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Abstract—The article deals with the problems of 

formal description of methods of organization of 

biomedical experiment. The need for a formal 

description of the experimental scheme is postulated. 

One of the ways of formal representation of the 

biomedical experiment based on the transition graph, 

which is one of the variants of the description of the 

finite state machine, is considered. The description 

revealed that the main characteristics of this 

representation are the correctness and adequacy of the 

representation in the form of a graph of transitions. The 

problem of description of nested sequences of actions 

corresponding to the beginning and end of the use of 

different components of the experiment is considered. 

An example of such use is the serial and parallel 

activation of experimental equipment. In this case, the 

correct sequences correspond to the implemented 

experiments, and the wrong ones correspond to the 

unrealizable ones. In this regard, there is a need to verify 

such feasibility. The necessity of checking the 

correctness of the graph as the main condition for the 

feasibility of the experiment is substantiated. One of the 

approaches to the analysis of the correctness of such a 

graph on the basis of matrix calculations is presented. 

The method of constructing the transition graph matrix 

is considered. The basic transformations necessary for 

checking the correctness of the transition graph of the 

biomedical experiment are given. 

Keywords—analysis, compilation, transition graph, 

matrix algebra 

I. INTRODUCTION  

Topics devoted to the organization and conduct of an 
experiment are usually the subject of philosophical sciences 
in such sections as gnoseology, epistemology, and more 
broadly, the knowability of the world [1]. Here, researchers 
obtained fairly extensive results of a general methodological 
nature. Without detracting from the achievements of 
representatives of the philosophical direction of the study of 
the features of the experiment as a way of knowing, the 
authors are compelled to state a clear inadequacy in the 
elaboration of particular methodological and technological 
issues related to the organization and conduct of 
experimental research. In this connection, an actual problem 
arose - the consideration of a formal model of an experiment 

for describing a logically correct sequence of organization 
and carrying out experimental actions in manual, automatic 
and automated modes. 

II. THE MATRIX ALGORITHM 

When automating a scientific experiment, describing the 

course of an experiment using programming languages has 

become an integral part of building an experiment 

automation system. But the programming language in its 

“pure” form only makes it difficult for the engineer involved 

in designing such a system (see the disadvantages below). 

To speed up and reduce labor costs for such works, other 

approaches to describing the control program were invented. 

The most famous of these approaches are: the Graphset 

diagram [3], the National Instruments graphical G language 

used in the LabView product [4], etc. Such programming 

languages differ from the usual ones in that the control 

algorithm is expressed in them in graphical form. 

If we consider these languages from the standpoint of 

automating a scientific experiment, we can see in them our 

shortcomings, but for this it is necessary to clarify the 

course of the experiment from the point of view of the 

operation of the system. 

It is well known that the experiment is the observation of 

the subject for the object under controlled conditions. Thus, 

for any scientific experiment, it is possible to compare the 

algorithm of measurement (observations) and the creation of 

control actions (environmental control). This algorithm is 

called the experiment. As a rule, electronic devices that 

transform logical commands in the form of control signals 

into physical action and vice versa are involved in 

measurement and control during experiment automation. 

From the above description of the course of an 

experiment, it is possible to derive a feature of the 

automation of a scientific experiment - the eventfulness of 

incoming information from the experiment environment. 

This is due to the discrete nature of digital measuring 

equipment and computers. In accordance with this, an 

experiment in the representation of an automated system is 

nothing more than a sequence of commands to a performing 

or measuring device activated by a chain of events occurring 

in a controlled environment. 

Now you can already clarify the shortcomings of the 

proposed approaches to the automation of a scientific 

experiment. The main disadvantages of the G language for 
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use as a automation language for managing a scientific 

experiment: 

1) A language describes a data stream, not a 

control flow; In this regard, it is difficult to present a 

description of a description of the course of an experiment 

with more than one device operating in parallel. 

2) Difficulty in implementing your own 

modules 

The main disadvantages of the language "Grafset": 

1) The inability to consider the separate control flows 

associated only with events; 

2) The language is intended for execution on a 

programmable logic controller (PLC), which in itself 

imposes a restriction on the scaling (increase in the number 

of measuring and control devices) of the experiment; 

3) Management through the change of the device 

state. This approach makes concurrency difficult; 

The solution to the above problems is to create a 

language to bypass these problems. Such a language seems 

to be divided into two levels of syntax: a graphic description 

of the interaction (description of the experiment) and 

pseudo-code describing specific messages sent to the 

language interpretation mechanism. For describing the 

interaction of devices, the marked Petri net [1, 2, 7, 8, 9] is 

well suited, and for describing messages transmitted to the 

performer (device, computer, etc., depending on the 

command), it is advisable to use a high-level programming 

language. The results of comparision is shown at Table 1. 

 

Table 1. Comparision of languages 

Language Usability Custom 

modules 

Built-in 

concurrency 

G + - - 

Graphset + + - 

Based on 

Petri’s 

Networks 

+ + + 

 

For the description of the algorithm, we apply the formal 

scheme - transition graph [5]. Thus, it is possible to achieve 

the informativeness of the scheme and remain in the field of 

formal languages, to simplify the verification of the 

algorithm using mathematical tools. 

For the validation of the transition graph is to use its 

properties of correctness, such as: consistency, 

completeness, the absence of generating circuits other than 

loops. 

In this case, it is considered that consistency in the graph 

of transitions is ensured if simultaneous transitions along 

any two or more arcs emanating from one vertex are 

prohibited in it [10, 11]. 

The consistency of the transition graphs (the conjunction 

of labels of any two arcs emanating from the same vertex is 

zero) is ensured by: 

1) With the arrival of "contradictory" variable values 

at different times; 

2) When working with variable fronts ("events"); 

3) Orthogonalization (complication of labels) of 

contradictory arcs (for example, when implementing a 

system of Boolean formulas); 

4) Prioritization (taking into account the order of 

commands in the program when implemented in a way 

different from building a system of Boolean formulas); 

5) "Splitting" vertices with conflicting arcs (increase 

in the number of states of the automaton). 

The completeness of the transition graph (the disjunction 

of the marks of all arcs emanating from the vertex is equal 

to one) is checked after ensuring consistency. When 

implementing a transition graph using a system of Boolean 

formulas, all arcs emanating from each vertex should be 

labeled, and in other embodiments, the markings of loops 

for automata without an output converter or Moore’s 

automata can be silent. In this case, it is assumed that the 

labeling of a loop at the vertex provides the "completeness" 

of the latter. 

There are generating contours in transition graphs, if in 

at least one of them the conjunction of the marks of all the 

arcs that form it is not zero. The elimination of generating 

circuits is carried out by the same methods as the 

elimination of inconsistency (except for the prioritization). 

Consider the following example. Three types of devices 

are used in the experiment: A, B and D. Device A 

implements control commands A1, A2. The sequence of 

commands of this device is limited to the sequence 

described by the GA grammar in Figure 1. 

 
Fig.1. Device Status Graph A. 

On the basis of this sequence, we construct a precedence 

matrix, taking into account that the return loop A2 - A1 may 

not be used in the algorithm (there may be zero or more 

such paths). Also between the vertices A1 and A2 in the 

algorithm can be located other states of other devices. For a 

correct designation, we introduce parametric symbols M (≥

0) and N (≥1). 

Table 2. The adjacency matrix of the state graph of 

device A 

- A1 A2 

A1 0 N 

A2 M 0 

 
To find all possible paths, we use the following formula: 

𝐴∗ =∑𝐴𝑛
𝐾

𝑖=1

 

(1) 

 

 

where K is the dimension of the matrix. 
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Table 3. Matrix of all paths for device state graph A 

- A1 A2 

A1 M*N N 

A2 M M*N 

 

Given the above parameters, the matrix is converted to 

 

Table 4. The final matrix of all paths for the state graph 

- A1 A2 

A1 M N 

A2 M M 

 
Device B implements commands B1, B2, and B3. The 

state graph of device B is depicted in Figure 2. 

 
Fig.2. State graph of device B 

 

 

The corresponding final matrix of all paths for the state 

graph of device B is displayed in Table 4. 

Table 5. The final matrix of all paths for the state graph 

of device B 

 

 

 

 

 

 

Device D implements commands D1, D2, and D3. The 

state graph of device D is depicted in Figure 3. 

 
Fig.3. State graph of device D 

The corresponding final matrix of all paths for the state 

graph of device D is displayed in Table 5. 

 

Table 6. The final matrix of all paths for the state graph 

of device D 

 

 

 

 

Also, in each algorithm there are marks of the beginning 

and end of the algorithm which are tracked as vertices of S. 

The state graph describing their relative position is shown in 

Figure 4. 

 
Fig. 4. The sequence of labels of the beginning and end 

of the algorithm S1 and S2 

 
The corresponding final matrix of all paths for the state 

graph S is displayed in table 6. 

 

Table 7. The final matrix of all paths for the state graph 

of device S 

- S1 S2 

S1 M N 

S2 M M 
 

Let's combine the matrices of all and create a 

generalized matrix of all paths for all devices participating 

in the algorithm. Fill in the missing cells in the matrix with 

the parametric symbol M, since we cannot know in advance 

how the states of the devices will be connected. 

For the specified grammar, we analyze the following 

algorithm, shown in Figure 5. Device A is sent a command 

A1 and the system is set to wait for an external event from 

this device. In the event that an eA1 event occurs, 

commands are sent to device B. In the event that an eB1 

event occurs, events are sent to device D. At the end of the 

commands, command A2 is sent to command A2 and the 

algorithm ends. 

 
Fig.5. The algorithm to analysis.  

Let’s construct an adjacency matrix corresponding to 

this graph. 

To check the graph for compliance with the listed 

grammars, we apply the following algorithm: 

1) To search for all possible paths in the graph, let us 

raise the matrix A to the power n, where n is the length of 

the path in the graph. Add up all possible variations of the 

resulting matrices. 

𝐴∗ =∑𝐴𝑛
𝑁

𝑖=1

 

(2) 

2) Let's compare element-wise matrix A* and 

grammar G. 

3) In the event that all elements coincide, then the 

algorithm can be considered as satisfying the grammar G. 

Consider the example of the transformation of the matrix 

A in accordance with formula (1). 

- B1 B2 B3 

B1 M
 

N N 

B2 M M N 

B3 M M M
 

- D1 D2 D3 

D1 M
 

N N 

D2 M M N 

D3 M M M
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Let's compare the obtained matrix with the grammar G 

(the selected cells do not satisfy the grammar property). The 

transformation sequence is shown at tables 7, 8, 9 ,10. 

 

 

 

Table 8. The combination of the matrix of all paths G 

- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2 

A1 M N M M M M M M M M 

A2 M M M M M M M M M M 

B1 M M M
 

N N M M M M M 

B2 M M M M N M M M M M 

B3 M M M M M
 

M M M M M 

D1 M M M M M M
 

N N M M 

D2 M M M M M M M N M M 

D3 M M M M M M M M
 

M M 

S1 M M M M M M M M M N 

S2 M M M M M M M M M M 

 

 
Table 9. Generalized adjacency matrix A 

- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2 

A1 0 0 1 0 0 1 0 0 0 0 

A2 0 0 0 0 0 0 0 0 0 1 

B1 0 0 0 1 0 0 0 0 0 0 

B2 0 0 0 0 1 0 0 0 0 0 

B3 0 1 0 0 0 0 0 0 0 0 

D1 0 0 0 0 0 0 1 0 0 0 

D2 0 1 0 0 0 0 0 0 0 0 

D3 0 0 0 0 0 0 0 0 0 0 

S1 1 0 0 0 0 0 0 0 0 0 

S2 0 0 0 0 0 0 0 0 0 0 

 

 

Table 10. Resuling matrix A* after transformation. 
- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2 

A1 0 2 1 1 1 1 1 0 0 2 

A2 0 0 0 0 0 0 0 0 0 1 

B1 0 1 0 1 1 0 0 0 0 1 

B2 0 1 0 0 1 0 0 0 0 1 

B3 0 1 0 0 0 0 0 0 0 1 

D1 0 1 0 0 0 0 1 0 0 1 

D2 0 1 0 0 0 0 0 0 0 1 

D3 0 0 0 0 0 0 0 0 0 0 

S1 1 2 1 1 1 1 1 0 0 2 

S2 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atlantis Highlights in Computer Sciences, volume 3

294



Table 11. Comparision matrix 

- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2 

A1 0=0 2≥ 1 1≥0 1≥0 1≥0 1≥0 1≥0 0≥0 0≥0 2≥0 

A2 0≥0 0=0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 1≥0 

B1 0≥0 1≥0 0=0 1≥ 1 1≥ 1 0≥0 0≥0 0≥0 0≥0 1≥0 

B2 0≥0 1≥0 0=0 0≥ 1 1≥ 1 0≥0 0≥0 0≥0 0≥0 1≥0 

B3 0≥0 1≥0 0≥0 0=0 0=0 0≥0 0≥0 0≥0 0≥0 1≥0 

D1 0≥0 1≥0 0≥0 0≥0 0≥0 0=0 1≥ 1 0=0 0≥0 1≥0 

D2 0≥0 1≥0 0≥0 0≥0 0≥0 0=0 0=0 0≥ 1 0≥0 1≥0 

D3 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0=0 0=0 0≥0 0≥0 

S1 1≥0 2≥0 1≥0 1≥0 1≥0 1≥0 1≥0 0≥0 0=0 2≥ 1 

S2 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0=0 

 

 
Let us consider in more detail the operation of the 

algorithm based on the example given above and illustrated 

by tables 8-11. 

The algorithm begins with the construction of an 

adjacency matrix based on the graph presented in Figure 5. 

Step 1. To build a comparison matrix, it is necessary to 

combine all the matrices of all possible paths into one. This 

must be done in accordance with the following rule: we 

supplement each of the matrices with missing rows and 

columns that correspond to the vertices of the graphs of the 

remaining graphs. Thus, we obtain a matrix of higher 

dimension. The dimension of the matrix is equal to the sum 

of the dimensions of the original matrices. The empty cells 

of the resulting matrix are filled with the value M, since at 

the primary stage we do not know which links are present in 

these graphs. 

Step 2. Next, we combine all the matrices into one cell 

by cell according to the following rule: if at least one matrix 

in this cell contains a value other than M, then we write it, 

otherwise we write N. Following the example, we obtain the 

matrix of all possible paths in the graph represented in 

table 8. 

Step 3. Further, the adjacency matrix of the algorithm 

graph, presented in Table 9, is used for calculations in 

accordance with formula (1). Thus, as a result of 

calculations, getting all possible paths of different lengths in 

the graph from 1 to N inclusive. The resulting values are 

presented in Table 10. 

Step 4. After the calculations, it remains only to compare 

the values element by element between the matrix of all 

possible paths and the result of the calculation in the 

previous step. To do this, perform the following actions: 

a) replace symbolic values with comparison 

operators: M with “> = 0”, and N with “> = 1”, 

b) we check elementwise fulfillment of conditions in 

the cells of the matrix. 

Those cells in which the values do not satisfy the 

conditions obtained, indicate connections between the 

vertices that cannot exist in accordance with the given 

graphs of the device status. Thus, the corresponding 

components of the matrix and the corresponding links in the 

graph violate the syntax of the resulting schema of the 

language and require certain manipulations to be corrected. 

It is clear from the comparison matrix that the element 

D2 should be connected to D3, since this is due to the 

grammar, but this condition is not fulfilled, which means the 

algorithm is considered to be incorrect. 

 

III. RESULTS 

The article describes the method of syntactic verification 

of the algorithm based on the transition graph for 

automating the experiment. The obtained technique, from 

the point of view of the authors, is most effective when 

using computing devices with a high degree of parallelism, 

such as FPGAs and graphics processors. In the future, it is 

planned to develop this approach in the experiment 

automation system, as the most promising. 

The article deals with the problem of formal description 

of methods of organization of biomedical experiment. The 

need for a formal description of the experimental scheme is 

postulated. One of the ways of formal representation of 

biomedical experiment on the basis of transition graph, 

which is one of the variants of description of finite 

automata, is considered. Based on the analysis revealed that 

the main characteristics are the correctness and adequacy of 

the representation in the form of a graph of transitions. It is 

shown that the main problem of representation adequacy is 

the problem of description of nested sequences of actions 

corresponding to the beginning and end of the use of 

different components of the experiment. An example of 

such use is sequential and parallel activation of experimental 

equipment. Shown in the example, the correct sequence 

correspond to the realized experiments, but wrong-is not 

feasible. The necessity of checking the correctness of the 

graph as the main condition for the feasibility of the 

experiment is substantiated. One of approaches to the 

analysis of correctness of such graph on the basis of matrix 

calculations is presented. The developed algorithm 

validation on the basis of the method of construction of the 

matrix of transition counts. The basic transformations 

necessary to verify the correctness of the transition schedule 

of the biomedical experiment are given and an example of 

the algorithm application is given. 
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