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Abstract Endothelial nitric oxide synthase (eNOS) is the main source of nitric oxide (NO) in the
vascular wall, a molecule with anti-inflammatory, antithrombotic, vasorelaxant, antioxidant
and finally antiatherogenic properties. eNOS is expressed in vascular endothelium, and it uses
L-arginine as a substrate, while it also requires the presence of multiple co-factors such as tet-
rahydrobiopterin (BH4), nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) and
others. In the presence of BH4 deficiency, this enzyme becomes uncoupled, and it is turned into
a source of superoxide radicals instead of NO. Therefore, under these conditions which are
present in patients with advanced atherosclerosis, eNOS in human vascular endothelium is
largely a source of reactive oxygen species, inducing in this way atherogenesis. Therefore,
the aim of future therapeutic strategies targeting atherosclerosis through regulation of eNOS
physiology, should take into account that up-regulation of this enzyme in the vascular wall
may not lead to a respective increase of NO bioavailability and improvement of vascular homeo-
stasis, but it may actually induce intravascular oxidative stress, if intracellular bioavailability of
eNOS co-factors is not simultaneously elevated. In conclusion, eNOS plays a critical role in the
regulation of vascular homeostasis, and it is a therapeutic target against atherogenesis.
ª 2011 Association for Research into Arterial Structure and Physiology. Published by Elsevier
B.V. All rights reserved.
one.net.gr (C. Antoniades).
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Introduction

In 1980, Furchgott and Zawadzki1 demonstrated that the
relaxation of vascular smooth muscle cells (VSMC) in
response to acetylcholine is dependent on the anatomical
integrity of the endothelium. The factor responsible for this
intracellular relationship was named endothelium-derived
relaxing factor (EDRF). In the late 1980s this factor was
recognized as the free radical gas, nitric oxide (NO).

NO is synthesized by the enzyme NO synthase (NOS). The
NOSs were first identified and described in 1989. NOSs
catalyze NO biosynthesis through a reaction involving the
conversion of L-arginine to L-citrulline.2 The enzyme,
functions as a dimer consisting of two identical monomers,
which can be functionally and structurally divided into two
major domains. The first domain is C-terminal reductase
domain and the second is N-terminal oxygenase domain.3

The enzyme contains binding sites for nicotinamide
adenine dinucleotide phosphate (NADPH), flavin adenine
nucleotide (FAD) and flavin mononucleotide (FMN) in close
homology with cytochrome P-450 reductase, whereas the
latter binds iron protoporphyrin IX (haem) and tetrahy-
drobiopterin (BH4), as well as the substrate L-arginine.

There are three distinct isoforms of NOSwhich differ both
in structure and in function.4 Endothelial NOS (eNOS) and
neuronal NOS (nNOS) are constitutively expressed and are
referred to as Ca2þ-dependent enzymes (even though eNOS
can be activated in a Ca2þ-independentmanner).5 Inducible
NOS (iNOS) is only expressed at high levels after induction by
cytokines or other inflammatory agents, and its activity is
independent of an increase of intracellular Ca2þ.

The three NOS isoforms are characterized by regions of
high homology (oxygenase and reductase domains) but at
the same time each isoform exhibits distinctive features
which reflect their specific in vivo functions.

The main source of endothelial NO is eNOS expressed by
endothelial cells (ECs). Particular properties of eNOS which
enable it to perform its specialized functions include Ca2þ
sensitivity and the post-translational modifications which
mediate sub-cellular localization. These enable the enzyme
to respond not only to neurohormonal agents but also to
hemodynamic forces. Although eNOS was often referred to
as constitutive NOS, a number of factors such as hypoxia,
estrogens and exercise are now known to alter its expres-
sion. Since endothelial control of vascular tone is a sensi-
tive and highly tuned process, these changes are likely to
be important in cardiovascular function especially in
pathophysiological situations.

In addition to the well-studied role of NO in the process
of penile erection,6 non-adrenergic, non-cholinergic relax-
ation occurs in all vascular smooth cells as a result of the
expression of nNOS in peripheral neurons.7 In terms of
enzymatic function nNOS appears to differ from other NOS
isoforms by its readiness to catalyze the uncoupled oxida-
tion of NADPH. Few are known for the reaction mechanism,
even though it will help to understand the damaging role of
nNOS in brain ischemia.8

iNOS expression can be induced by inflammatory medi-
ators in most types of vascular cells, including ECs,9 cardiac
myocytes,10 smooth muscle cells11 and macrophages.12 The
expression of iNOS by macrophages and smooth muscle cells
in atherosclerotic lesions has been taken as evidence for its
determinant role in atherosclerosis.12 In addition iNOS
expression is responsible for the impairment in eNOS-
derived NO production in vessels treated with inflammatory
mediators.13 On the other hand, iNOS expression may in
some cases be protective, as shown by the iNOS-mediated
suppression of allograft atherosclerosis, via the prevention
of intimal hyperplasia.14

Endothelial nitric oxide synthase (eNOS) gene

Although several vasoactive factors are produced by the
endothelium, the principal and best characterized is NO,
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produced by eNOS. The bioavailability of NO on the vessel
wall is dependent on multiple factors such as the expression
of eNOS, the presence of substrate and co-factors for eNOS,
the phosphorylation status of eNOS, and the presence of
reactive oxygen species (ROS) which can inactivate NO.

The three distinct genes for the human neuronal,
inducible and endothelial NOS isoforms exist with a single
copy each in the haploid human genome. The eNOS gene
has 26 exons, 25 introns and it is located at 7q35e7q36 of
chromosome 7. The protein consists of 1203 amino-acids
and has a molecular weight of 133 kDA.15
Regulation of eNOS expression and NO availability

The ability of eNOS to produce NO is essential to vascular
homeostasis. Disturbance of this ability is a major contrib-
utor to the pathogenesis of vascular disease. In vivo studies
have shown that expression of eNOS is vital to endothelial
function and have led to the understanding that eNOS
expression is subject to significant degrees of regulation by
numerous physiological and pathophysiological stimuli via
mechanisms that alter steady-state eNOS mRNA levels.
Such stimuli involve shear stress, hypercholesterolemia,
estrogens, sphingosine 1-phospate, heat shock protein-90,
transforming growth factor-b1, etc.

Laminar shear stress is one of the most potent regulators
of eNOS mRNA expression. Laminar shear stress is a stimulus
that has been shown to increase eNOS mRNA levels in
vitro16 and in vivo.17 Transactivation of the eNOS promoter
by laminar shear stress appears to be part of a negative
feedback loop that involves NO.18 Laminar shear stress
activates nuclear factor kB (NF-kB), and in addition,
simultaneously increases enzymatic production of NO. The
activation of NF-kB leads to translocation of p50/p65 het-
erodimers to the nucleus. The binding of these factors to
the eNOS promoter leads to an increase in eNOS tran-
scription, increasing eNOS protein levels, further aug-
menting NO production. The increased NO production
ultimately leads to nitrophosphorylation of p50 and inhibi-
tion of NF-kB, resulting in termination of eNOS transcrip-
tion.18 Dekker et al.19 were the first to demonstrate
increased expression of lung Kruppel-like factor (KLF2) in
human umbilical vein ECs (HUVECs) exposed to sustained
shear stress. Recently it was established that this tran-
scription factor is involved in laminar shear-induced eNOS
transcription. These investigators showed that KLF2 mRNA
is present in the endothelium of healthy human aortas,
exclusively in areas of high flow. Subsequently, it was
shown that adenoviral over expression of KLF2 in HUVECS
resulted in a dramatic induction of eNOS mRNA, protein,
and enzyme activity.20

Recently, it has been demonstrated that tumor necrosis
factor a (TNF-a) also has effect on eNOS transcription. TNF-
a decreased the activity of a human eNOS promoter
construct that had been transiently transected into bovine
aortic ECs, in a time- and dose-dependent manner.21

Although the TNF-a-dependent inhibition of promoter
activity appeared to involve the NF-kB cascade, the loci
mediating the inhibition were mapped to two Sp1-binding
sites positioned between �109 and �95 and �81 and �67
relative to the transcription starting site.21 Interestingly,
mutations of either loci greatly suppressed basal promoter
activity, but only the upstream locus (�109 to �95) showed
a decrease in Sp1/Sp3 binding activity in response to TNF-a.

Cyclosporine A (CsA) has been shown to paradoxically
increase NO production both in vivo22 and in vitro23 consid-
ering the fact that therapy with this agent is associated with
hypertension. Bovine aortic ECs exposed to CsA had a three-
fold increase in the expression of eNOSmRNAwhich was time
dependent.22 Up-regulation of eNOS expression, induced by
CsA has been proposed to be dependent on increased
synthesis of ROS.24 Drummond et al.24 found that H2O2

increased eNOSmRNA levels up to fivefold in a time and dose-
dependent manner.24 Analysis of the signaling cascade
responsible for the effect of H2O2 on eNOS transcription
established its dependence on Ca2þ/calmodoulin-depen-
dent protein kinase II (CaMKII) and janus kinase (JAK2).25

Through activation of CaMKII, H2O2, appears to be the medi-
ator of increased eNOS expression that occurs in response to
oscillatory shear stress.26

Lysophosphatidylocholine (lysoPC) has been shown to
stimulate EC production of ROS27 and increases eNOS
expression via enhanced transcription.28 Deletion analysis of
humaneNOSpromoter-luciferase construct has identifiedSp1
site at �104 to �90 and PEA3 sites at �40 to �24 as being
involved in lysoPC-induced promoter activity.29 Gel-shift
assays revealed that lysoPC augmented Sp1 binding activity.
Subsequent analysis of the signaling events involved in the
stimulatory effects of lysoPC on promoter activity, revealed
a PI-3Kg-related pathway.30 In this pathway PI-3Kg activated
JAK2,which in turnactivatedmeiosis specifickinase1 (MEK1).
MEK1 stimulated Sp1 binding to the eNOS promoter through
activation of Extracellular Signal-Regulated Kinases 1 and 2
(ERK1/2) and subsequently increased protein phosphatase 2A
activity.29,30 ERK1/2 exerted its effect through reducing the
control of protein phosphatase 2A by casein kinase 2.31

In both cell culture and animal studies, 3-hydroxy-3-
methylglutaryl coenzyme A reductase inhibitors (HMG-CoA
reductase; statins) have been shown to increase eNOS
expression.32 In human saphenous vein ECs, simvastatin and
lovastatin both increased eNOS mRNA and protein levels in
a time- and dose-dependent manner.32 The mechanism
responsible for this effect was found to be post-transcrip-
tional; simvastatin treatment did not alter the rate of eNOS
transcription but significantly prolonged eNOS mRNA half-
life as assessed by actinomycin D transcriptional arrest
studies. In addition, these studies showed that simvastatin
and lovastatin both counteracted the downregulation of
eNOS expression by hypoxia and oxLDL,32 two stimuli known
to decrease eNOS mRNA stability.33 By inhibiting HMG-CoA
reductase, statins prevent the synthesis of isoprenoid
intermediates in the cholesterol biosynthetic pathway.33

These intermediates serve as important lipid attachments
for the post-translational modification and activity of
a variety of signaling proteins. These proteins are members
of the Rho GTPase family.34 Laufs and Liao35 found that
Rho negatively regulates eNOS expression in human ECs;
Rho inhibition increased eNOS expression, and Rho activa-
tion diminished eNOS expression. Furthermore, treatment
of ECs with statins decreased the geranylgeranylation,
membrane translocation, and GTP binding activity of
Rho. Therefore, statins appear to upregulate eNOS expres-
sion by blocking Rho geranylgeranylation. Interestingly,



Table 1 Factors affecting eNOS activity and expression.

Positive Regulation Negative Regulation

Activity Expression Activity Expression
Laminar shear stress20 Laminar shear stress16 Hypercholesterolemia43 TNF-a21

S1P40 LysoPC28 Ox-LDL33 Hypoxia33

Hsp9038 VEGF143 ADMA88

Estrogens41 Caveolin57

Sphingolipids40 ROS144

Bradykinin145 Ang II92

Adiponectin146

S1P: Sphingosine-1-phosphate, Hsp90: Heat Shock Protein 90, LysoPC: Lysophosphatidylocholine, VEGF: vascular endothelial growth
factor, TNF-a: Tumor necrosis factor a, Ox-LDL: Oxidized-LDL, ROS: Reactive oxygen species, ADMA: Asymmetric dimethylarginine, Ang
II: Angiotensin II.
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geranylgeranyl modification also appears to be involved in
trichostatin A (TSA)-induced downregulation of eNOS
expression. However, this latter mechanism is not depen-
dent on Rho signaling.36

TGF-b1 is a 25-kDa peptide that plays an important role in
the pathogenesis of atherosclerosis, hypertension and
angiogenesis.36 Treatment of bovine aortic ECs with TGF-b1,
increased eNOS mRNA in a time- and dose-dependent
manner.37 TGF-b1 increases eNOS transcription via recruit-
mentofmultiple transcription factors suchas Smad2andNF-1
to distinct cis-acting sequences.37

Heat shock protein 90 (hsp90), modulates agonist-
dependent eNOS activation.38 Hsp90 binding stimulates
eNOS activity, and also affects eNOS specific activity by
binding to kinase Akt. This interaction may be dynamically
regulated by hsp90 S-nitrosylation.39

Sphingosine 1-phosphate (SP1) and lyosphosphatidic acid
activate endothelial G-protein-coupled S1P receptors
(formerly called EDG receptors) and play key roles in
vascular regulation40 by stimulating AMP-activated protein
kinase and the small GTP binding protein Rac1, critical
determinants of the activity of eNOS.

The potentiating effect of estrogens on endothelium-
dependent relaxations involves both genomic and non-
genomic effects.41,42 Phytoestrogens and selective estrogen
receptor modulators also potentiate endothelium-depen-
dent relaxations/vasodilatations.42

High levels of cholesterol in humans affect endothelium-
dependent relaxations/dilatations and the normalization of
the cholesterol level with treatment restores endothelial
function.43 The effect of hypercholesterolemia is due to the
combination of increased oxidative stress leading to
a reduced bioavailability of NO, impairment of eNOS
activity, and augmented levels of circulating asymmetric
dimethylarginine (ADMA)42 (Table 1).
Common genetic polymorphisms of eNOS gene

To date more than 100 polymorphisms have been identified
in, or in the vicinity of, the gene. More than 15 poly-
morphisms exist in the eNOS promoter that might influence
mRNA transcription and reduce gene expression.

The �786T/C promoter polymorphism influenced tran-
scriptional activity in vitro in a luciferase/reporter assay
system and was associated with coronary arterial spasm in
Japanese subjects.44 In one study, ECs from subjectswith the
CC genotype exhibited reduced shear stress induced eNOS
mRNA transcription, and vascular rings from such subjects
had diminished endothelium-dependent vasodilatation.45

Polymorphisms within the coding region of the eNOS
gene could alter NOS enzymatic activity. One of the most
studied NOS polymorphisms (G894T) within exon 7 is the
only common polymorphism identified until now, that
encodes an amino acid substitution-Glu298Asp (glutamate
to aspartate position 298).46 Two studies have shown that
eNOS Asp298 is subjected to selective proteolytic cleavage
in ECs and vascular tissues, that might account for reduced
vascular NO generation.47 Data from physiological studies
have also been inconsistent. In some studies, individuals
with the Asp298 allele exhibited altered vascular
responses, for example a reduced blood pressure fall
following exercise training, a lower basal blood flow and
reduced vasodilatation to adenosine in the coronary
arteries, an enhanced systemic pressure response to
phenylephrine, a reduced flow mediated dilatation (FMD)
of the brachial artery if concurrent smokers, impaired
dilator responses to acetylcholine if hypertensive, or
impaired enhancement of FMD during the first trimester of
pregnancy.46 Moreover, we have demonstrated that this
polymorphism affects endothelial function in patients with
atherosclerosis,48 while it also plays a role in the regulation
of systemic low-grade inflammation during myocardial
infarction, an effect which is however disappeared in these
patients under resting conditions, one year post-infarc-
tion.49,50 The impact of this polymorphism on cardiovas-
cular risk was also demonstrated in a large meta-analysis by
Casas et al.51 Despite the numerous data from clinical
studies, some experimental data have questioned the
association of this genotype with functional phenotype of
eNOS.52
eNOS molecular structure

eNOS exhibits a bidomain structure, in which an N-terminal
oxygenase domain containing binding sites for haem, BH4
and L-arginine, is linked by a CaM-recognition site to
a C-terminal reductase domain that contains binding sites
for FAD, FMN and NADPH.3



eNOS regulation and vascular function 41
There are three distinct isoforms of NOS which are
different both in their structure and function. Endothelial
NOS (eNOS, NOS III, 2 � 134 kDa) and neuronal NOS (nNOS,
NOS I, 2 � 160 kDa) are referred to as constitutively
expressed, Ca2þ-dependent enzymes although eNOS can
be activated in a Ca2þ-independent manner.5 iNOS (NOS II,
2 � 130 kDa) is expressed at high levels only after induction
by several inflammatory agents, and its activity is inde-
pendent of Ca2þ increase.

Of the three NOS isoforms, eNOS alone is acylated by
both myristate and palmitate.53 eNOS is co-translationally
and irreversibly myristoylated at an N-terminal glycine
residue while palmitoylation occurs post-translationally
and reversibly at cysteine residues Cys15 and Cys26.54 Dual
acylation of eNOS is required for efficient localization to
the plasmalemmal caveolae of ECs.55 Palmitoylation is
dynamically regulated by agonist (e.g. bradykinin)-induced
changes in intracellular Ca2þ.56 eNOS is localized to the
caveolae,55 which are microdomains of the plasmalemmal
membrane that are implicated in a variety of cellular
functions including signal transduction events. The caveolin
proteins are the major coat proteins of caveolae and in ECs
eNOS binds to caveolin-1, while in cardiac myocytes eNOS is
associated with caveolin-3.57,58 Caveolin 1 and peptides
from the caveolin-1 scaffold region directly inhibit eNOS
activity and this interaction is regulated by Ca2þ/CaM.57,58

A nine-amino-acid binding motif for caveolin has been
identified in bovine eNOS, residues and deletion mutation
of these amino-acids produced an active enzyme that was
uninhibitable by caveolin-1.59 Additionally, an independent
interaction between caveolin-1 and the reductase domain
of eNOS has been described.60
eNOS enzymatic function

Biosynthesis of NO involves a two-step oxidation of L-argi-
nine to L-citrulline, with concomitant production of NO. The
reaction consumes 1.5 mol of NADPH and 2 mol of oxygen
for every mol of L-citrulline formed. The proposed mecha-
nism5,61,62 involves an initial hydroxylation of L-arginine
leading to the formation of NG-hydroxyl-L-arginine, which
can also act as a substrate for eNOS. This is followed by
oxidation of the intermediate, using a single electron from
NADPH63 to form L-citrulline and NO. Even though this
scheme represents the reaction assumed to be catalyzed by
eNOS, the enzyme has also the capability of catalyzing the
production of superoxide anion (O2�), depending on the
conditions. The isolated reductase domain is able to
transfer electrons from NADPH via the flavins FAD and FMN
to cytochrome, while the oxygenase domain dimer can
convert the reaction intermediate NG-hydroxyl-L-arginine
to NO and L-citrulline.64 Hence, the two domains perform
catalytically distinct functions. While the reductase domain
itself is highly homologous to enzymes such as the
NADPH:cytochrome P450 reductase, its dependence on the
CaM-binding domain for efficient electron transfer is
unique.65 In contrast, the binding sites for L-arginine, haem
and BH4 in the oxygenase domain are less well
characterized.

Even though the reductase and oxygenase domains are
able to function independently under certain
circumstances, NO synthase activity is carried out by the
homodimer.

Haem plays an essential role in the dimerization of
eNOS. In its absence, eNOS, and all the other isoforms exist
in monomers, which are unable to bind BH4 or a substrate
analog and do not catalyze the L-citrulline/NO produc-
tion.66 Resolution of the crystal structure confirmed that
the haem is bound via a proximal cysteine thiolate ligand.67

The formation of this bond has been suggested to be a key
step in the process of dimerization.68 The coordination
state of the haem can be unequivocally identified through
the examination of the absorption spectrum. This depends
on the spin state of the unpaired electrons of the haem
iron, which in turn is related to the geometry of the haem
ligands. When these electrons are in low spin state,
reflecting a six coordinating haem, the maximum is
observed at 394e397 nm. This form of eNOS is inactive.
Upon binding L-arginine and its analogs, as well as BH4, the
maximum shifts to 418 nm, indicative of a high-spine five
coordinate haem, which is necessary for eNOS activity.
eNOS coupling and the role of vascular
tetrahydrobiopterin regulation

The NOS cofactor BH4 is essential for the proper transport
of electrons to L-arginine, known as “coupling” of the
enzyme.69 BH4 bioavailability is dependent on both
biosynthesis and oxidative degradation to dihydrobiopterin
(BH2) and finally biopterin (B). Reduced synthesis or
oxidative inactivation of BH4 leads to reduced NO avail-
ability, because without this critical cofactor, eNOS
becomes “uncoupled”, resulting in the generation of
superoxide radicals (O2�) rather than NO from oxygen and
NADPH, consequently leading to impaired endothelium-
dependent vasorelaxation and endothelial dysfunction70

(Fig. 1).
De novo production of BH4 is reliant upon three

enzymes: GTP cyclohydrolase I (GTPCH), 1,6-pyruvoyl-tet-
rahydropterin synthase, and sepiapterin reductase.71 The
initial step in BH4 synthesis is the conversion of GTP to
dihydro-neopterin triphosphate by GTPCH, which is the
rate-limiting enzyme in this biosynthetic pathway and is
encoded by the GCH1 gene.72 This gene is characterized by
two different haplotypes, termed X and O, which are
defined by 3 polymorphisms: rs8007267G_A, rs3783641A_T,
and rs10483639C_G (X haplotype: A, T, G; O haplotype: any
other combination).73 The presence of the X haplotype in
patients with multivessel CAD has been associated with
lower levels of both plasma BH4 and total biopterins (which
is the sum of BH4, BH2, and B, reflecting the overall
biosynthetic activity of GTPCH), as well as significantly
lowers vascular GCH1 mRNA expression and vascular BH4
levels.74 This effect was not only observed in the XX
genotype but also in the XO genotype, suggesting that the X
haplotype may be an important and common factor in
regulating circulating biopterin levels in patients with CAD.

Several in vitro studies suggested that GCH1 expression
in human macrophages and endothelial cells is induced by
proinflammatory cytokines, resulting in an elevation of
intracellular BH4 in endothelial cells.75,76 However, this
effect was only observed after simultaneous exposure to
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Figure 1 The role of tetrahydrobiopterin (BH4) and asym-
metrical dimethylarginine (ADMA) on endothelial nitric oxide
synthase (eNOS) coupling: The NOS cofactor BH4 is essential for
the proper transport of electrons to L-arginine, known as
“coupling” of the enzyme. Reduced synthesis or oxidative
inactivation of BH4 leads to reduced NO availability, since
without this critical cofactor, eNOS becomes “uncoupled”,
resulting in the generation of superoxide radicals (O2�) rather
than NO. ADMA is synthesized when arginine residues in
proteins are methylated by the protein arginine methyl-
transferases (PRMTs), while dimethylaminohydrolase (DDAH)
catabolises ADMA. Importantly, ADMA is an endogenous inhib-
itor of eNOS, and has been associated with eNOS uncoupling; in
the presence of BH4 deficiency it induces uncoupling while in
the presence of excessive BH4 it behaves as an inhibitor of the
enzyme.
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high concentrations of multiple cytokines, which is not as
likely to occur in a clinical setting. In contrast, we have
shown that in patients with CAD, systemic inflammatory
stimuli that can cause an elevation in plasma biopterins
lead to a decrease in vascular biopterins, which are mainly
located in the endothelium.77 Plasma biopterins are posi-
tively correlated with CRP levels and inversely associated
with endothelial function, whereas vascular BH4 was asso-
ciated with maintained eNOS coupling, reduced vascular
O2� and improved endothelial function. These findings
delineate a discordant regulation of circulating versus
vascular biopterins, thus linking systemic inflammation with
endothelial dysfunction and oxidative stress.

Oxidative inactivation of BH4 probably occurs through
reaction with ROSs generated within the vessel wall, mainly
peroxynitrite (ONOO�) and O2�.

77 The resulting uncoupling
of eNOS leads to generation of O2� which react with NO to
form ONOO-, further oxidizing BH4 in a feed-forward
mechanism. Local intravascular administration of BH4 to
smokers, hypertensives or hypercholesterolemics can rein-
state normal endothelial function, whereas BH4 has no
effect on healthy vessels at the same dose.70 This obser-
vation suggests that BH4 availability may be limited in
diseased vessels. In addition, we have previously reported
that intravenous administration of 5-methyl-tetrahy-
drofolate (5-MTHF), the circulating form of folic acid, lead
to an amelioration of eNOS function, improving NO
bioavailability and reducing vascular oxidative stress in
arteries and veins of CAD patients, both in vivo and ex
vivo.78 Our findings suggest that although 5-MTHF is a rather
weak superoxide scavenger, it may act by preventing
ONOO�-induced oxidation of BH4 in the vascular wall and
increasing intracellular BH4 bioavailability. Similarly, oral
folate supplementation improved endothelial function in
CAD patients, partly through improved BH4 bioavail-
ability.79 This beneficial effect was similar between
patients receiving high and low-dose supplementation,
suggesting that it is mediated through an increase in
vascular 5-MTHF levels rather than plasma 5-MTHF levels,
which are dose-dependent.80 In a very recent study, we
demonstrated that the functional C677T polymorphism in
the methyl tetrahydrofolate reductase (MTHFR) gene,
which is associated with lower plasma and vascular 5-MTHF
levels, exerts a direct effect on vascular BH4 levels, eNOS
coupling and NO bioavailability in human vessels in vivo.81

These results propose that physiological variations of
vascular and plasma 5-MTHF levels could reflect endothelial
function in humans. In addition, Lemarie et al.82 showed
that MTHFR deficiency was associated with increased ROS
production and reduced NO generation in endothelial
progenitor cells (EPCs), heterozygous for the gene deletion
MTHFR (þ/�). Furthermore, treatment of EPCs with
sepiapterin, a precursor BH4 significantly reduced ROS and
improved NO production.

ADMA is a naturally occurring amino acid that circulates
in plasma, is excreted in urine, and is found in tissues and
cells.83,84 ADMA is synthesized when arginine residues in
proteins are methylated by the protein arginine methyl-
transferases (PRMTs).85 The increase in ADMA levels reflects
the expression and the activation status of the dimethy-
larginine dimethylaminohydrolases (DDAH-1 and DDAH-2).
The significance of this pathway is highlighted by the fact
that the transgenic over expression of DDAH-1 has been
shown to increase NO production and reduce blood pressure
in vivo86 while its deletion is associated with endothelial
dysfunction and high blood pressure.87 Interestingly, it
seems that although the downregulation of both DDAH
enzymes can affect endothelial NO production, only the
loss of DDAH-1 was associated with a reduction in the
arginine/ADMA ratio88 indicating that DDAH-2 may affect
NO output by an ADMA-independent mechanism. We have
demonstrated that elevated circulating ADMA is associated
with increased vascular O2� generation by uncoupled NOS
in patients with CAD.89 In this population however, vascular
eNOS is largely uncoupled as a result of the decreased
bioavailability of BH4 in the vascular wall77 and until
recently, the interaction between ADMA and uncoupled
eNOS was largely unidentified. In experiments with purified
eNOS, it was demonstrated that ADMA increases uncoupled
NOS-derived O2� generation, only in the presence of BH4
deficiency.90 This has been suggested to be due to the
ADMA-induced elevation of NADPH and O2 consumption by
the uncoupled enzyme.
Therapeutic strategies targeting NO availability

The understanding of eNOS molecular biology as well as the
mechanisms that regulate its expression and activity has
turned the therapeutic targenting of several vascular
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diseases such as atherosclerosis and coronary artery disease
in this direction (Table 2).
Angiotensin converting enzyme inhibitors and
angiotensin receptor blockade

As it is well-known angiotensin II (Ang II) exerts pro-oxidant,
proinflammatory and proliferative effects on the vascula-
ture mainly via the constitutively expressed angiotensin II
type 1 receptor (AT1R).

91

Angiotensin converting enzyme inhibitors (ACEi) and
angiotensin receptor blockers (ARBs) exert their effect on
endothelial function partly via the increase of NO
bioavailability. Further to its well known atherogenic and
proinflammatory properties, Ang II contributes to the ROS
pool by activating NADPH oxidase activity resulting to the
reduction of NO bioavalablity.92 One of the mechanisms by
which ACEi exert their effect on NO availability increase is
the reduction of ROS generation. As it was demonstrated by
Lob et al. ACEi reduced the Ang II stimulated intracellular
production of ROS.93 Another mechanism, which probably is
responsible for the effect of ACE inhibition on NO avail-
ability is the prevention of bradykinin breakdown, thereby
increasing kinin-dependent nitric oxide release mediated
by the B2-kinin receptor. Several animal studies demon-
strated that the effects of ACEi on NO release are blocked
by B2-kinin receptor antagonists.94,95

Blockade of the angiotensin II AT1 receptor reduces the
vascular signaling and the production of ROS that suppress
nitric oxide activity. As Taddei et al96 demonstrated, can-
desartan inhibited the vascular production of ROS in ApoE-
deficient mice. In addition, the synergic use of an ACEi
Table 2 Therapeutic strategies targeting eNOS expression and

Therapeutic agent Comment/selected most important

ACEi/AT1R blockers Improvement of intracellular redox
Increase of eNOS activity by increas
Increase of eNOS expression by supp

Statins Reduction of overall ROS pool, preve
Increase eNOS expression, by stabili
transcriptional pathways.106

Increase eNOS activity by modifying
TZDs Improve eNOS coupling by affecting

Modify heat shock protein 60-eNOS i
Reduce gp91phox expression and mo
oxidative stress status improve eN

Folates Reduce homocysteine, therefore exe
eNOS expression.80

Scavenge peroxynitrite (and less sup
of BH4 and improving eNOS coupli

BH4 Improve eNOS coupling and activity.
Vitamins C and E Antioxidant properties. Improves the

BH4 bioavailability.125

Polyphenolic antioxidants Antioxidant properties. Reduce NAD
ET-antagonists Endothelin ETA receptor blockade. I
Aliskerin eNOS activity, reduces O2� and ONO

ACEi: angiotensin-converting enzyme inhibitor, AT1R: angiotensin II re
ADMA: Asymmetric dimethylarginine, Hcy: Homocysteine, BH4: Tetra
metabolite and an ARB resulted in an increase of bradykinin
and cGMP in sodium depleted rats.97 Moreover, a five-week
treatment with olmesartan suppressed the elevation of
blood pressure and the reduction of phosphorylated eNOS-
Ser(1177) in spontaneously hypertensive rats (SHR) result-
ing to the elevation of eNOS activity.98 Tumor necrosis
factor-alpha (TNF-alpha) is known to decrease eNOS
expression and is an important mediator of endothelial
dysfunction. Kataoka et al. induced a TNF-a decrease in
eNOS expression in HUVECss. Pretreatment of HUVECs with
AT1 receptor blockers (olmesartan or candesartan) restored
the TNF-alpha-dependent reduction of eNOS.99

Aliskiren
Aliskiren is the first in a new class of orally effective rennin
inhibitors for the treatment of hypertension. Early clinical
trials in hypertensive patients showed that this drug
provided antihypertensive efficacy comparable to those of
the ARBs losartan and irbesartan.100,101 By using a catheter-
type NO sensor, Imanishi et al.102 demonstrated that alis-
kiren administration increases ACh-induced and basal
plasma NO concentrations in Watanabe heritable hyper-
lipidemic (WHHL) rabbits. Moreover, aliskiren/valsartan
cotreatment increased the ACh-induced and basal plasma
NO concentrations to a significantly greater extent than
either aliskiren or valsartan alone. The results of this study
could provide an experimental rationale for the combined
application of ARBs and renin inhibitors in the treatment of
hypertension and related cardiovascular diseases.102

Statins
The most widely used and promising agents in cardiovas-
cular disease, HMG-CoA reductase inhibitors or statins, are
function.

mechanisms

state, preventing oxidative degradation of co-factors.93

ing eNOS phosphorylation at Ser1177 and bradykinin levels.94

ressing TNF-a activity.99

nting the oxidation of co-actors and improving coupling.105

zing mRNA and reducing Nuclear factor kappaB and other

P13-kinase e Akt protein kinase pathway.106

eNOS phosphorylation at Ser1177.114

nteraction, affecting eNOS activity.114

dify NADPH-oxidase activity; by reducing overall cellular
OS coupling/activity and stimulate its expression.116

rt intracellular antioxidant properties; stimulate

eroxide) directly, therefore protecting the oxidation
ng.78
147

activity/coupling of eNOS by improving intracellular

PH oxidase activity, increase eNOS activity.126e128

ncreases NO/L-arginine availability.138

O�.102

ceptor, TZDs: Thiazolidinediones, ROS: Reactive oxygen species,
hydrobiopterin, ET: endothelin.



44 M. Demosthenous et al.
renowned for their “pleiotropic” lipid lowering-indepen-
dent effects. HMG-CoA reductase inhibitors improve endo-
thelial function in many ways. NO bioavailability is
increased not only by statins-induced reduction in ROS
production but also by direct effects on eNOS enzyme. It
has been suggested that statins upregulate eNOS expression
and activity103 and prolong eNOS mRNA half-life104 by
a post-transcriptional mechanism involving inhibition of
geranylgeranylation of Rho GTPase, and stabilization of
eNOS mRNA.32,35 Statin-induced activation of phosphatidy-
linositol 3-kinase e Akt protein pathway also increases NO
production and inhibits endothelial cell apoptosis.104 In
addition, several statins inhibit endothelial superoxide
formation by reducing the activity of NADPH oxidase. This is
partly due to the prevention of the isoprenylation of
p21phox, which is critical for NADPH oxidase assembly.105

We have recently demonstrated that atorvastatin has
a direct effect on vascular superoxide generation in human
vein grafts, mainly by reducing NADPH-oxidase activity as
a result of the reduction of membrane translocation of
p67phox and Rac1, subunits of the enzyme.106 Furthermore
simvastatin treatment increases the number of functionally
active endothelial progenitor cells as well as SOD
activity,107 while, statins also increase GCH1 mRNA
expression in endothelial cells and elevate intracellular
BH4.108

In addition statins, by suppressing the expression of pro-
inflammatory mediators, reduce circulating ADMA plasma
levels and improve NO bioavailability, an ability alien to
antioxidant vitamins, mainly in diabetic subjects.109

Thiazolidinediones
Many antidiabetic agents are currently in use for treatment
of hyperglycemia, however the insulin-sensitizing thiazoli-
dinediones (or TZDs) seem to have additional beneficial
effects on vascular wall. Thiazolidinediones are agonists of
the peroxisome proliferators-activated receptor gamma
(PPAR-g). PPAR-g is a nuclear hormone receptor which is
involved in the modulation of the expression of several
genes that affect glucose and lipid metabolism. In vitro
evidence suggests that PPAR-g is also expressed in vascular
smooth muscle cells and endothelial cells.110 One report
demonstrated that ciglitazone and a PPAR-g synthetic
ligand can stimulate the release of NO from endothelial
cells.110 However Linscheid et al. demonstrated that rosi-
glitazone reduces intracellular levels of BH4 by inhibiting
GTPCH, the rate-limiting enzyme of in BH4 biosynthetic
pathway.111

Recent large randomized clinical trials, like the PROAC-
TIVE112 and PERISCOPE113 have illustrated the postulated
beneficial effects of TZDs. TZD’s vasoprotective properties
also include inhibition of human endothelial cell apoptosis114

and improved stability of eNOS mRNA by inducing eNOS
phosphorylation at Ser1177 and promoting heat shock
protein 60 e eNOS interaction.114,115 Treatment of hyper-
cholesterolemic rabbits with rosiglitazone reduces oxidative
stress, by suppressing iNOS and gp91phox expression, and
improves EDD vasodilatation.116

Folates
Folates administration has been long used for the treatment
of homocysteinemia.80 Cell culture studies have
demonstrated that Hcy reduces eNOS expression in a dose-
dependent way, possibly by affecting the activities of DDAH
and ADMA.117 In addition, Hcy induces threonine-495-phos-
phorylation of eNOS a reaction leading to inactivation of the
enzyme.118 Moreover Hcy down-regulates eNOS activity by
modifying caveolin-1 expression.119 The increased oxidative
stress observed in homocysteinemia is responsible for the
oxidative degradation of NO.120 In addition, evidence also
suggests that vascular tHCy affects O2� generation by
modulating NADPH-oxidase activity.121,122

Given these well documented effects of homocysteinemia
eNOS expression and activity and NO bioavailability it is
sensible to consider that the use of folates can increase eNOS
expression and activity as well as NO bioavailability. As we
have previously shown, 5-MTHF administration, the circu-
lating form of folic acid, has the ability to prevent peroxyni-
trite-mediated BH4 oxidation and improve eNOS activity and
coupling, mainly by increasing endothelial BH4 bioavail-
ability.78 In addition, we demonstrated that 5-MTHF amelio-
rates endothelial NO bioavailability and lowers vascular O2�
production in human arteries and veins, both in vivo and ex
vivo.78Oral folic acidadministration (0.4mg/dayor5mg/day)
seven weeks before scheduled coronary by-pass grafting,
resulted into improved endothelial function and reduced
vascular O2� generation due to an improvement of eNOS
coupling.79,123 Therefore, homocysteine-lowering treatment
with folates may improve eNOS coupling both by reducing
intracellular HCy in vascular endothelium and by acting as
a direct scavenger of peroxynitrite radicals in endothelial
cells. Furthermore, we have recently shown that treatment
with folic acid induces a significant improvement of aortic
distensibility and reduces indexes of arterial stiffness such as
pulsewavevelocity.79Of course treatmentwith folates canbe
useful only in the presence of intracellular 5-MTHFdeficiency,
such as in the presence of 677 TT genotype in the MTHF
reductase (MTHFR).81

Polyphenolic antioxidants and angioxidant vitamins
Epidemiological evidence suggests that, dietary poly-
phenolic antioxidants (fruit, vegetables, wine, grape juice,
etc) have a negative correlation with the incidence of
cardiovascular disease.124 Even though most polyphenols
are only mild antioxidants, some can reduce the activity of
pro-oxidative NADPH-oxidases, and others can stimulate
antioxidative enzymes and eNOS.125

High doses of vitamin C have been found to improve
endothelial function in humans.126e129 Some other studies
demonstrated that long-term oral treatment with vitamin C
also improved endothelial function in humans.130 Despite
all that, long-term epidemiological studies with oral
vitamin C treatment failed to support a role for vitamin C in
reducing cardiovascular morbidity or mortality.131

Even though vitamin E has antioxidant properties, large
studies discourage the use of vitamin E for the prevention
of cardiovascular events.132

Endothelin receptor blockade
The 21-amino acid peptide endothelin-1 (ET-1) is the
predominant isoformof theendothelin peptide family,which
includes ET-2, ET-3, and ET-4. It exerts various biological
effects, including vasoconstriction and the stimulation of
cell proliferation in tissues both within and outside of the
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cardiovascular system. ET-1 activates Gi-protein e coupled,
7-transmembrane domain receptors. Five ET receptors have
been cloned. Mammals possess ETA133 and ETB receptors.134

Studies in L-NG-nitroarginine methyl ester hypertension
suggest that ET-1 is linked to the dysfunction of the
L-arginine/NO pathway135,136 because ETA-selective137 but
not combined ET blockade137 improves endothelial func-
tion, independent of blood pressure. Thus, selective inhi-
bition of ETA receptors improves the endothelial L-arginine/
NO pathway, which agrees with observations in humans.138

Tetrahydrobiopterin
Despite the well documented role of BH4 in human vessels
function, treatmentwith BH4was infeasible until recently not
only due to the high cost of such treatment, but also because
of the high instability of BH4 molecule: BH4 compound readily
undergoes aerobic oxidation139 and has a shelf-life of less 8 h
at room temperature.140 However a stable tablet formulation
of BH4 has been developed recently, wherein the compound
retains at least about 98% of the initial amount of (6R)-L-
erythro-tetrahydrobiopterin after 6 months.141 This tablet
formmakes BH4 oral administration a possible strategy in the
treatment of atherosclerosis. Alternative strategies could aim
at the intracellular oxidation of BH4 (e.g. by folate adminis-
tration) or increasing BH4 vascular levels by upregulating GTP
cyclohydrolase I (GTPCH), the rate-limiting enzyme for BH4

synthesis.77 Moreover, chronic treatment with oral BH4 of
hypercholesterolemic patients reversed endothelial
dysfunction and decreased plasma levels of isoprostanes,
a marker of oxidative stress.142 However the efficacy of such
promising strategies at a clinical level remains still to be
confirmed by large clinical trials.

Conclusions

It has now become apparent that numerous physiological
and pathophysiological stimuli can modulate eNOS expres-
sion. Several in vitro and in vivo studies tried to investigate
the expression pattern of eNOS gene. Data from the most
recent studies suggested that there is a complex regulatory
mechanism of eNOS expression, at both transcriptional and
post-transcriptional level. More recent studies tried to
define the regulatory mechanisms involved in eNOS expres-
sion including signaling pathways and cis-trans interaction.
Finally, by understanding eNOS molecular biology it is
becoming more and more feasible the designation of new
therapeutical strategies mainly targeting eNOS expression
and eNOS coupling, essential in the treatment of various
diseases such as atherosclerosis and coronary artery disease.
It is therefore widely believed that eNOS function regulation
is a therapeutic target in atherosclerosis since this enzyme
not only regulates endothelial NO bioavailability, but it also
plays a crucial role in the regulation of vascular redox,
affecting in this way multiple redox-sensitive transcriptional
pathways in the human vascular wall.
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