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Abstract—This work is devoted to the development and 

numerical study of coupled models of sediment transport and 

suspended matter, taking into account coastal currents and 

stress near the bottom caused by wind waves, turbulent 

spatially 3D movement of the aquatic environment, the 

complex shape of the coastline, bottom topography, and other 

factors. Conservative stable difference schemes are constructed 

and investigated. A comparative analysis of the efficiencies of 

using explicit difference schemes with implicit schemes, as well 

as with schemes of a special form, explicitly implicit schemes, is 

given. The main idea is to use an additive difference scheme, 

consisting of a chain of spatially one-dimensional implicit and 

spatially two-dimensional explicit difference problems, 

approximating the original problem in the total sense. The 

explicit two-dimensional diffusion-convection-reaction 

problems, as well as the spatially two-dimensional sediment 

transport problems are approximated by regularized explicit 

schemes that involve the introduction of second-order 

difference derivatives with respect to the time variable with a 

relatively small time step - the regularizer as an additional 

term in the left-hand sides of the equations. This allows us to 

repeatedly increase the admissible time step in comparison 

with the unregularized explicit difference equations of the 

parabolic type. It is this method that has shown its advantage 

over explicit and implicit schemes. 

Keywords—coastal zone; sediment transport; suspended 

matter transport; mathematical model; linearization of the 

initial-boundary value problem; difference scheme. 

I. INTRODUCTION 

The study of the dynamics of sediment transport and 
suspended matter in modern conditions in the coastal zones 
of water bodies is an important and urgent task. It has both 
fundamental and applied aspects. Among the important 
fundamental problems is, in particular, the problem of 
studying the patterns and characteristics of the global 
circulation of lithosphere matter in the coastal zones of 
water bodies. Applied research problems are directly related 
to the environmental and economic problems of the coast. 
The coastal zone, as the boundary part interacting with land, 
is a system of mechanical, hydrochemical, geochemical and 
biological barriers. The study of various aspects of 
substance transport during the passage of these barriers is 
another important area of the research area. In particular, it 

seems relevant to assess the flows of pollutants and 
determine the amount of sediment deposited associated with 
the development of industrial and recreational activities in 
coastal areas. As a rule, research in this area requires the 
construction of mathematical models that are as close as 
possible to real processes and allow predicting the 
distribution of suspended matter in an aqueous medium [1] - 
[3]. 

For the first time, dynamic models of sediment attraction 
and weighing theoretically began to settle at the beginning 
of the 20th century. In particular, V.G. Golushkov was 
shown that the maintenance of heavy particles in a moving 
fluid occurs due to the vertical component of the pulsating 
velocity. In Russia, the work continued in the research of 
G.I. Marchuk, V.P. Dymnikova, A.S. Sargsyan, O.M. 
Belotserkovsky, R.A. Ibraeva, V.B. Zalesnogo, V.P. 
Shutyaeva, V.M. Belolipetskogo, V.K. Debolsky, R.V. 
Ozmidova, V.V. Zhmura, O.K. Leontiev, M.V. Flint, P.O. 
Zavyalova, and others. Among the international scientific 
research centers conducting research and development in 
this field, we note: International Association for the Physical 
Sciences of the Ocean, Scientific Committee on Oceanic 
Research (ICSU), Pacific Science Association, Engineering 
Committee on Oceanic Resources, Centre for Coastal and 
Marine Research, Centre for Applied Marine Sciences, 
Southampton Oceanography Centre, Proudman 
Oceanographic Laboratory (UK), GEOMAR Helmholtz 
Centre for Ocean Research, Leibniz Institute of Marine 
Sciences (Kiel, Germany), German Marine Research 
Consortium and etc. 

This paper presents the coupled non-stationary models 
of sediment transport and suspended matter, taking into 
account the turbulent spatially 3D nature of the movement 
of the aquatic environment, the complex shape of the 
coastline, etc. Modeling of sediment transport and 
suspended particles has been considered in many dozens of 
publications, among which should be noted [4] - [7]. Earlier, 
the authors of [8] - [9] proved the correctness of the 
formulation of these models. To this end, a quadratic 
functional was constructed and an energy method was used 
to prove the uniqueness of the solution to the corresponding 
initial-boundary-value problem. Based on the transformation 
of the quadratic functional, a priori estimates of the norm of 
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the solution in the functional space L2 were obtained 
depending on the integral estimates of the right-hand side, 
boundary conditions, and the initial condition. 

We study parallel algorithms for the numerical 
implementation of the joint numerical solution of sediment 
and suspension transport problems based on explicit schemes 
with regularizing terms, implicit schemes and special types 
of schemes - explicit-implicit schemes. The proposed 
software package that implements the proposed models is of 
practical importance: it will significantly improve the 
accuracy of the operational forecast and the validity of 
engineering decisions made when creating coastal 
infrastructure facilities. 

II. DESCRIPTION OF THE COMBINED MATHEMATICAL MODELS 

A. Mathematical model of suspended matter transport 

The main factors of weighing, redistribution and 
transport of bottom material is the combined effect of waves 
and currents. Under the influence of gravity, the particles in 
the water stream fall down. Vertical mixing occurs 
respectively in ascending and descending directions. The 
interaction between the two processes provides a vertical 
concentration profile. 

Bottom sediments may consist of organic and inorganic 
substances. Inorganic minerals consist mainly of clay 
minerals (silica, alumina, montmorillonite, illite, etc.) and 
non-clay minerals (quartz, mica, etc.). Organic materials can 
exist in the form of plants and bacteria. In this paper, the 
model is adapted to describe the behavior of organic 
suspensions in a shallow reservoir under the assumption of a 
small vertical turbulent exchange. 

We will use a rectangular Cartesian coordinate system 

Oxyz , where the axis Ох  passes over the surface of the 

unperturbed water surface and is directed towards the sea, 

axis Оz  directed vertically down. Let h H     total depth 

of the water area, [m]; H – depth at the unperturbed surface 
of the reservoir, [m];  – elevation of the free surface 

relative to the geoid, [m]. 

Suppose that there are R  types of particles in the water 

volume    , , 0 ,0 ,0x y zV x y z x L y L z L       , which at the 

point  , ,x y z  and at the time t  [sec] have a concentration 

 , , ,rc x y z t , [mg/l], 1,r R  (Fig 1). 

 

Fig. 1. Image of the water volume V where the process takes place 

In the future I will omit the arguments of the function 

 , , ,rc x y z t  and write just rc . 

The system of equations describing the behavior of 
particles will look like this: 
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   

 (1) 

The following notation is used here: , ,u v w  the 

components of the velocity vector U  of the fluid, [m/sec]; 

,g rw   the hydraulic size or the rate of deposition of 

particles of the r  th type, [m/sec]; ,r r  – the coefficients 

of horizontal and vertical diffusion of particles of the r  th 

type, [m
2
/sec]; ,r r    particle conversion rates of the r  

th type into  1r   th and  1r   th type, 0, 0r r   , 

[m/sec]; r  – power of sources of particles of the r  th 

type, [mg/l sec]. 

The terms on the left side (apart from the time 
derivative) of the equation of system number r (3) describe 
the convection of particles: their transport under the 
influence of fluid flow and gravity. The terms on the right 
side describe the diffusion of suspensions and their 
conversion from one type to another, as well as 
decomposition. The coefficient of vertical microturbulent 
diffusion is substantially dependent on the vertical 
coordinate. Often it is enough to consider a model of 
sequential conversion of particles from one type to another. 
Inconsistent transformation would require the introduction 
of a transformation matrix, which would complicate the 
model without significantly expanding its scope. 

To find the density of the aquatic environment, the 
formula is used 

 0 , ,
1 1

1 , ,
R R

r r v r r r v r
r r

V V c V   
 

 
    
 

   (2) 

where rV   volume fraction of particles r  th type; 0   

water density; ,v r   particle density r  th type. 

Solutions of the system of equations (1) are searched for 
in a given region of continuous variation of the arguments 

     , , , , , 0,TC x y z t V x y z T  , representing a four-dimensional 

cylinder with generators parallel to the time axis Ot  heights 

T , whose upper base is the unperturbed surface of the 
water, the lower base is the bottom. The border S  areas of 

TC  supposed smooth enough. 

Add to the system (1) the initial and boundary 
conditions. 

Initial conditions: 

    0, , ,0 , , , 1, .r rc x y z c x y z r R   (3) 
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Boundary conditions: 

- on the lateral boundary of the region S  cylinder TC  

 for  , 0: 0, 1, ;r
Г

c
U n r R

n


  


 (4) 

 for  , 0: , 1, ,r Г
Г r

c u
U n c r R

n 


  


 (5) 

where n − the outer normal to the boundary of the domain 

S , ГU − the velocity vector of the fluid at the boundary S , 

Гu − the velocity vector projection ГU  on the direction of 

the normal n  on the border of the region S ; 

- on the water surface 

 0, 1, ;rc r R
z


 


 (6) 

- at the bottom 

 
,

, 1, .
g rr

r

wc
c r R

n 


 


 (7) 

B. Mathematical model of sediment transport 

During sediment movement, the following stages can be 
distinguished: sediment mobilization from bottom sediments 
into movement, sediment transport and moving sediment 
transfer to bottom sediments. In connection with the 
foregoing, the construction of a general model of sediment 
movement involves combining models of the individual 
components of the process into one. This paper presents a 
model of sediment transport taking into account their 
fractional composition, which is one of the main factors 
determining their water-physical and mechanical properties. 
Separation of sediments into fractions is carried out either 
by the geometric dimensions of the particles, or by hydraulic 
size (for particles smaller than 1 mm). The averaged 
expression of particle size and particle size for the study of 
sediment transport seems insufficient. 

For simplicity, we assume that in the equation of 
sediment transport, the axes Ox, Oy are consistent with the 
directions of the coordinate axes of the hydrodynamic block 
models, in which the components of the velocity vector of 
the water medium and the coefficients of turbulent exchange 
along the vertical direction are calculated. Furthermore, for 
simplicity, the case is considered when the normal to the 
shore-line is directed to the north, coinciding with the axis 
Ox; the axis Oy is directed to the east. 

The reformation of the coastal zone of the water areas 
due to the movement of water and solid particles will be 
described for the case when the sediment particles move in 
one direction (the side of the shore). In this work it is 
assumed that particles move in the direction of the water 
flow along the axis Ox. The motion of the particles in the 
direction opposite to the direction of the resulting transfer 
will be neglected. 

Let the sediments that participate in sediment transport 
consist Q  of fractions, each of which has a relative fraction 

qV  in the total volume and density , 1,2,...,q q Q  . 

The sediment transport equation is written as: 

 

 
1

, ,

1 10

1

,
sin

r

Q

q q b
q

Q R
bc q g r

q q r
q r

H
div V k

t

w w
div V k gradH c

 



 




 

 
   

  
 

  
 



 

 (8) 

where   – the averaged over fractions porosity of 

bottom materials; b  – the vector of tangential stress sat the 

water bottom; ,bc q – the critical value of the tangential 

stress for the q-th fraction, , 0sinbc q qa  , 0  – an angle of 

repose of soil in the water; 
r

  density of particles of 

suspended matter of the r-th type, which move in 

accordance with equations (1);  , , ,q qk k H x y t − the 

nonlinear coefficient, determined by the relation: 

 

  

1
,

0
0

A
,

sin

q bc q
bq

q q

d
k gradH

gd





 


 



 



 (9) 

( ,q qd   density and characteristic particle size of the q-

th fraction, respectively; 0   density of the aquatic 

environment; g  the gravity acceleration;   the averaged 

wave frequency; A  and   – dimensionless constants). 

As with the equation of transport of suspensions, the 

region of specifying equation (8) is the cylinder ТC . 

We supplement equation (8) by the initial condition 
assuming that the function of the initial conditions belongs 
to the corresponding class of smoothness: 

    0, ,0 , ,H x y H x y  (10) 

Let us formulate the conditions on the boundary of the 
region, starting from physical considerations: 

 
0

0,b
y



  (11) 

    2, , , ,0 ,x yH L y t H y t y L    (12) 

    10, , , ,0 ,yH y t H y t y L    (13) 

    3,0, ,0 ,xH x t H x x L    (14) 

    4, , , ,0 ,y x y yH x L t H x t x L L L      (15) 

We assume that there is always a layer of liquid of finite 
thickness in the considered region and for the indicated time 
interval there is no dehydration of the region, that is 

  , , 0,0 ,0 ,0 .x yH x y t C const x L y L t T          (16) 

C. Linearization of sediment transport model 

In order to create a linearized model on a time span 

0 t T   build a uniform grid t  с шагом  , i.e. the set of 

points  , 0, ,t nt n n N N T       and we linearize the initial-
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boundary-value problem (8) - (16) by the methods described 
in [10-11]. 

We linearize the term 
,

1 0sin

Q
bc q

q q
q

div V k gradH




 
 
 
  and the 

coefficient qk  by choosing their values at the time 

t t , 0,1,...,n n N   and considering equation (8) in the time 

interval 1t t , 1,2,...,n nt n N    . It is assumed that we know 

the function      1
1 1, , , ,n n

n nH x y t H x y t
   and its partial 

derivatives at spatial variables. 

In the case, if 1n , it is enough to take the function with 

the initial conditions  1
0, ,H x y t , i.e.    1

0 0, , ,H x y t H x y . If 

2,...,n N , the function    1
1 1, , , ,n n

n nH x y t H x y t
   is 

assumed to be known, since it is assumed that the problem 

(8) - (16) for the previous time interval 2 1t tn nt   . 

We introduced the notation: 

 

  

1
,1 1

0
0

A
, 1, .
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q bc qn n
bq

q q

d
k gradH n N
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



 


 



   



(17) 

After linearization, we write equation (8) in the form: 
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  
 

  
 



 

 (18) 

We add to equations (18) the initial conditions: 

 
       1 1

0 0 1 1, , , ,..., , , , , ,

2, .

n n
n nH x y t H x y H x y t H x y t

n N


  


 (19) 

The boundary conditions (11)-(15) are expected to be 

completed for all time intervals 1t t , 1,n nt n N    . 

III. SOFTWARE IMPLEMENTATION OF THE TASK 

The algorithms of numerical solution for the problems of 
sediment transport and transport of suspended particles have 
been  presented in the framework of previous articles [12-
15]. A comparison is made of the computational efficiency 
for explicit difference scheme and implicit scheme, as well 
as with a special type of scheme - an explicit-implicit 
scheme. To increase the stability margin of an explicit 
scheme, regularized schemes are used. Modification of the 
explicit scheme - the introduction of a second-order 
differential derivative with regularization can significantly 
reduce the restrictions on the admissible value of the time 
step [16-18]. In addition, explicit regularized schemes have 
shown their advantage in real-time costs compared to 
previously used traditional schemes. 

A. Comparison of the efficiencies of explicit 
and implicit difference schemes 

Labor intensity neiavnQ  of the solution of the problem of 

transport of suspensions by an implicit scheme is estimated: 

( )neiavn n x y PTMQ n n N N q  , where PTMq  in the number of 

arithmetic operations for one iteration MPTM (modied 

alternating-triangular method) ( 50PTMq ); max( ) O( )n N   

in the number of iterations; maxN  in the number of nodes in 

space; max max{ , }x yN N N , ,x yN N  in the number of steps 

along the coordinate axes ,Ox Oy  respectively; /n nn T   in 

the number of time layers for the implicit scheme, T  in 

calculated time interval, n  in the time step for an implicit 

scheme. 

For an explicit scheme such an estimate has the form: 

iavn r x y iavnQ n N N q , where iavnq  in the number of 

operations for the transition to the next time layer by an 

explicit regularized scheme ( 14iavnq ); /r rn T   in the 

number of time layers for an explicit scheme, r  in the time 

step for an explicit scheme. 

Calculation grids were used x y zkN kN N  , 

122, 102, 13x y zN N N   , where k 1,2,4 . Table 1 shows the 

values of the steps for the time variable, in which the 
accuracy of the calculation is about one percent of the 
solution for explicit regularized and implicit schemes for the 
different number of nodes in the calculation grids. 

TABLE I.  THE VALUES OF STEPS FOR A TEMPORARY VARIABLE FOR 

EXPLICIT AND IMPLICIT SCHEMES 

 

Based on the results of numerical experiments, the 
following estimate is obtained, showing the time gain for the 
explicit scheme with respect to the implicit scheme, in the 
case of grid sizes with 101х101х11 (the average  number of 

iterations 8): / 10.286neiavn iavnQ Q  , and in the case of grid 

sizes 201х201х11 (the average number of iterations 10): 

/ 12.857neiavn iavnQ Q  , in the case of mesh 

sizes401х401х11 (the number of iterations 12): 

/ 14.286neiavn iavnQ Q  . 

Table 2 shows the times of execution for one time step 
for explicit scheme and one iteration for implicit schemes as 
well as the values of the acceleration and efficiency of 
parallel algorithms. The calculated grid consisted of 
101х101х11 knots. From the numerical estimates of the 
ratio of the times for solving the model problem to the 
explicit and implicit schemes, it can be concluded that when 
the size of the computational grid is increased, the gain in 
the calculation time of the explicit scheme only increases. 
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TABLE II.  COMPARISON OF PARALLEL ALGORITHMS BASED ON 

EXPLICIT AND IMPLICIT SCHEMES 

 

When solving a problem on a grid containing 
101х101х11 nots, the maximum acceleration for an explicit 
scheme was achieved on 16 cores and equal to 10.84. For 
the implicit scheme, the maximum acceleration, equal to 
6.609 was achieved on 8 cores. Thus, the gain in time for 
the explicit scheme in relation to the implicit scheme was 
16.871 times. 

Table 3 shows the times for executing the transitions 
between layers for the explicit scheme and the execution of 
one iteration by an implicit scheme on the computational 
grid 5001х5001х101 nodes. In this case, the gain of the 
explicit scheme in time on 512 cores of the supercomputer 
system was 71.547 times. 

TABLE III.  TIME OF EXECUTION OF TIME STEPS BY AN EXPLICIT 

SCHEME AND ONE ITERATION BY AN IMPLICIT SCHEME AND VALUES 

ACCELERATION AND EFFICIENCY OF PARALLEL ALGORITHMS 

 

B. Comparison of the efficiencies of explicit and implicit 

difference schemes 

In order to obtain optimal values of time steps, the 
solution of the problem of transporting suspended particles 
was carried out on the basis of explicit and implicit 
schemes. The main idea of using explicitly implicit schemes 
is to reduce the transition from layer to layer to the 
sequential solution of one-dimensional and two-dimensional 
difference problems in spatial directions approximating the 
original problem. An explicit regularized scheme is used to 
approximate the two-dimensional diffusion-convection 
problem in horizontal directions, and an implicit scheme is 
used to approximate the one-dimensional diffusion-
convection problem in the vertical direction. 

Figure 2 shows the error values of the difference 
schemes (1 - the error function for the explicit circuit is 
indicated, 2 - the error for the explicit-implicit circuit is 
indicated). Notation used here:   -relative error value; 

0   time step. Magnitude 0  convenient to use to describe 

the error  , because when the grid size changes by spatial 

coordinates, there is practically no change in the function 

 0   . 

 

Fig. 2. The numerical study of the relative error as a function of the 
change in the time step according to explicit and explicit-implicit schemes 

Fig. 2 shows that the achievement error for an explicit 
scheme is that the restriction on the time step is significantly 
greater than for the proposed explicit implicit scheme. The 
relative error of the explicit scheme is 1% if the value is 
0.10087, in the case of using the proposed explicitly implicit 
scheme, the parameter is 0.01348. Thus, to achieve the 
accuracy of 1% of the explicitly-implicit scheme, it is 
necessary to make 7.483 times smaller steps than the explicit 
scheme, which will significantly improve the performance of 
the programs due to the better difference scheme. The 
proposed scheme is effective if the step in one spatial 
direction is significantly less than the steps in the remaining 
spatial directions. 

IV. CONCLUSION 

The main results of the work are the following: 

• Advanced mathematical models of transport of 
multicomponent suspended particles and sediment transport 
in coastal systems are presented. 

• Conservative stable difference schemes are constructed 
and investigated. 

• A comparative analysis of the effectiveness of using an 
explicit difference scheme with an implicit scheme and with 
an explicit-implicit scheme is carried out. It is shown that 
the use of explicit regularized schemes leads to significant 
time savings (more than 10 times) compared to traditional 
implicit schemes. In turn, explicit-implicit schemes have 
shown their advantage over explicit schemes, since they 
allow the construction of parallel algorithms that are more 
economical with respect to the total time spent on arithmetic 
operations and information exchange operations between 
processors. 
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