

Analysis of the Correctness of the Model of

Biomedical Experiment Based on the Transition

Graph by Means of a Matrix Algebra

Kruzhkov Alexandr

Faculty of Informatics and Robotics

Ufa State Aviation Technival University

Ufa, Russia

danteform@gmail.com

Nasyrov Rashit

Faculty of Informatics and Robotics

Ufa State Aviation Technival University

Ufa, Russia
nrash@yandex.ru

Mulayanov Ruslan

Faculty of Informatics and Robotics

Ufa State Aviation Technival University

Ufa, Russiae-mail:
mullruslan@yandex.ru

Abstract—The article deals with the problems of

formal description of methods of organization of

biomedical experiment. The need for a formal

description of the experimental scheme is postulated.

One of the ways of formal representation of the

biomedical experiment based on the transition graph,

which is one of the variants of the description of the

finite state machine, is considered. The description

revealed that the main characteristics of this

representation are the correctness and adequacy of the

representation in the form of a graph of transitions. The

problem of description of nested sequences of actions

corresponding to the beginning and end of the use of

different components of the experiment is considered.

An example of such use is the serial and parallel

activation of experimental equipment. In this case, the

correct sequences correspond to the implemented

experiments, and the wrong ones correspond to the

unrealizable ones. In this regard, there is a need to verify

such feasibility. The necessity of checking the

correctness of the graph as the main condition for the

feasibility of the experiment is substantiated. One of the

approaches to the analysis of the correctness of such a

graph on the basis of matrix calculations is presented.

The method of constructing the transition graph matrix

is considered. The basic transformations necessary for

checking the correctness of the transition graph of the

biomedical experiment are given.

Keywords—analysis, compilation, transition graph,

matrix algebra

I. INTRODUCTION

Topics devoted to the organization and conduct of an
experiment are usually the subject of philosophical sciences
in such sections as gnoseology, epistemology, and more
broadly, the knowability of the world [1]. Here, researchers
obtained fairly extensive results of a general methodological
nature. Without detracting from the achievements of
representatives of the philosophical direction of the study of
the features of the experiment as a way of knowing, the
authors are compelled to state a clear inadequacy in the
elaboration of particular methodological and technological
issues related to the organization and conduct of
experimental research. In this connection, an actual problem
arose - the consideration of a formal model of an experiment

for describing a logically correct sequence of organization
and carrying out experimental actions in manual, automatic
and automated modes.

II. THE MATRIX ALGORITHM

When automating a scientific experiment, describing the

course of an experiment using programming languages has

become an integral part of building an experiment

automation system. But the programming language in its

“pure” form only makes it difficult for the engineer involved

in designing such a system (see the disadvantages below).

To speed up and reduce labor costs for such works, other

approaches to describing the control program were invented.

The most famous of these approaches are: the Graphset

diagram [3], the National Instruments graphical G language

used in the LabView product [4], etc. Such programming

languages differ from the usual ones in that the control

algorithm is expressed in them in graphical form.

If we consider these languages from the standpoint of

automating a scientific experiment, we can see in them our

shortcomings, but for this it is necessary to clarify the

course of the experiment from the point of view of the

operation of the system.

It is well known that the experiment is the observation of

the subject for the object under controlled conditions. Thus,

for any scientific experiment, it is possible to compare the

algorithm of measurement (observations) and the creation of

control actions (environmental control). This algorithm is

called the experiment. As a rule, electronic devices that

transform logical commands in the form of control signals

into physical action and vice versa are involved in

measurement and control during experiment automation.

From the above description of the course of an

experiment, it is possible to derive a feature of the

automation of a scientific experiment - the eventfulness of

incoming information from the experiment environment.

This is due to the discrete nature of digital measuring

equipment and computers. In accordance with this, an

experiment in the representation of an automated system is

nothing more than a sequence of commands to a performing

or measuring device activated by a chain of events occurring

in a controlled environment.

Now you can already clarify the shortcomings of the

proposed approaches to the automation of a scientific

experiment. The main disadvantages of the G language for

21st International Scientific Workshop on Computer Science and Information Technologies (CSIT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license 4.0 (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Highlights in Computer Sciences, volume 3

291

use as a automation language for managing a scientific

experiment:

1) A language describes a data stream, not a

control flow; In this regard, it is difficult to present a

description of a description of the course of an experiment

with more than one device operating in parallel.

2) Difficulty in implementing your own

modules

The main disadvantages of the language "Grafset":

1) The inability to consider the separate control flows

associated only with events;

2) The language is intended for execution on a

programmable logic controller (PLC), which in itself

imposes a restriction on the scaling (increase in the number

of measuring and control devices) of the experiment;

3) Management through the change of the device

state. This approach makes concurrency difficult;

The solution to the above problems is to create a

language to bypass these problems. Such a language seems

to be divided into two levels of syntax: a graphic description

of the interaction (description of the experiment) and

pseudo-code describing specific messages sent to the

language interpretation mechanism. For describing the

interaction of devices, the marked Petri net [1, 2, 7, 8, 9] is

well suited, and for describing messages transmitted to the

performer (device, computer, etc., depending on the

command), it is advisable to use a high-level programming

language. The results of comparision is shown at Table 1.

Table 1. Comparision of languages

Language Usability Custom

modules

Built-in

concurrency

G + - -

Graphset + + -

Based on

Petri’s

Networks

+ + +

For the description of the algorithm, we apply the formal

scheme - transition graph [5]. Thus, it is possible to achieve

the informativeness of the scheme and remain in the field of

formal languages, to simplify the verification of the

algorithm using mathematical tools.

For the validation of the transition graph is to use its

properties of correctness, such as: consistency,

completeness, the absence of generating circuits other than

loops.

In this case, it is considered that consistency in the graph

of transitions is ensured if simultaneous transitions along

any two or more arcs emanating from one vertex are

prohibited in it [10, 11].

The consistency of the transition graphs (the conjunction

of labels of any two arcs emanating from the same vertex is

zero) is ensured by:

1) With the arrival of "contradictory" variable values

at different times;

2) When working with variable fronts ("events");

3) Orthogonalization (complication of labels) of

contradictory arcs (for example, when implementing a

system of Boolean formulas);

4) Prioritization (taking into account the order of

commands in the program when implemented in a way

different from building a system of Boolean formulas);

5) "Splitting" vertices with conflicting arcs (increase

in the number of states of the automaton).

The completeness of the transition graph (the disjunction

of the marks of all arcs emanating from the vertex is equal

to one) is checked after ensuring consistency. When

implementing a transition graph using a system of Boolean

formulas, all arcs emanating from each vertex should be

labeled, and in other embodiments, the markings of loops

for automata without an output converter or Moore’s

automata can be silent. In this case, it is assumed that the

labeling of a loop at the vertex provides the "completeness"

of the latter.

There are generating contours in transition graphs, if in

at least one of them the conjunction of the marks of all the

arcs that form it is not zero. The elimination of generating

circuits is carried out by the same methods as the

elimination of inconsistency (except for the prioritization).

Consider the following example. Three types of devices

are used in the experiment: A, B and D. Device A

implements control commands A1, A2. The sequence of

commands of this device is limited to the sequence

described by the GA grammar in Figure 1.

Fig.1. Device Status Graph A.

On the basis of this sequence, we construct a precedence

matrix, taking into account that the return loop A2 - A1 may

not be used in the algorithm (there may be zero or more

such paths). Also between the vertices A1 and A2 in the

algorithm can be located other states of other devices. For a

correct designation, we introduce parametric symbols M (≥

0) and N (≥1).

Table 2. The adjacency matrix of the state graph of

device A

- A1 A2

A1 0 N

A2 M 0

To find all possible paths, we use the following formula:

𝐴∗ =∑𝐴𝑛
𝐾

𝑖=1

(1)

where K is the dimension of the matrix.

Atlantis Highlights in Computer Sciences, volume 3

292

Table 3. Matrix of all paths for device state graph A

- A1 A2

A1 M*N N

A2 M M*N

Given the above parameters, the matrix is converted to

Table 4. The final matrix of all paths for the state graph

- A1 A2

A1 M N

A2 M M

Device B implements commands B1, B2, and B3. The

state graph of device B is depicted in Figure 2.

Fig.2. State graph of device B

The corresponding final matrix of all paths for the state

graph of device B is displayed in Table 4.

Table 5. The final matrix of all paths for the state graph

of device B

Device D implements commands D1, D2, and D3. The

state graph of device D is depicted in Figure 3.

Fig.3. State graph of device D

The corresponding final matrix of all paths for the state

graph of device D is displayed in Table 5.

Table 6. The final matrix of all paths for the state graph

of device D

Also, in each algorithm there are marks of the beginning

and end of the algorithm which are tracked as vertices of S.

The state graph describing their relative position is shown in

Figure 4.

Fig. 4. The sequence of labels of the beginning and end

of the algorithm S1 and S2

The corresponding final matrix of all paths for the state

graph S is displayed in table 6.

Table 7. The final matrix of all paths for the state graph

of device S

- S1 S2

S1 M N

S2 M M

Let's combine the matrices of all and create a

generalized matrix of all paths for all devices participating

in the algorithm. Fill in the missing cells in the matrix with

the parametric symbol M, since we cannot know in advance

how the states of the devices will be connected.

For the specified grammar, we analyze the following

algorithm, shown in Figure 5. Device A is sent a command

A1 and the system is set to wait for an external event from

this device. In the event that an eA1 event occurs,

commands are sent to device B. In the event that an eB1

event occurs, events are sent to device D. At the end of the

commands, command A2 is sent to command A2 and the

algorithm ends.

Fig.5. The algorithm to analysis.

Let’s construct an adjacency matrix corresponding to

this graph.

To check the graph for compliance with the listed

grammars, we apply the following algorithm:

1) To search for all possible paths in the graph, let us

raise the matrix A to the power n, where n is the length of

the path in the graph. Add up all possible variations of the

resulting matrices.

𝐴∗ =∑𝐴𝑛
𝑁

𝑖=1

(2)

2) Let's compare element-wise matrix A* and

grammar G.

3) In the event that all elements coincide, then the

algorithm can be considered as satisfying the grammar G.

Consider the example of the transformation of the matrix

A in accordance with formula (1).

- B1 B2 B3

B1 M

N N

B2 M M N

B3 M M M

- D1 D2 D3

D1 M

N N

D2 M M N

D3 M M M

Atlantis Highlights in Computer Sciences, volume 3

293

Let's compare the obtained matrix with the grammar G

(the selected cells do not satisfy the grammar property). The

transformation sequence is shown at tables 7, 8, 9 ,10.

Table 8. The combination of the matrix of all paths G

- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2

A1 M N M M M M M M M M

A2 M M M M M M M M M M

B1 M M M

N N M M M M M

B2 M M M M N M M M M M

B3 M M M M M

M M M M M

D1 M M M M M M

N N M M

D2 M M M M M M M N M M

D3 M M M M M M M M

M M

S1 M M M M M M M M M N

S2 M M M M M M M M M M

Table 9. Generalized adjacency matrix A

- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2

A1 0 0 1 0 0 1 0 0 0 0

A2 0 0 0 0 0 0 0 0 0 1

B1 0 0 0 1 0 0 0 0 0 0

B2 0 0 0 0 1 0 0 0 0 0

B3 0 1 0 0 0 0 0 0 0 0

D1 0 0 0 0 0 0 1 0 0 0

D2 0 1 0 0 0 0 0 0 0 0

D3 0 0 0 0 0 0 0 0 0 0

S1 1 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

Table 10. Resuling matrix A* after transformation.
- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2

A1 0 2 1 1 1 1 1 0 0 2

A2 0 0 0 0 0 0 0 0 0 1

B1 0 1 0 1 1 0 0 0 0 1

B2 0 1 0 0 1 0 0 0 0 1

B3 0 1 0 0 0 0 0 0 0 1

D1 0 1 0 0 0 0 1 0 0 1

D2 0 1 0 0 0 0 0 0 0 1

D3 0 0 0 0 0 0 0 0 0 0

S1 1 2 1 1 1 1 1 0 0 2

S2 0 0 0 0 0 0 0 0 0 0

Atlantis Highlights in Computer Sciences, volume 3

294

Table 11. Comparision matrix

- A1 A2 B1 B2 B3 D1 D2 D3 S1 S2

A1 0=0 2≥ 1 1≥0 1≥0 1≥0 1≥0 1≥0 0≥0 0≥0 2≥0

A2 0≥0 0=0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 1≥0

B1 0≥0 1≥0 0=0 1≥ 1 1≥ 1 0≥0 0≥0 0≥0 0≥0 1≥0

B2 0≥0 1≥0 0=0 0≥ 1 1≥ 1 0≥0 0≥0 0≥0 0≥0 1≥0

B3 0≥0 1≥0 0≥0 0=0 0=0 0≥0 0≥0 0≥0 0≥0 1≥0

D1 0≥0 1≥0 0≥0 0≥0 0≥0 0=0 1≥ 1 0=0 0≥0 1≥0

D2 0≥0 1≥0 0≥0 0≥0 0≥0 0=0 0=0 0≥ 1 0≥0 1≥0

D3 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0=0 0=0 0≥0 0≥0

S1 1≥0 2≥0 1≥0 1≥0 1≥0 1≥0 1≥0 0≥0 0=0 2≥ 1

S2 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0≥0 0=0

Let us consider in more detail the operation of the

algorithm based on the example given above and illustrated

by tables 8-11.

The algorithm begins with the construction of an

adjacency matrix based on the graph presented in Figure 5.

Step 1. To build a comparison matrix, it is necessary to

combine all the matrices of all possible paths into one. This

must be done in accordance with the following rule: we

supplement each of the matrices with missing rows and

columns that correspond to the vertices of the graphs of the

remaining graphs. Thus, we obtain a matrix of higher

dimension. The dimension of the matrix is equal to the sum

of the dimensions of the original matrices. The empty cells

of the resulting matrix are filled with the value M, since at

the primary stage we do not know which links are present in

these graphs.

Step 2. Next, we combine all the matrices into one cell

by cell according to the following rule: if at least one matrix

in this cell contains a value other than M, then we write it,

otherwise we write N. Following the example, we obtain the

matrix of all possible paths in the graph represented in

table 8.

Step 3. Further, the adjacency matrix of the algorithm

graph, presented in Table 9, is used for calculations in

accordance with formula (1). Thus, as a result of

calculations, getting all possible paths of different lengths in

the graph from 1 to N inclusive. The resulting values are

presented in Table 10.

Step 4. After the calculations, it remains only to compare

the values element by element between the matrix of all

possible paths and the result of the calculation in the

previous step. To do this, perform the following actions:

a) replace symbolic values with comparison

operators: M with “> = 0”, and N with “> = 1”,

b) we check elementwise fulfillment of conditions in

the cells of the matrix.

Those cells in which the values do not satisfy the

conditions obtained, indicate connections between the

vertices that cannot exist in accordance with the given

graphs of the device status. Thus, the corresponding

components of the matrix and the corresponding links in the

graph violate the syntax of the resulting schema of the

language and require certain manipulations to be corrected.

It is clear from the comparison matrix that the element

D2 should be connected to D3, since this is due to the

grammar, but this condition is not fulfilled, which means the

algorithm is considered to be incorrect.

III. RESULTS

The article describes the method of syntactic verification

of the algorithm based on the transition graph for

automating the experiment. The obtained technique, from

the point of view of the authors, is most effective when

using computing devices with a high degree of parallelism,

such as FPGAs and graphics processors. In the future, it is

planned to develop this approach in the experiment

automation system, as the most promising.

The article deals with the problem of formal description

of methods of organization of biomedical experiment. The

need for a formal description of the experimental scheme is

postulated. One of the ways of formal representation of

biomedical experiment on the basis of transition graph,

which is one of the variants of description of finite

automata, is considered. Based on the analysis revealed that

the main characteristics are the correctness and adequacy of

the representation in the form of a graph of transitions. It is

shown that the main problem of representation adequacy is

the problem of description of nested sequences of actions

corresponding to the beginning and end of the use of

different components of the experiment. An example of

such use is sequential and parallel activation of experimental

equipment. Shown in the example, the correct sequence

correspond to the realized experiments, but wrong-is not

feasible. The necessity of checking the correctness of the

graph as the main condition for the feasibility of the

experiment is substantiated. One of approaches to the

analysis of correctness of such graph on the basis of matrix

calculations is presented. The developed algorithm

validation on the basis of the method of construction of the

matrix of transition counts. The basic transformations

necessary to verify the correctness of the transition schedule

of the biomedical experiment are given and an example of

the algorithm application is given.

IV. ACKNOWLEDGMENT

The reported study was funded by RFBR according to the

research project № 17-48-020074.

Atlantis Highlights in Computer Sciences, volume 3

295

REFERENCES

[1] Bakusov L.M., Stepankin P.V. Geometric interpretation of the

behavior of systems represented by Petri nets. Interuniversity
scientific collection. Management of complex technical systems. Ufa,
UAI, 1987.–pp.16-21.

[2] Bakusov L.M., Bakusov S.M., Nasyrov R.V. the algorithm of
numerical simulation of systems with continiouse time// Fundamental
research. Publisher: Publishing House "Academy of Natural History"
(Penza), ISSN: 1812-7339/ 2013, №10-12, pp.2593-2598.

[3] http://www.plcdev.com/introduction_grafcets

[4] http://labviewwiki.org/G

[5] http://is.ifmo.ru/books/switch_pdf/oglavlenije.pdf

[6] http://is.ifmo.ru/books/switch_pdf/_switch19.pdf

[7] Wu D.H., Schnieder E. (2018) Scenario-based system design with
colored Petri nets: an application to train control systems. Software
and Systems Modeling, vol.17, i.1, pp.295-317. doi:10.1007/s10270-
016-0517-1

[8] Rova S., Meire P., Muller F., Simeoni M. Prenovi F. (2019) A Petri
net modeling approach to explore the temporal dynamics of the
provision of multiple ecosystem services. Science of the total
environment, vol.655, i.6, pp. 1047-1061.
doi:10.1016/j.scitotenv.2018.11.184

[9] Khan Y.I., Konios A. Guelfi N. (2019) A Survey of Petri Nets
Slicing. ACM Computing Surveys, vol.51, i.5, no.109.
doi:10.1145/3241736

[10] Machado P. Silva M.R., de Souza L.E., de Souze C.W., Netto R.S.
(2018) Modeling Using Colored Petri Net of Communication
Networks Based on IEC 61850 in a Microgrid Context. Journal of
Control Automation and Electrical systems, vol.29, i.6, pp.703-717.
doi:10.1007/s40313-018-0411-x

[11] Rodriguez-Fernandez V., Gonzalez-Pardo A., Camacho D. (2018)
Automatic Procedure Following Evaluation Using Petri Net-Based
Workflows. IEEE Transactions on Industrial informatics, vol.14, i.6,
pp.2748-2759. Doi: 10.1109/TII.2017.2779177

[12] Pospisil T. (2017) Control Flow Models using Petri Nets for Model-
based Testing. Proceeding of the 2017 9th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol.1, pp.553-557

[13] Kirci M., Gunes E.O. (2017) An Adaptive Petri Net Model of Wheat
Phenological Phases Under Environmental Conditions. 2017 6th
International Conference and Agro-Geoinformatics, pp.136-141

[14] Charaf M.E., Azzouzi S. (2017) A Colored Petri Net Model For
Control Execution of Distributed Systems. International Conference
on Control Decision and Information Technologies, 2017 4th
International Conference on Control, Decision and Information
Technologies (CODIT), Barselona, Spain, pp.277-282

Atlantis Highlights in Computer Sciences, volume 3

296

http://is.ifmo.ru/books/switch_pdf/_switch19.pdf

