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Abstract In common with most dynamic tissues, the mechanical properties of arteries are
determined by the relative composition and architecture of key structural extracellular matrix
(ECM) proteins including fibrillar collagens and elastic fibre components. Although it is
apparent that age-related loss of ECM homeostasis leads to arteriosclerosis (vascular stiff-
ening), which in turn is associated with the development of both fatal strokes and heart
failure, the principal molecular targets and causative mechanisms remain poorly defined. This
review discusses: (i) the application of in situ micro-mechanical methodologies to localise the
key molecular targets of age-related stiffening within arteries and other dynamic elastic
tissues and (ii) the potential role played by the preferential oxidation of TGF-b binding elastic
fibre-associated components in driving this aberrant tissue remodelling.
ª 2012 Association for Research into Arterial Structure and Physiology. Published by Elsevier
B.V. All rights reserved.
Introduction: clinical and structural
consequences of arterial ageing

The mechanical properties of dynamic connective tissues
such as arteries are mediated by both intracellular and
extracellular structural proteins. Intracellularly, there is
evidence that the actin cytoskeleton influences the stiff-
ness of vascular smooth muscle cells (VSMC) and hence the
vessel1 whilst in the extracellular space fibrillar collagens
resist compressive and tensile forces respectively2 and
elastic fibres confer compliance and passive recoil.3

However, pathological changes to these mechanical prop-
erties are a common feature in ageing mammalian tissues
including skin,4 lungs5 and arteries.6,7 In the specific case of
large arteries diffuse stiffening (termed arteriosclerosis7,8)
is implicated in the maintenance of essential hypertension9
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and, in turn, with the development of stroke and heart
failure.10,11 Unfortunately the key causes of arteriosclerosis
remain poorly defined7 and this lack of consensus is due, in
part, to the complexity of the structural and functional
remodelling which accompanies ageing (Fig. 1A).

Macroscopically, age-related differential dilatation of
the intimal and medial layers is linked to whole vessel
hypertrophy and dilatation12e16 whilst microscopically
migration and cytoskeletal remodelling of VSMCs17,18 and
fenestration/fragmentation of medial elastic lamellae17,19

have all been reported in the ageing artery. These archi-
tectural remodelling events may be accompanied and driven
by age-related changes in vessel composition (primarily
elastin and collagens I and III18e22) and molecular structure
(via glycation, calcification, proteolytic degradation and
fracture fatigue of long-lived ECM components15,23e29). To
date, in part as a consequence of the historical methodo-
logical limitations inherent in measuring the mechanical
properties of complex, heterogeneous materials such as
large arteries, it has proven necessary to infer a causal
l Structure and Physiology. Published by Elsevier B.V. All rights reserved.
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Figure 1 Structural remodelling in, andmechanical characterisation of, ageing arteries. Largearteries suchas theaorta arecomposed
of three layers: (i) an inner, endothelial cell-containing, intimal layer, (ii) a medial layer which is characterised by concentric medial
lamellar units (composed of elastic lamellae and collagen and VSMC-rich interlamellar regions) and is demarcated from the other layers
by an innerandouter elastic lamellae (IEL and EEL) and (iii) anouter, collagen-rich, advential layer. (A) This complex structure undergoes
equally complex remodelling atmacroscopic tomolecular length scales during ageing (see text for references) which in turn induce age-
related stiffening. (B) The cause(s) of arterial stiffening can be clarified by localising mechanical changes to specific components either
by extraction (and subsequent testing of the extracted components or residue) or by in situmicro-mechanical mapping using techniques
such as scanning acoustic microscope (SAM), atomic force microscope (AFM) respectively and nanoindentation.
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relationship between gross tissue stiffening (as measured by
in vivo or ex vivo techniques such as pulse wave velocity or
tensile testing; for a detailed review see Ref.30) and the
multiplicity of structural remodelling events which charac-
terise the ageing artery. In the following section this review
considers the contribution which new micro-mechanical
approaches could make to identifying the key targets of
arteriosclerosis by localising in situ mechanical changes to
specific molecular components and/or tissue regions.
Micro-mechanical characterisation of arterial
components

Three contrasting approaches have been used to charac-
terise the mechanical properties of discrete arterial
components and regions (Fig. 1B). First, chemical treat-
ments such as concentrated formic acid or sodium
hydroxide can be employed to differentially extract the
majority of constituents from arterial walls prior to in situ
mechanical testing of the remaining purified material.31

Even when suitably efficient however, the harsh chemical
environments used by these differential extraction
methods have the potential to profoundly disrupt the
structure and hence mechanical properties of complex,
multi-component fibrillar collagens and elastic fibres.2,32,33

A second approach is to extract and mechanically test
specific arterial components, such as cells, in vitro. For
example, in ground-breaking studies, Qiu and colleagues
have demonstrated that the stiffness of cultured aortic
VSMCs is related to age of the donor animal.1 However,
the influence of in vitro culture conditions on cellular
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phenotype34 could be a key consideration in such studies.
Finally the third approach, as adopted by our group, relies
on technological advances to facilitate the in situ
measurement of native mechanical properties at micro-
scopical lengths scales (three complimentary technologies
are summarised in Table 1). In turn these micro-mechanical
measurements can be directly related to tissue architec-
ture and composition with the ultimate goal of identifying
key targets of age-related arteriosclerosis.
Physical indentation: nanoindenters and atomic
force microscopes

Nanoindentation, which is the most common method for
measuring the mechanical properties of a material at
microscopical resolutions, employs a hard probe (of known
mechanical properties) to physically indent a softer mate-
rial (of unknown stiffness and/or resilience). Although
originally developed to characterise engineering materials,
in recent years the approach has been applied to both
calcified35 and non-calcified biological tissues.30,36 Inter-
pretation of the resultant loadedisplacement curves
however, is complicated by the difficulties inherent in
detecting the surface of highly compliant materials
(including non-calcified biological tissue) and by the need
to account for tip shape and surface roughness.30 In addi-
tion to these analytical difficulties, which must be over-
come when indenting bulk tissues, further complications
ensue when attempting to identify key mediators of tissue
mechanical properties by co-localising nanoindentation and
structural (histological) data in thin tissue sections. Whilst
Table 1 The in situ mechanical properties of tissues can be m
which are well established in engineering disciplines, have the ca
properties within a tissue region. In contrast, SAM can rapidly a
wave speed is related to stiffness) at a resolution approaching
structure as assessed by conventional histological approaches.
mapping relative material characteristics and surface topography

Nanoindenter Scanning a

Lateral resolution
(biological targets)

>10 mm (tissue regions) 1 mm (cell

Depth resolution Surface (nm to mm) Specimen
for cryose

Specimen interaction Probably destructive Non-destru

Mechanical information Multiple material
characteristics
(quantitative)

Acoustic w
measure f

Speed/sampling
frequency

Slow sampling at
discrete points

Rapid acqu
images

Correlation with sample
structure

Limited to post-test for
conventional instruments

Acoustic im
images can

Availability Readily available in
Materials Science
facilities

Limited av
it is possible to avoid chemical fixation-induced stiffening37

by freezing and sectioning tissues (cryo-sectioning), inter-
pretation of nanoindentation data obtained from such thin
sections (commonly 5e10 mm thick) must take into account
the influence of hard supporting substrates on the resultant
displacement curves.36,38,39 Despite these analytical and
practical difficulties nanoindentation approaches have
been successfully employed to characterise the mechanical
properties of soft tissues and materials (including visco-
elastic or time dependent properties40) at mm to nm length
scales.

There are two major classes of nanoindentation equip-
ment: nanoindenters and atomic force microscopes (AFMs).
In general nanoindenter employ a relatively large physical
probe to accurately assess the mechanical properties of
materials over mm length scales. Whilst the use of such large
(up to 100 mm) diameter flat punch or conospherical probes
aids in the detection of highly compliant biological surfaces
this increase in sensitivity is achieved at the expense of
spatial resolution.41 Hence the technique is best suited to
measuring the mechanical contributions of discrete tissue
regions rather than individual components. Despite these
limitations we have successfully demonstrated the ability
of a conventional nanoindenter (Hysitron Triboscope) to
distinguish differences in substrate de-convolved tissue
micro-stiffness between arteries and veins (aorta and vena
cava) and within a vessel (from intimal to advential layer) at
a spatial resolution of 25 mm.42 In common with other
nanoindenter however (which are designed primarily for the
characterisation of homogeneous engineering materials),
this instrument lacks the optical capabilities to accurately
direct nanoindentation of specific regions or components
easured by three complimentary techniques. Nanoindenters,
pability to accurately measure the mean mechanical surface
nd non-destructively map acoustic wave speed maps (where
1 mm. In turn, these maps can be readily related to tissue
Finally, the widely adopted technique of AFM is capable of
at sub-cellular and molecular length scale.

coustic microscope (SAM) Atomic force microscope (AFM)

s/large ECM assemblies) <10 nm (cellular components/
small ECM assemblies)

thickness (up to w6 mm
ctions)

Surface (nm)

ctive Probably non-destructive

ave speed (surrogate
or stiffness)

Multiple material characteristics
(may be qualitative or
quantitative)

isition of acoustic Slow acquisition of mechanical
maps

ages and histological
be readily registered

Mechanical data can be
registered with topographical
(AFM) or histological data

ailability Readily available in multiple
disciplines (including biomedical
facilities)
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(such as the medial elastic lamellae). As a consequence we
have collaborated with the same manufacturer (Hysitron
Corp.) to specify the design of a bespoke instrument which
will incorporate a nanoindenter head into the objective
turret of a research quality optical microscope. It is envis-
aged that this instrument will facilitate the targeted inden-
tation of tissue regions, elastic fibres and collagen fibrils
(identified by differential interference contrast, circular
polarised and auto-fluorescence microscopy respectively) in
unfixed and unstained and cryosections. Following mechan-
ical characterisation; tissue architecture and composition
may be further characterised by conventional histological
and immunohistochemical approaches.

As valuable as this new approach to biological nano-
indentation promises to be, the ability of the technique to
resolve fine-biomechanical detail will remain limited by the
resolution of the probe. In order to quantify the in situ
mechanical contribution of individual macro-molecular
assemblies such as collagen fibrils43,44 or cells45 it will be
necessary to use fine AFM probes. The ability of AFMs to
combine high resolution mapping of both surface shape
(topography) and mechanical properties has ensured that
these instruments have been widely employed to charac-
terise tissues, cells and biomaterials. Concerns exist
however as to: (i) the applicability of conventional Hertzian
mechanics approaches to the interpretation of AFM inden-
tation data for high compliance materials,46 (ii) the diffi-
culty in determining the spring constant of the cantilever
on which the AFM probe is mounted47 and (iii) the influence
of substrate mechanical properties on the measured sample
properties.48 Although it may be argued that AFM-derived
mechanical mapping data are best viewed as indicative
of qualitative mechanical differences only49 a recent
comparative study demonstrates that the Young’s moduli of
bulk polymers (as measured by both AFM and conventional
nanoindentation) are actually in good agreement.50
Non-invasive methods: scanning acoustic
microscopy

As informative as nanoindentation approaches can be, the
act of mechanically probing a material is: (i) slow (ranging
from many minutes to many hours depending on sampling
frequency/area and loading rate), (ii) limited to the vicinity
of the surface (in contrast to structural information derived
by light microscopy) and (iii) potentially damaging (partic-
ularly in the case of less compliant samples). Scanning
acoustic microscopy (SAM) circumvents these difficulties
by employing a pulse of high frequency waves (>100 MHz)
to rapidly (in seconds) and non-destructively map local
sample wave speed (which in turn is related to stiffness)
throughout the specimen depth.30,48,51,52 Although well
established in non-biological disciplines,53 the application
of SAM to tissue sections has been limited and often applied
to chemically fixed tissues54,55 or at lower frequencies and
hence spatial resolutions.56 By employing cryosections and
using frequencies close to w1 GHz however, it is possible to
avoid fixation induced changes in the mechanical properties
of tissues and to achieve spatial resolutions of w1 mm.

Such resolutions are required to resolve key arterial
components and we have successfully employed SAM to
localise the micro-mechanical manifestations of arterio-
sclerosis57 in an established model of sheep ageing.58

After initially demonstrating that, in common with rats
and humans,59,60 sheep aorta undergo gross-mechanical
stiffening, we then employed SAM to show that mean
acoustic wave speed was also increased in the aged ovine
aorta. Crucially however, this wave speed increase was
both localised within the medial layer (to regions between
elastic lamellae) and correlated with an increase in the
collagen to elastin ratio. As informative as this approach
proved to be, the structural resolution which was achiev-
able after processing SAM data by the established
frequency scanning method,52,61 made it difficult to inter-
pret the apparent tissue architecture. Hence, we have
recently presented an alternative method of SAM image
collection and data processing (multi-layer phase anal-
ysis49) which employs phase differences to resolve and
measure wave speed. The reduced signal noise in the
resultant images greatly simplifies the task of identifying
mm-scale tissue structures.
Selective oxidation as a potential causative
mechanism of arteriosclerosis

Whilst in situ micro-mechanical testing approaches have
the potential to identify the key targets of age-related
arterial stiffening, other methodologies are required to
isolate the causative molecular mechanisms. The ubiqui-
tous nature of age-related tissue stiffening3 suggests that
systemic mechanisms, as outlined in the introduction, may
operate to promote cross-tissue ECM remodelling in
mammals. One such mechanism however, the oxidative
damage theory of ageing, has recently come under criti-
cism, in part because the experimental evidence from short
lived animal models such as fruit flies, nematode worms
and mice indicates that attempts to shorten or prolong
lifespan by increasing oxidative stress and enhancing anti-
oxidant defences respectively are unlikely to meet with
success.62,63 But in contrast to the environment within
these relatively short-lived organisms (w1 month lifespan
for both Drosophila melanogaster and Caenorhabditis ele-
gans), major ECM proteins including fibrillar collagens,
elastin and fibrillin microfibrils are required to persist in
human tissues for many decades64,65 where they must
operate without the benefit of the damage prevention,
detection and repair mechanisms which protect intracel-
lular proteins (for reviews see Refs.3,66). As a consequence,
we have suggested that reactive oxygen species (ROS) may
play a key role in mediating the accumulation of age-
related damage in ECM-rich human tissues such as skin,
lungs and arteries.66,67 Drawing on both experimental
evidence68 and bioinformatic analyses of relative amino
acid compositions,67 we have proposed that elastic fibre
associated proteins such as the fibrillins, fibulins and latent
transforming growth factor b binding proteins (LTBPs)
(which are rich in ultraviolet radiation [UVR] and ROS
susceptible disulphide bonded cysteines) are preferentially
denatured by UVR and/or ROS in vivo. In this scenario,
ultrastructural modification of fibrillin-rich microfibrils
(which is known to cause Marfan Syndrome in humans and
mice) may be an important trigger event leading to loss of
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tissue homeostasis via aberrant TGFb signalling/fibrosis69,70

and the upregulation of ECM-degrading matrix metal-
loproteinases.71 In contrast, the major structural ECM
proteins collagen I and tropoelastin, which are largely
devoid of UVR-absorbing and oxidation sensitive amino
acids, are insensitive to physiological doses of both UVB and
UVA radiation.68,72

Summary

Modifications of structural proteins play a key role in many
age-related arterial disorders. Whilst our knowledge of the
key mechanical targets and causative mechanisms is, as
yet, limited the advent of new microscopical techniques
brings an opportunity to further elucidate the pathological
pathways. In addition there is much scope to draw on the
techniques and knowledge accrued in biogerontological
research to the specific case of the ageing artery.
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