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Summary Atherosclerotic cardiovascular disease is the current leading cause of death in
industrialized countries. The vast majority of acute cardiovascular events (50e70%) are
ascribed to thrombosis following rupture of a vulnerable plaque. Therefore there is an urgent
need to discern vulnerable, unstable plaques from stable plaques. A variety of imaging modal-
ities, both invasive and non-invasive, have been developed for the assessment of visualization
and quantification of atherosclerosis. In this review, we discuss the advantages and limitations
of the available imaging techniques, and their clinical potential for assessment of plaque
vulnerability.
ª 2007 Association for Research into Arterial Structure and Physiology. Published by Elsevier
B.V. All rights reserved.
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Introduction

Atherosclerosis is a complex and slowly developing process
that starts early in life1,2 and gradually develops. Mecha-
nisms known to be associated with the formation of plaque
are endothelial dysfunction, intimal hyperplasia, lipid accu-
mulation and a pronounced inflammatory reaction.2

The majority of the atherosclerotic plaques remain
asymptomatic and stable, and hence most often unnoticed.
Vulnerable plaques however, are prone to rupture, which
can be a life-threatening event if it is followed by thrombo-
sis.2 Therefore the discrimination between stable and unsta-
ble, vulnerable plaques is of paramount importance.

In order to evaluate plaque vulnerability, (new modalities
of) several imaging techniques have been developed or are in
development. With this review, we aim to provide a global
overview of both (minimally) invasive and non-invasive
imaging modalities, with their advantages and limitations
and their potential to diagnose plaque vulnerability.
Vulnerable plaque: molecular mechanisms
and characteristics

In mechanical terms, plaque rupture occurs when the
imposed circumferential stress on the plaque exceeds its
tensile strength. Although the final rupture of the fibrous
cap is a mechanical event, it is the interaction between
macrophages, endothelial cells and smooth muscle cells
on a molecular level leading to an unfavourable biome-
chanical environment that will determine the vulnerability
of a plaque. It may therefore be insightful to have a clear
understanding of the processes leading to this vulnerability.

The prevailing view of the cascade of events leading to
plaque formation is that the process starts with endothelial
dysfunction, allowing cholesterol rich low-density lipopro-
teins (LDLs) to enter the arterial intimal layer from the blood
stream. Oxidation of these LDLs (ox-LDLs) causes an in-
flammation stimulus, with production of adhesion-molecules
that attract monocytes to the intimal layer. In the intima,
these monocytes transform to macrophages, ingest ox-LDLs
and become foam cells. Macrophages and lymphocytes re-
lease matrix metalloproteinases (MMPs), enzymes that can
degrade all components of the extracellular matrix.3 Inflam-
matory stimuli can promote cell apoptosis, leading to in-
creased foam cell death and accumulation of the necrotic
lipid core. A large lipid core reduces the plaques mechanical
strengthand makes it moreprone to rupture. This degradative
process is countered by a synthetic process which is mainly
driven by vascular smooth muscle cells (VSMCs).4 Macro-
phage-derived cytokines induce VSMCs to migrate in the
intima, where they synthesize extracellular matrix proteins
to form a fibrous cap over the lipid core. By doing so, they
increase the mechanical strength of the plaque.5e8

When the degradative process is dominant, vulnerable
plaques emerge. They are characterised by one or more of
the following features9,10 (Fig. 1):

e thin cap with large lipid core (occupying more than 50%
of the plaque volume);

e active inflammation (high density of macrophages,
monocytes and lymphocytes);

e large lipid core overlayed by a thin fibrous cap (a criti-
cal threshold value for the cap thickness is still
debated, with values ranging from 60 to 150 mm11,12);

e fissured plaque;
e plaque ulceration and stenosis >90%.

For the coronary arteries, a vast majority of the sudden
deaths results from plaque rupture followed by thrombosis
(Fig. 2). In a minority of cases, fatal thrombosis results from
a superficial erosion of the endothelial layer overlying the
plaque. Plaque erosion is more common in young victims,
in smokers and in women, and is associated with a proteo-
glycan-rich matrix.7,13,14

Extensive data confirm that most of the acute infarcts
are associated with non-stenotic lesions.14e18 In this
regard, it is important to highlight the role of arterial
wall remodelling: the artery responds to plaque growth by
increasing its cross-sectional area while retaining suffi-
ciently large lumen dimensions.19,20 An immediate conse-
quence is that these plaques do not cause angina pectoris
and can therefore be regarded as silent killers.

The most common classification scheme for vulnerable
plaques is that provided by the American Heart Association,
differentiating six types of lesions.21 This scheme was mod-
ified to correlate plaque histology with disease progres-
sion.14 More recently, the concept of the ‘vulnerable
patient’, rather than the ‘vulnerable plaque’, is introduced,
as vulnerable plaques are not the only culprit factors for the
development of acute cardiovascular syndromes.10

Invasive imaging techniques

Only two invasive techniques are currently used in daily
clinical practice: angiography and intravascular ultrasound



Figure 1 Structural characteristics of stable (A) and unstable plaques (B). Modified with permission from Rudd JH et al. Trends
Cardiovasc Med 2005;15(1):17e24; copyright Elsevier 2005.
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(IVUS). In addition, there is a variety of techniques derived
from IVUS or based on new imaging modalities which are
still in a research or preclinical phase.

Angiography

Angiography is an X-ray examination with intravascular
injection of contrast agents. It is one of the most used
invasive imaging procedures and is considered the gold
standard for imaging coronary, carotid and peripheral
artery lesions since more than fifty years,9,22 although
many studies have challenged the accuracy and reproduc-
ibility of this technique.23e25
Figure 2 Thrombosis after plaque rupture. Unstable angina,
with the thrombus not totally obstructing the lumen. With
permission from Davies MJ et al. Heart 2000;83(3):361e366.
The high resolution and the possibility to image a large
area at once are important advantages. Furthermore,
angiography identifies the location of luminal narrowing
accurately and serves as an assisting tool for bypass-surgery
and coronary angioplasty. However, it does not provide any
information on the properties of the vessel wall. Conse-
quently, only plaques leading to luminal narrowing can be
detected, while a vast majority of all acute ischemic
syndromes are related to non-stenotic plaques (<70% steno-
sis).14e18 This clearly states the inability of angiography to
identify vulnerable plaques25 and clarifies the need for alter-
native imaging techniques, providing information about the
structural and functional characteristics of plaques.

IVUS

Intravascular ultrasound (IVUS) images are captured with
ultrasound crystals mounted on an intravascular catheter,
emitting ultrasonic waves (20e50 MHz) and recording the
returning echoes. The axial resolution is inversely related
to the frequency of the emitted signal and varies from
200 to 100 mm, while the lateral resolution is approximately
250 mm.22 IVUS provides a real-time cross-sectional image
of the lumen area (Fig. 3), and is at present the only avail-
able technique to perform an in vivo measurement on
different cross-sections by a pullback of the catheter.26

Differences in acoustic impedance enable differentiation
of tissue characteristics, with: (i) echoreflective matter
with acoustic shadows corresponding to calcifications; (ii)
hyperechoic matter without acoustic shadows representing
fibrous tissue; and (iii) hypoechoic matter corresponding to
thrombotic or lipid-rich tissue.11,26 Plaque characterisation
is reliable in differentiating fibrous from calcified lesions,



Figure 3 Cross-sectional IVUS image of a healthy coronary
artery. The vessel lumen, the IVUS-catheter and the pericar-
dium are indicated. With permission from Escolar E et al.
CMAJ 2006;174(4):487e495 by permission of the publisher.
ª 2006 Canadian Medical Association.74
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but not in distinguishing soft from lipid-rich regions. This is
due to the fact that hypoechogenic echoes do not necessar-
ily correspond to soft tissue.27

Resolution is relatively low (200 mm), making it some-
times impossible to detect vulnerable fibrous caps
(<150 mm), hence the lower sensitivity in detecting throm-
bus and plaque-rupture.28 Diagnostic use of IVUS includes
guidance for angioplasty, atherectomy and stenting,29 but
also visualisation of intermediate lesions (angiographic se-
verity between 40 and 75%),26 where angiography does
not suffice, as well as means of assessing therapeutic ef-
fects like plaque volume regression.30

Recently, new developments in the postprocessing of
the IVUS signal offer improved methods to characterize
plaque composition.
Figure 4 (A) Angiography of the left coronary artery. (B) IVUS im
grated backscatter (IB)-IVUS image, constructed using a color grada
fibrous cap (red or white). CL Z calcification. Modified after Sano K
IVUS radiofrequency data analysis

IVUS contains more information than only the grey-values.
When studying the radiofrequency (RF) ultrasound signals,
more advanced assessment of plaque composition becomes
possible. RF data is converted to the frequency domain,
where different spectral parameters are used to develop
classification schemes for plaque tissue types, often pre-
sented in colour-coded maps (Fig. 4).

Integrated backscatter (IB) IVUS utilises the average
power of the backscattered signal to characterise five
different types of tissue.22,31,32 IB-IVUS has been tested in
vivo on carotid, femoral and coronary arteries.32,33

With the use of a combination of previously identified
spectral parameters, Nair et al.34 constructed classification
trees, allowing discrimination of at least four different
types of tissue. This technique is also called ‘virtual
histology’ (VH-IVUS),35 stressing the high correlation with
histologic findings. In vivo studies of human coronary
arteries have been performed.34,36

Windowed fast Fourier transform (WFT) is the most
commonly used transformation method. If the transforma-
tion to the frequency domain is based on an autoregressive
model, real-time imaging becomes possible34 at the resolu-
tion provided by IVUS.37 VH-IVUS is a very promising tech-
nique in detecting plaque composition, and its potential
clinical value, in particular in discerning the vulnerable
plaque, is being determined.38

IVUS palpography and elastography

Vulnerable and stable plaques have a distinct composition,
and thus a distinct mechanical behaviour. Tissues that
differ in hardness are expected to be compressed differ-
ently if a defined pressure is exerted. Therefore, IVUS
elastography compares two (ECG-gated) IVUS-images at
different pressure levels in diastole to minimize artefacts
due to cardiac motion. By studying the relative compression
or distension of the different segments (based on the
radio-frequency signals), strain maps can be derived using
cross-correlation analysis. These strain maps show the
distribution of strain in the vessel wall and can be used to
characterize different types of tissue39,40 with a depth res-
olution of 200 mm (Fig. 5).
age of the segment indicated by the arrowhead in A. (C) Inte-
tion indicated on the right. Note the large lipid core (blue) with
et al. J Am Coll Cardiol 2006;47(4):734e741. ª 2006 Elsevier.33



Figure 5 Working principle of intravascular elastography and palpography. An intravascular ultrasound (IVUS) image is acquired
at two different pressure levels. Using cross-correlation analysis, radial strain in the tissue is determined. This information is super-
imposed on the IVUS image. Elastography (upper right) assesses the complete wall thickness, while palpography (lower right) only
images the most superficial 450 mm. With permission from Schaar J et al. J Am Coll Cardiol 2006;47(8):C86eC91. ª 2006 Elsevier.41
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While elastography addresses the arterial wall over its
complete thickness, palpography only images the most
superficial 450 mm of the wall.41 Because the acting force
of blood pressure is applied on the lumen-vessel boundary,
palpography results are easier to interpret.

Recent in vitro and in vivo studies on coronary and femoral
arteries have shown that lipid-rich plaques are associated
with higher mean strain values than fibrous plaques.42,43 In-
terestingly, the presence of a high-strain spot surrounded
by lower strain regions has a high predictive power to identify
a rupture-prone plaque. Current palpography technology and
algorithms allow the identification of three types of tissue: fi-
brous, lipid-rich, fibro-lipid tissue. The clinical value of pal-
pography is currently under investigation.43,44

The quality of elastography- and palpography-strain
maps is dependent on the quality of the original IVUS-
signal, which can be impaired by arrhythmias and motion
artefacts. The selection of a particular cross-section along
the vessel trajectory by the operator introduces selection
bias, which can, however, be overcome by 3D-imaging,
where images are captured during pull-back of the IVUS
catheter. At present, 3D-palpography is being developed.
Technical problems are associated with out-of-plane
motion of the catheter while moving longitudinally.45
Angioscopy

Angioscopy provides direct visualization of the inner vessel
surface by means of a miniature endoscope. Using a xenon-
light source and a mini-camera, colour images are produced.
Angioscopy is considered the gold-standard technique in
detecting thrombus,46,47 and is frequently used as a guiding
technique for bypass-surgery and angioplasty. The colour of
the vessel wall is found to be closely related to the clinical
syndrome.48,49 Normal, healthy arteries are glistening
white, while a lipid-rich vessel appears yellow (Fig. 6).

Colorimetric analysis allows an objective determination
of the colour, enabling colour-based diagnosis. Angioscopy
is accurate in detecting plaque disruption and thrombus.
Moreover, Uchida et al.48 discovered that angioscopically
glistening yellow plaques are more frequently associated
with acute syndromes than non-glistening yellow plaques.
This still developing technique could therefore provide
a tool to identify one of the more common types of vulner-
able plaques, the thin-cap atheroma.

Nevertheless, angioscopy also has some important lim-
itations, the most important being that blood vessels need
to be flushed because of the absorbance of xenon-light by
blood. This is achieved with a proximal occluding balloon,
which might induce ischemia or endothelial injuries, since
it requires physical contact with the vessel wall.

Angioscopy only assesses the (colour of the) vessel
surface. Although the percentage saturation of yellow
colour is associated with the thickness of the cap,50 quanti-
tative analysis of the fibrous cap thickness and the amount
of lipid remains limited.48

It can therefore be stated that angioscopy is a useful
diagnostic tool in detecting thrombus and disruption,
however, its capacities in detecting vulnerable plaques



Figure 6 Optical coherence tomographic (OCT) scan of
a pig’s coronary artery. Details of the pericardium, the veins
and the coronary artery walls are clearly visible due to the
high resolution. With permission from Escolar E et al. CMAJ
2006;174(4):487e495 by permission of the publisher. ª 2006
Canadian Medical Association.
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are limited. Angioscopy has been approved for clinical use
in Japan only.51
OCT

Optical Coherence Tomography (OCT) uses an infrared low
coherent light source (wavelength between 1300 and
1320 nm; broad bandwidth) to obtain images at micron
scale level.52e54 Imaging is achieved by measuring the back-
scattered light intensity, which is displayed as a grey scale
image (Fig. 6).

OCT is superior to all other imaging modalities in terms
of resolution, which ranges between 4 and 20 mm for both
spatial and axial (depth) resolution.52 Discrimination of
three different tissue types has been proven feasible
with high sensitivity and specificity in aortas, carotid
and coronary arteries.52e55 More importantly, OCT allows
accurate measurement of the thickness of the fibrous
cap. Furthermore, a recent study56 claims that in vivo
quantification of macrophage-activity might be possible.
The catheters used for OCT are small, light and relatively
inexpensive, since they contain only optical fibers. Too
slow acquisition rate has been a drawback in the past,
but recent devices reach a speed of 16 frames/s. In this
regard, the development of an optical frequency-domain
imaging (OFDI) device, reaching 108 frames/s, enables in
vivo imaging over large tissue areas.57 Finally, since OCT
uses light, it can be combined with a range of spectro-
scopic techniques.58

There are, however, also several limitations. The absor-
bance of laser light by blood implies the need for blood
flushing, with associated problems of endothelial damage
and induced ischemia. Second, the penetration depth is
restricted to 1e2 mm, hampering detection of the lipid-rich
core behind fibrous tissue. Third, discrimination between
lipid-pools and calcium deposits remains difficult. Fourth,
OCT-catheters are rather fragile. Currently, OCT is able to
identify those patients with relatively stable fibrotic pla-
ques, but identification of vulnerable plaques is still under
development.52 While applying OCT in vivo, angiography is
needed as a guiding technique for correct positioning of
the catheter.
Thermography

Inflammation is one of the most important pathophysiologic
mechanisms contributing to plaque vulnerability, plaque
disruption and increased thrombogenicity.1 Since an inflam-
mation reaction is associated with heat production, intra-
vascular measurement of the temperature by means of a
thermography catheter can quantify the inflammation
reaction. Initial ex vivo studies were performed on carotid
arteries.59 More recent, in vivo experiments were focussed
on coronary arteries, revealing that atherosclerotic arteries
exhibit a significantly more heterogeneous temperature
pattern than healthy arteries,49,60 indicating different loca-
tions with an inflammatory reaction. This finding supports
the concept of pan-coronary inflammation, in which the
‘vulnerable patient’ is considered rather than the ‘vulnera-
ble plaque’.10 Furthermore, the temperature difference
between plaque and normal vessel wall was higher in pa-
tients with adverse outcome.49,61,62 This second observa-
tion led to the assessment of a cut-off temperature
difference value, although large scale clinical studies are
still needed to determine the optimum temperature cut-
off level to identify vulnerable plaques.61 When combined
with visual information, additional functional information
on the inflammatory status of the plaque might be of great
value. A trend towards lower temperature differences is
seen in recent publications, but the difference is still of sig-
nificant value. However, its clinical additional value is still
to be determined.
Spectroscopy

Spectroscopy makes use of a light source with a high
coherent spectrum, while imaging is achieved by analysing
the wavelength of the backscattered light. A small fraction
of the incident light is scattered back at a slightly different
wavelength. This shift in wavelength is called the Raman-
effect, and depends on the size, shape and strength of the
molecule. Depending on the light source, two different
subtechniques emerge. Raman-spectroscopy uses laser
light of one wavelength, usually 800 nm, while Near Infra-
Red spectroscopy makes use of an infrared light source
with wavelength between 400 and 2400 nm.63e65

The Raman spectrum of a molecule is unique: it can be
considered as a molecular fingerprint.65 Raman spectros-
copy is well suited for analysis of the chemical composition
of atherosclerotic plaques, and has therefore the potential
to differentiate between lipid-rich, fibrotic and calcified
tissue (Fig. 7). The technique has already been tested in
vivo,64 so clinical studies can start to demonstrate its



Figure 7 Raman spectrum from a highly calcified atheroma-
tous plaque. The phosphate vibration at 960 cm�1 indicates the
presence of calcium salts (CS). DA Z delipidized artery seg-
ments; FC Z free cholesterol; CE Z cholesterol esters;
TG&PL Z triglycerides and phospholipids; CS Z calcium salts.
Modified with permission from Van de Poll et al. J Cardiovasc
Risk 2002 Oct;9(5):255e261. ª 2002 Wolters Kluwer.66
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clinical value.66 Important limitations are the short pene-
tration depth (not more than 1.5 mm),66 strong background
scatter, light absorption by blood (flushing is required) and
the low signal-to-noise ratio.22

Near-infrared spectroscopy (NIRS) uses a less coherent
emitting spectrum, resulting in a greater penetration depth
(up to 2 mm), but a lower capability to identify individual
chemical components. NIRS has proven to be well suited
for the identification of plaque components, especially
quantification of cholesterol correlates well with chromato-
graphic reference data.12,63 As for thermography, spectros-
copy needs to be combined with another imaging modality
to deliver structural information, such as IVUS.
Figure 8 Non-invasive ultrasound images of carotid lipid-rich (A) a
tic shadow below the lesion. Modified with permission from Rudd
Elsevier.9
Non-invasive imaging techniques

Much less complications are associated with non-invasive
imaging techniques than with their invasive counterparts.
Non-invasive imaging modalities have a greater potential
for both screening of high-risk patients and long-term
follow up of treated patients. However, non-invasive
techniques do not reach the same resolution as invasive
techniques (Table 2), and imaging of the coronary arteries
remains a tough challenge. Some of the mentioned tech-
niques may require injection of contrast agents or include
ionizing radiation, and are therefore not completely non-in-
vasive. The level of invasiveness is, however, of a different
order compared with the catheter based techniques
described above.
Ultrasound

Non-invasive (surface or transvascular) ultrasound is capa-
ble of imaging large superficial arteries (carotid, brachial,
iliac and femoral arteries), where the ultrasound probe can
be placed directly over the region of interest.

B-mode (‘‘Brightness’’ mode) ultrasound allows accurate
measurement of the arterial diameter and the intima-media
thickness (IMT), and permits a limited characterisation of
the plaque morphology (Fig. 8). IMT-measurements are
most reliable at the far arterial wall and do not indicate
whether the thickening is due to intima or media infiltration
or hypertrophy. Nevertheless, large prospective studies
have demonstrated that carotid IMT may be a useful marker
of cardiovascular disease progression.67,68 Doppler ultra-
sound measures blood velocity, and can be used in estimat-
ing the degree of luminal stenosis, by detection of flow
disturbances downstream large stenoses. Most commer-
cially available ultrasound probes operate at 3.5e10 MHz.
The axial resolution is less than 400 mm, while lateral
resolution is about 600 mm.11,22 However, radio frequent
(RF)-data based algorithms have been developed to allow
automatic detection of the vessel walls. With such algo-
rithms, it becomes possible to ‘‘track’’ the displacement
nd calcified (B) plaques. The calcified plaque induces an acous-
JH et al. Trends Cardiovasc Med 2005;15(1):17e24. ª 2005
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of the vessel wall in time with an error less than 10 mm.69,70

Important advantages of non-invasive ultrasound are the low
cost, its wide spread availability, the lack of side-effects and
the short examination time. However, coronary ultrasonog-
raphy remains challenging and measurement reproducibility
can be a problem for some applications. For the carotid
arteries, Nederkoorn et al. report a sensitivity of 87% in diag-
nosing 70% to 90% stenosis versus <70% stenosis.71

Errors can be caused by inaccurate interpretation or
visualisation. Furthermore, discrimination of different pla-
que components has low accuracy and the signal-to-noise
ratio is significantly lower than in IVUS. Nevertheless, non-
invasive ultrasound (B-mode, M-mode and echotracking)
currently is the standard imaging technique for patients
with suspected carotid artery disease.9

Multislice computed tomography (CT)

Computed tomography uses X-ray beams, with the X-ray
source rotating around the patient’s body in a circular or
helicoidal (spiral CT) way. The X-ray information is
processed into a 2D-form on the monitor.22

The first CT scanners used to study the coronary arteries
were fourth-generation, Electron Beam (EB) CT scanners,
with a high image-acquisition rate (10e20 frames per
second72) were developed in order to minimize cardiac
motion artefacts. To optimize imaging, heart rate modula-
tion with b-blockade can be applied and patients are asked
to hold their breath during the measurement, which typi-
cally lasts around 10e15 s. Iodinated contrast material is
used to provide adequate anatomical detail.

EBCT detects and quantifies calcification with high
accuracy. This led to the development of a mean calcium
score, which was found to be an independent predictor of
mortality.73 However, great care should be taken while
interpreting the power of this calcium score. Only a small
proportion of the asymptomatic individuals with calcified
coronary arteries ultimately develop symptomatic coronary
artery disease. Therefore, the presence of coronary artery
calcium may not pose a higher risk than the standard
coronary risk factors.11,73,74

More recently, Multidetector (MD) CT (also known as
multi-slice spiral CT) has been developed with a gantry
Figure 9 In vivo MRI images of a patient with a large plaque in th
The arrows indicate the plaque. With permission from Fuster V et
speed of three rotations per second and up to 64 detector
rows.75 An increased number of detector rows allows
shorter acquisition times, potentially decreasing motion ar-
tefacts, and providing a resolution of 0.3 � 0.3 �
0.4 mm3, associated with a temporal resolution of
165 ms.51 MDCT might be able to discriminate calcified
from fibrotic and lipid-rich components in a plaque. This
has been validated in vivo comparing with IVUS and histo-
pathologic reference data.75 However, substantial overlap
remains between the different categories.76 Most efforts
are focussed on coronary imaging, since this is technically
the most demanding anatomical location. Nevertheless,
MDCT can also be applied on carotid77 and peripheral ar-
teries.78 An important drawback of this technique is the
high radiation dose, which is higher in MDCT than in EBCT.75

Magnetic resonance imaging (MRI)

Magnetic resonance imaging uses a strong homogenous
magnetic field (for clinical applications in the range of
1.5e3 Tesla) to align the protons in the body. Three addi-
tional magnetic gradient fields are applied: one is used to
select the slice and the two other encode spatial informa-
tion. A radiofrequent pulse then excites the protons and
receiver coils detect the radiofrequencies emitted by the
protons as they relax back towards their baseline position.
The emitted signal is influenced by relaxation times (T1 and
T2), proton density, motion and flow, molecular diffusion
and magnetization transfer.11,22

The ability to image atherosclerotic plaques depends
mainly on the signal-to-noise ratio and the contrast-
to-noise ratio.

Magnetic resonance angiography (MRA) is used to
assess the arterial lumen, and can be obtained with or
without administration of a paramagnetic contrast agent,
such as gadolinium. MRA demonstrates the severity of
stenotic lesions and their spatial distribution, whereas the
high-resolution MRI can identify the main components of
the atherosclerotic plaque79 such as the lipid-rich core,
calcification and hemorrhage with good sensitivity and
specificity, as can be seen in Table 2. Human in vivo
plaque characterization has been achieved in the aorta
and the carotid artery80,81 (Fig. 9). Coronary plaque
e aortic arch (right) at the level of the descending aorta (left).
al. J Am Coll Cardiol 2005;46(7):1209e1218. ª 2005 Elsevier.79



Figure 10 In vivo gamma camera images of WHHL rabbit injected with 5 mCi 99mTc-MDA2. A, Blood pool image acquired 10 min
after injection. Heart (h), liver (l), stomach (st), spleen (sp), kidneys (k), bladder (bl), intestine (i), and aortic (ao) blood pool are
easily seen. B, Image at 12 h after injection shows less blood pool signal because of excretion of 99mTc-MDA2 and decay of 99mTc.
C, Image at 14 h, obtained 2 h after injection of MDA-LDL. With permission from Tsimikas S et al. J Nucl Cardiol 1999;6(1):41e53.
ª 1999 Elsevier.96
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characterization by MRI still poses considerable technical
difficulties.

The main problems MRI is actually struggling with are its
poor spatial resolution (400 mm) and time resolution.80

Improvement can be reached by increasing the strength
of the homogenous magnetic field (up to 9.4 T or even
higher for small animal research), which enables resolu-
tions of about 40 mm.82,83 Another possibility to increase
the signal-to-noise ratio is by improving the receiver coils.
Phased-array84 and surface coils have shown to significantly
increase resolution.84e86

At present, research is being directed towards the use of
contrast agents, such as ultrasmall superparamagnetic
particles of iron oxide (USPIOs) that are attracted by
accumulated macrophages.87e90 Trivedi et al. recently
Table 1 SPECT-radionuclides used for atherosclerotic plaque im

Target mechanism Target cell
or molecule

Tracer

Lipid accumulation LDL 125I-, 123I-, 111In-, Tc
ox-LDL Tc99m-oxLDL

125I-MDA-2
Macrophage infiltration CCR-2 125I-MCP-1

GG-antibodies
Matrix breakdown MMP 125I-MMP-inhibitor

111In-MMP-inhibitor
Apoptosis PS Tc-Annexine-A5

124I-en 18F-Annexine
Coagulation Fibrine Tc-99m T2GIs Fab
Platelets GPIIIb/IIIa Tc-99m DMP-444

>1* Z significantly higher than one; UK Z unknown, ox-LDL Z oxid
MMP Z matrix metalloproteinase, PS Z phosphatidyl serine, GP Z gly
reported a sensitivity of USPIO-accumulation in macro-
phages of 80%.88 It is clear that contrast agents that specif-
ically target the macrophage may help in the detection and
risk stratification of atherosclerotic plaque.91

In summary, magnetic resonance imaging increasingly
allows in vivo characterisation and quantification of plaque
composition in a non-invasive and non-ionizing way. This
opens bright perspectives for future clinical use in screen-
ing of patients and long-term follow-up studies.

Nuclear imaging

Nuclear imaging methods are based on the non-invasive
detection of radioactive radiation from isotopes brought into
the body. If these radionuclides can be conjugated with
aging

Radioactivity plaque/normal Half-life (min)

99m-LDL Low >600
<6 86
6 680
6 10
>1*
>1*
11
9.3 60

-A5 6 12
2 UK
>1* 60

ized low-density lipoprotein, CCR-2 Z chemokine receptor 2,
coprotein-receptor.
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a tracer compound that plays a functional role in the
atherosclerotic process, functional imaging of atherosclero-
sis becomes possible.

SPECT

Single-photon emission computed tomography (SPECT) is
a nuclear tomographic imaging technique using gamma rays
(Fig. 10). Many radionuclides have been evaluated for their
SPECT-potential to identify inflammation in atherosclerotic
plaques. An overview is given in Table 1. A good radionu-
clide is characterised by three important parameters: (1)
a high target-to-background radioactivity ratio means that
the tracer compound has a significantly higher radioactivity
than the background tissue. (2) A high blood tracer clear-
ance means that unbound radionuclides clear out quickly
from the imaging region. (3) The ease of preparing the ra-
dionuclide-tracer compound is an important parameter
from the practical point of view.5,9,92

Currently, genetically engineered antibodies against
human oxidized low-density lipoproteins (ox-LDL) hold
most promise in terms of imaging and quantifying lipid
transport in advanced human lesions.92

PET

Positron emission tomography (PET) uses positron-emitting
radionuclides. These emitted positrons annihilate with
electrons, producing a pair of annihilation g-photons
moving in opposite directions. When the surrounding
scintillator detects two g-photons at the same moment,
they must have come from the same positron, which was
located on the straight line between the two detection
points. A typical PET-image is shown in Fig. 11, together
with fused PET/CT-images.

PET has certain advantages over SPECT, the most
important being the superior resolution: 4e5 mm compared
with 1e1.5 cm for SPECT.92

Most of the vulnerable plaques are metabolically very
active.22 Therefore, a PET-detectable metabolic tracer
such as Fluorine-18-labeled deoxyglucose (FDG) has been
Figure 11 Transaxial CT (left), PET (middle), and fused PET/CT (
onstrated on the medial side of the lower descending aorta (arrow
aorta (arrowhead). This uptake is accompanied by small calcificatio
(right) corresponds to the grey scale on the PET image (m
2003;229(3):831e837. ª 2003 RSNA.97
extensively used in both in vitro and in vivo studies,93 and
even in clinical studies.94 Recent studies demonstrated
that FDG-PET can visualise plaque-inflammation accu-
rately92 and quantify macrophages.95 However, in order to
be clinically applicable, there are still a number of limita-
tions to be overcome. The resolution offered by PET is in-
sufficient to provide the necessary anatomical detail and
so the technique must be combined with another imaging
modality. Co-registration with MRI holds the most promise,
but combined MRI/PET scanners are still far from reality.
Furthermore, if PET is to be used for long-term follow-up
studies, the radiation exposure has to be reduced
significantly.

Imaging of the coronary arteries poses the traditional
problems associated with cardiac and respiratory motion
artefacts. In addition, the high background uptake of FDG
into the myocardium reduces the target-to-background
ratio. Annexin-A5 and MMP tracers are not taken up by
the healthy myocardium, and thus could be used for
coronary imaging, provided that they can be labelled with
positron emitting radionuclides.

In conclusion, it can be stated that nuclear imaging, in
particular PET, holds promise in identification and quanti-
fication of macrophage-activity. Currently, this application
of PET remains in the research domain, mainly due to the
low resolution and the high radiation exposure.
Conclusion

Extensive research has emerged a wide variety of imaging
techniques assessing the vulnerable plaque. Table 2 gives
an overview of the discussed invasive and non-invasive
techniques, with the invasive methods clearly demonstrat-
ing the highest potential to detect rupture-prone plaques.
The recent developments in post-processing of IVUS-data
enhance the possibilities of this technique considerably.

The ideal screening technique, however, is non-invasive
and provides accurate identification and characterisation of
all atherosclerotic plaques. The current standard non-
invasive imaging modality is ultrasound. In addition to the
fact that the method is bound by the physics of the acoustic
right) images. Aortic wall FDG uptake with calcification is dem-
). FDG uptake (grade 3) is also seen on the lateral side of the
ns. The intensity of the golden color on the fused PET/CT image
iddle). With permission from Tatsumi M et al. Radiology



Table 2 Atherosclerotic plaque imaging modalities

Imaging modality Resolution (mm) Penetration Calcium Fibrous
cap

Lipid
core

Thrombus Inflammation Status

Spatial Axial

IVUSa 100 100 Total þþþ þ þþ þ � Clinically applied
IVUS RF data analysis 40 100 Total þþþ þþ þþ þ � Preclinical studies
Elasto- & palpography 100 225 Total þþ >þ >þþ UK þþþ Preclinical studies
Angioscopy 10 UK Poor � þ þþ þþþ � Clinically appliedb

OCT 5 10 1e2 mm þþþ þþ þþþ þþ þ Clinical studies
Thermography 500 UK Poor � � � � þþþ Clinical studies
Spectroscopy NA NA 1e2 mm þþ þ þþ � þþ Preclinical studies
Ultrasoundc 600 400 9 cm � � � � � Clinically applied
CTd 400 400 NA þþþ � þ � � Clinical studies
MRI 250 3,000 NA þ þ þþ þ þþ Clinical studies
SPECT 10,000 NA NA � � þ þ þþ Preclinical studies
PET 4000 NA NA � � þ þ þþ Preclinical studies

NA indicates not applicable; UK, unknown; poor, less than total penetration; þþþZ sensitivity >90%; þþZ sensitivity 80e90%;
þZ sensitivity 50e80%; �Z sensitivity <50%.

a IVUS at 40 MHz.
b Only in Japan.
c Ultrasound at 8 MHz.
d CT: 64-slide MSCT.
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waves in terms of resolution and penetration depth, this
technique is also operator-dependent and has a low
reproducibility. In the future, a combination of functional
(PET) and anatomical (MRI) imaging techniques may provide
optimal plaque identification. Until then, a combination of
MR and CT may be used: CT to localize suspicious coronary
lesions within a short scan time, while MRA does the same in
the systemic arteries, within a much longer scan time.
High-resolution MRI can then proceed with tissue charac-
terization of the problem sites.
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