,” 
“DA,” and “MD”). The round-robin method, where a PI is moved to 
an NN in a round-robin manner, is added and abbreviated as “RR.”

4.4.1.  Uniformly distributed data

The mean insertion time of the uniformly distributed data for four 
(eight and 16, respectively) NNs is shown in Figure 2a–c. For four 
NNs, the insertion times of both methods were almost the same. 
For eight NNs, the insertion time of the DBDC method was slightly 
shorter than that of the DADC method, while the insertion time of 
the DBDC method was longer than that of the DADC method for 
16 NNs. The insertion time for 16 NNs was longer than those for 
four and eight NNs.

The mean retrieval time of the uniformly distributed data for four 
(eight and 16, respectively) NNs is shown in Figure 3a–c. The 
retrieval times of the DBDC method were the same regardless of 
the dissimilarity calculation methods and were shorter than those 
of the DADC method. Those of the DADC method with the meth-
ods based on the mean or shortest distance method (DI, DA, and 
MD) were worse than those of the DADC method with the other 
dissimilarity calculation methods for each number of NNs.

The mean standard deviation of the numbers of PIs in NNs for four 
(eight and 16, respectively) NNs is shown in Figure 4a–c. The stan-
dard deviation of the numbers of PIs in NNs was 0.0 for all dissim-
ilarity calculation methods under the DBDC method, while that 
was larger than 0.0 for all dissimilarity calculation methods except 
for the RR method under the DADC method.

4.4.2.  Skewed data

The mean insertion time of the skewed data for four (eight and 16, 
respectively) NNs is shown in Figure 5a–c. The tendency is the same 
as that of the uniformly distributed data as described in Section 4.4.1.

The mean retrieval time of the skewed data for four (eight and 16, 
respectively) NNs is shown in Figure 6a–c. For four (eight, respectively)  

(b)

(c)

(a)

Figure 2 | Insertion time of uniformly distributed data: (a) 4 NNs,  
(b) 8 NNs, (c) 16 NNs.

NNs, the retrieval times of the DBDC method were shorter than 
those of the DADC method except for the round-robin (proximity) 
method. For 16 NNs, the DBDC method with the area expansion 
and the mean distance methods attained the best performance, 
while the performances of the DBDC method with the other dis-
similarity calculation methods were worse than that of the DADC 
method except for the round-robin method.

The mean standard deviation of the numbers of PIs accessed in 
the retrieval for four (eight and 16, respectively) NNs is shown in 
Figure 7a–c. The standard deviations of almost all dissimilarity 
methods were less than that of the RR method for four, eight, and 
16 NNs. Those of the DBDC method were less than those of the 
DADC method for four and eight NNs. For 16 ones, those of the 
DADC and the DBDC methods were almost the same.
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(a)

(b)

(c)

Figure 4 | The standard deviation of the numbers of PIs in NNs for 
uniformly distributed data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.

(a)

(b)

(c)

Figure 3 | Retrieval time of uniformly distributed data: (a) 4 NNs,  
(b) 8 NNs, (c) 16 NNs.

4.4.3.  Real data

The mean insertion time of the real data for four (eight and 16, 
respectively) NNs is shown in Figure 8a–c. For four NNs, the inser-
tion times of both methods were almost the same. For eight NNs, 
the insertion time of the DBDC method was slightly longer than 
that of the DADC method, while the insertion time of the DBDC 
method was shorter than that of the DADC method for 16 NNs. 
The tendency is opposite to that of the uniformly distributed data 
and that of the skewed data.

The mean retrieval time of the real data for four (eight and 16, 
respectively) NNs is shown in Figure 9a–c. For four NNs, the perfor-
mance of the DBDC method only with the mean distance method 
was better than the DADC method. For the other dissimilarity  

calculation methods, the performance of the DBDC method was 
worse than the DADC method. For eight NNs, almost all the 
retrieval times of the DBDC methods were shorter than those of 
the DADC method. Those of the DBDC method with the overlap 
and the round-robin methods were worse than those of the DADC 
method. For 16 NNs, the retrieval times of the DADC and the 
DBDC methods were almost the same except for the DADC method 
with the mean distance method. As a result, the performance of the 
DBDC method with the mean distance method was better than that 
of the DADC method with it.

The DBDC method could make the number of PIs in NNs the same, 
while the DADC method could not. The mean standard deviation 
of the numbers of PIs accessed in the retrieval for four (eight and 
16, respectively) NNs is shown in Figure 10a–c. The numbers of 
PIs accessed in the retrieval were; however, not the same. The stan-
dard deviation of the numbers of PIs accessed in the retrieval under 
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(a)

(b)

(c)

Figure 6 | Retrieval time of skewed data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.

the DBDC method for four and 16 NNs was the same regardless 
of the dissimilarity calculation methods. The standard deviations 
were the same as that of the RR method. Under the DADC method, 
the standard deviations were smaller than or equal to that of the 
RR method for four NNs, while these were larger than or equal 
to that of the RR method for 16 NNs. For eight NNs, the DBDC 
method could make the standard deviation smaller than that of the 
RR method, while the DADC method could not.

5.  CONSIDERATION

First, we give some considerations to the DADC and the DBDC 
methods. Next, we consider the dissimilarity calculation methods.

5.1.  DADC and DBDC Methods

This paper evaluated the DBDC method, which restricts the target 
NNs according to the number of the PIs in them before calculating 
dissimilarity, so that NNs have the same number of PIs.

5.1.1.  Insertion time

For four NNs, the insertion times of both the DBDC and the DADC 
methods were almost the same. For eight and 16 NNs, the insertion 
time of the DBDC method was slightly different from that of the 
DADC method. The insertion time of the DBDC method was not 
drastically different from that of the DADC method.

5.1.2.  Retrieval time

For the uniformly distributed data, the retrieval time of the DBDC 
method was the same for all the dissimilarity calculation methods. 

(a)

(b)

(c)

Figure 5 | Insertion time of skewed data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.
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(a)

(b)

(c)

Figure 7 | The standard deviation of the numbers of PIs accessed in 
retrieval for skewed data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.

(a)

(b)

(c)

Figure 8 | Insertion time of real data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.

It was the same as that based on the round-robin method. It is con-
sidered that PIs were distributed to NNs in the DBDC method just 
as in the RR method.

For the skewed data, the retrieval time of the DBDC method was 
shorter than that of the DADC method for four and eight NNs. 
For 16 NNs, the retrieval times of the DBDC method with the area 
expansion and the mean distance methods were shorter than those 
of the DADC method with them, while those of the DBDC method 
with the other dissimilarity calculation methods were longer than 
those of the DADC method with them. The DBDC method with 
the mean distance method had good performance regardless of the 
number of NNs. This method may distribute PIs to NNs by consid-
ering the distribution of data.

The retrieval times and the standard deviations of all dissimilar-
ity calculation methods were smaller than those of the RR method 
for the skewed data for both the DADC and the DBDC methods 
as shown in Figures 6 and 7. As the RR method takes account of 

only the number of PIs, considering the dissimilarity is effective in 
treating skewed data for both the DBDC and the DADC methods.

For real data, the retrieval time of the DBDC method was worse 
than that of the DADC method for four NNs. This might be caused 
by that PIs were sent to an NN not as intended because the DBDC 
method restricts the target NN based on the number of PIs in an 
NN. On the other hand, the retrieval times of the DBDC method 
with five of seven dissimilarity calculation methods were better 
than those of the DADC method with them for eight NNs. For 
16 NNs, the retrieval times of the DBDC method and the DADC 
method were almost the same except for that of the DADC method 
with the mean distance method. For eight and 16 NNs, the DBDC 
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(a)

(b)

(c)

Figure 9 | Retrieval time of real data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.

(a)

(b)

(c)

Figure 10 | The standard deviation of the numbers of PIs accessed in 
retrieval for real data: (a) 4 NNs, (b) 8 NNs, (c) 16 NNs.

method sent PIs to NNs as intended. The retrieval time of the DBDC 
method with the mean distance method was always better than that 
of the DADC method with it. Under the DBDC method, the stan-
dard deviations of the numbers of PIs accessed in the retrieval were 
the same as that for the round-robin method for four and 16 NNs, 
while those were smaller than or equal to that for the round-robin 
method. This might result in good retrieval time at eight NNs.

5.2.  Dissimilarity Calculation Methods

For the uniformly distributed data, the retrieval times of the DADC 
method with three dissimilarity calculation methods based on the 
mean or shortest distance method were bad, as shown in Figure 3.  
As the DADC method firstly calculates dissimilarity and selects 
the NN to which the RI is sent without any consideration of the 
number of PIs in an NN, some NNs have more PIs than others. This 
degrades the performance of the DADC method with them. These 
methods had better not be used with the DADC method.

For the skewed data, the mean or shortest distance-based methods 
with the DBDC method were better than the other methods with 
it for four and eight NNs. These distance-based methods worked 
well in the case that it decided an NN from those having the same 
number of PIs. For 16 NNs, the mean distance method with the 
DBDC method attained the best performance, while the other 
mean distance-based method and the shortest distance-based one 
with it failed.

6.  CONCLUSION

This paper evaluated the DBDC method and the dissimilarity cal-
culation methods based on the mean distance method to the paral-
lel multi-dimensional indexing system. The DBDC method firstly 
considers the number of PIs and then calculates the dissimilarity. It 
was experimentally shown that this method with the mean distance 
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method attained good retrieval performance compared with the 
DADC method and the DBDC method with the other dissimilarity 
calculation methods. It was also shown that considering dissimilar-
ity is effective, especially for skewed data.

The mechanism of the DBDC and the DADC methods good for 
skewed data is not clear. Precise evaluation clarifying the mech-
anism good for skewed data is in future work. The AN has been 
introduced for controlling the RNs. This control may be undertaken 
by an RN. The evaluation of the architectures with and without the 
AN is also in future work. Concurrent insertion and retrieval of 
data are not supported yet. In order to support concurrent access 
of indexes, concurrency control of the index is required. The intro-
duction of the concurrency control mechanism is in future work.
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