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Abstract—The problem of controlling objects with time 

delay is quite complicated. The presence of a delay in the 

control loop leads to an increase in the phase shift, which can 

provoke instability of the system. The paper proposes a study 

of a nonlinear multi-connected system of automatic control 

(MSAC) of an object with a delay by frequency methods, based 

on the method of harmonic linearization and a system 

description of the characteristics of a multi-connected 

automatic control system. A nonlinear multi-connected 

automatic control system with delay in direct channels and 

cross-channels is considered. The nonlinear multi-connected 

automatic control system with delay consists of a set of 

identical separate subsystems and mutual connections between 

subsystems are single. With the help of frequency methods, the 

parameters of periodic motions (PM) in nonlinear 

homogeneous multi-connected automatic control systems with 

delay (amplitude and frequency of self-oscillations) are 

determined and their stability is estimated according to the 

proposed criteria. The paper presents examples that 

demonstrate the use of the proposed techniques to assess the 

stability of a nonlinear multi-connected system of automatic 

control of the object with delay both in direct communication 

channels and cross and finding the parameters (amplitude and 

frequency) of periodic movements. The results of the study 

were confirmed by simulation using MATLAB SIMULINK 

package. 

Keywords—multi-connected systems of automatic control, 

delay, nonlinear element, periodic motion, frequency method, 

stability. 

I. INTRODUCTION 

In many modern technical objects of control (OC) can 
observe the phenomenon of delay, consisting in the fact that 
with the beginning of the signal change at the input of the 
OC, signal at the output of the object begins to change only 
after a certain interval of time. For example of control objects 
with delays can be jet engines in transient modes, belt 
conveyors, rolling mills, drying and combustion processes, 
on a state - processes with a recycle, in particular, processes 
in grinding machines or processes in chemical reactors, at the 
output - control objects with more inertial measurement 
sensors than the object itself [1,14]. 

Generally, the influence of delay on the management 
processes is negative. Therefore, methods of studying control 
systems for the above objects, not considering the delay 
factor, are ineffective.  The problem of designing similar 

control systems is even more complicated if the control 
object is multi-connected and nonlinear. 

We know a large number of works, devoted to investigate 
of automatic control systems (ACS) with delay on control 
with one input and one output . A small number of scientific 
papers are devoted to multidimensional (multi-connected) 
control systems with delays [2]. 

In article proposes a study of a multi-connected 
nonlinear system of automatic control of the object with 
delays (control and output) by frequency methods, based on 
the method of harmonic linearization and system description 
of the characteristics of the MSAC. 

II. RESULTS OF INVESTIGATION 

We will propose in the future that this class of multi-
connected systems consists of a set of identical separate and 
mutual connections between single subsystems (Fig.1). 

 

 

 

 

Fig. 1. The nonlinear structure of the same type, MSAC with delay 

For systems with nonlinearities in direct channels of 
separate subsystems as a local characteristic of the 
harmonically linearized i-th subsystem, you can consider its 
transfer function Фi(s,а) in control mode [3]: 
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subsystems based on the content of identical nonlinear 
elements in its composition is valid [4]: 

Ф1[q1(a),q1
/
(a),s]=Ф2[q2(a),q2

/
(a),s]=…= Ф[q(a),q

/
(a),s]. 

The characteristic equation of harmonically linearized the 
same MSAC can be written in the next form (2): 
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where hi (i= n,2 ) - generalized numerical characteristics of 

multidimensional elements of communication between 
separate subsystems, calculated by the formulas proposed in 
[4,5]. 

We introduce an algebraic equation of connection with 
respect to some variable х=Ф[q(a),q

/
(a),s], obtained from (2) 

: 
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2
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{xi} - the set of  value of equation (3), where i=1,2 ..n. 

By frequency criterion [5]: the condition for the presence 
of periodic movements (PM) in this system is the passage of 

the local amplitude-phase frequency response (APF) Ф(a,j) 
harmonically linearized subsystem through one value ot the 
roots of the set {xi}, which play the role of critical points 
[6,7]. 

If you change the 0<a< deformed form of the 

hodograph APF Ф(a,j). In general case, the critical point is 

the own value x
*
i=i-ji, which go through the APF Ф(а,j). 

Then equality is true:  
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Consider the homogeneous nonlinear systems with delay 
in the cross-ties. Then, in the characteristic equation (2) for a 
complete ACS consisting of n subsystems, the characteristic 
of the connection in the general form between k subsystems 
has the form: 
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in a nonlinear ACS with a delay in cross-linking the 
fulfillment of the condition:  
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So, on the basis of equality (4), (5) it is possible to using 
frequency methods, to determine the parameters of periodic 
motion in nonlinear one-type MSAC and to evaluate their 
stability. 

III. DETERMINATION OF PARAMETERS OF PERIODIC 

MOVEMENTS 

Determine parameters, amplitude a* and frequency i
*
, 

periodic movements. We distinguish the linear and nonlinear 
characteristics of the open subsystem from equation (4) [8]: 
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Substitute x
*
i instead Ф(a,j) in the equation (6):  
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To solve the equation (7), we select the linear parts of the 
system and use two scalar equations:  
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After solving a system of two equations, we find the 

values a* and 
*
. 

IV. STABILITY ANALYSIS OF PERIODIC MOVEMENTS IN 

NONLINEAR MCACS 

To determine the parameters of PD and analyze their 
stability, you can use the graph-analytical method, consisting 
of the following steps: 

1. Find the roots xi of the equation of communication (3); 

2. From equation (7) we distinguish the linear and 
nonlinear parts of the system: 
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3. Build on the complex plane Wз(j) and )(* jaZн ; 

4. We define the parameters a* and 
*
 periodic 

movements at the intersection of the characteristics Wз(j) 

and )(* jaZн ; 
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5. To evaluate the stability of periodic movements by the 
frequency criterion [5]. 

Periodic movements in a nonlinear homogeneous 

MCACS will be stable if the amplitude a* by a increases 
(decreases) at the point corresponding to the intersection of 

hodographs Wз(j) and )(* jaZн , APF Wз(j) does not cover a 

new point a=a*+a, otherwise, PM will be unstable [9-11]. 

Example 1. We investigate a two-connected system (Fig. 
1) for the presence of self-oscillations in the presence of a 
nonlinear element of the "saturation" type (Fig. 2) and delays 
in subsystems. 

 

Fig. 2. The nonlinear element of the type “saturation” 

The coefficients of harmonic linearization for the 
characterization of F(z) of the type "saturation" is equal to: 
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Transfer function of a two-dimensional object with 
delay: 

Wij(s)=
1 2
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, i=j=1,2; τ=5. 

Consider the solution of this problem in stages. 

1. Transfer functions Фi(s,a), i=1,2 separate channels 
in control mode: 
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Characteristic equation of the system:  

1+h2Ф(а,j)
2
=0, where h2=4. 

Coupling equation: 1+4x
2
=0. 

The roots of the coupling equation are x1= + 0.5, x2= -0.5. 

2. Select the linear and nonlinear parts of the system: 
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3. We create hodographs on the complex plane Wз(j) and 

)(* jaZн  (fig. 3). 

4. Figure 3 shows that PM is present in the system. At point 1 

the hodographs intersect Wз(j) and )(* jaZн  at delay τ=5 with 

parameters PM a=11.8, ω=0.23 (fig. 4), at point 2 when the 
delay τ=0 with the parameters PM a=4.9, ω=0.5. (fig. 5). 

5. We estimate the stability of periodic motions by the 
frequency criterion [5]. 

Periodic motion in the system is stable, because with 

increasing amplitude a* a in points 1 and 2 corresponding 
to the intersection of hodographs Wз(jω) W(jω) locus Zн*(ja), 

APF Wз(jω) W(jω) do not cover the new point a=a*+a. 

The results confirm the transients (Fig. 4, 5), obtained by 
modeling the original system. 

 

Fig. 3. The intersection of hodographs Wз(jω) W(jω) locus Zн*(ja) 

 

Fig. 4. PM in the system with delay (point 1) with parameters a=4.9, 
ω=0.5. 
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Fig. 5. PM in the system with delay (point 2) with parameters a=11.8, 
ω=0.23. 

To determine the parameters of PM and analyze their 
stability in a nonlinear ACS with delay in cross-links, 
consider the next steps: 

1. Find the root ),(* jxi  of the hodograph equation 

(3); 

2. From equation (7) we select the linear and nonlinear 
parts of the system: 
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3. We create on the complex plane )(),( * jaZjW нл  ; 

4. We define the parameters a* and 
*
 periodic 

movements at the intersection of the characteristics Wл(j) 

and )(* jaZн ; 

5. To evaluate the stability of periodic movements by the 
frequency criterion [5]. 

Example 2. Investigate the two-connected system (Fig. 1) 
with nonlinear elements of the "saturation" type in 
subsystems (Fig. 2, example 1) and the delay in cross-linking 
for the presence of self-oscillations. 

Transfer function of a two-dimensional object with 
delay: 
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2. Characteristic equation of the system (2), (6): 
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=0, where h2=4. 

3. Coupling equation (3) for the determination of root 

hodographs: 1+h2
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4. Select the linear and nonlinear parts of the system: 
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5. Create hodographs on the complex plane Wл(j) and 

)(* jaZн  (fig. 6). 

6. Define the parameters a* and 
*
 periodic movements 

at the intersection of the characteristics Wл(j) and )(* jaZн . 

Figure 6 shows that PM present in the systems, and cross 

the hodographs )(),( * jaZjW нл   at delay τ=1 (Fig. 7). At 

delay τ=0 (Fig. 6) no PM, because hodographs do not 

cross. 

 
Fig. 6. The intersection of hodographs Wл(jω) and Zн*(ja) without delay 

Parameters a=4.9, ω=0.5, =0. 

 Fig. 7. The intersection of hodographs Wл(jω) and Zн*(ja) with delay 

=1 

Parameters a=9.3, ω=0.27, =1. 
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7. Assessing the stability of periodic movements on the 
frequency criterion it can be concluded, that in the presence 
of delay in the cross-links PM stable. 

The results confirm the transition processes (Fig. 8, 9), 
obtained by modeling the original system. 

 

Fig. 8. PM in the system without delay =0 with parameters a=4.9, ω=0.5 

 

Fig. 9. PM in the system with delay =1 with parameters a=8.3, ω=0.3 

In the study of systems with delay is obtained of 

intersection of hodographs Wл(j) and )(* jaZн (fig. 7). The 

amplitude and frequency are approximately the same as the 
results of the simulation (fig. 7,9). 

Thus, the paper proposes an approach based on frequency 
methods and the harmonic linearization method, which 
allows to estimate the parameters and stability of periodic 
motions in the same type nonlinear MSAC with 
nonlinearities and delay in direct channels and cross-
links[12,13]. 

V. CONCLUSION 

As a result of the study, a nonlinear multi-connected 
system of automatic control of the object with delay (control 
and output) by frequency methods, based on the harmonic 
linearization method and the system description of the 
MSAC characteristics was studied. The ACS with a 

nonlinear element and delay in direct channels and cross-
links is considered, provided that this ACS consists of a set 
of identical separate subsystems, the mutual relations 
between the subsystems are single. Used frequency-domain 
methods for the parameters of the PM to nonlinear similar 
MSAC, and assessed their stability. The results are confirmed 
by simulation in Matlab Simulink package.  
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