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Abstract—Currently, modern turbomachines, for example, 

aircraft gas turbine engines are equipped with highly 

intelligent automated monitoring and control systems, 

including a large number of sensors that control various 

parameters of the product being operated. In particular, there 

are sensors that monitor the oscillation frequencies of the most 

critical structural elements. This paper estimates the ability to 

determine the support stiffness of a cantilever rod under the 

two first eigenfrequencies of its oscillations. A similar problem 

arises in the non-destructive testing of the axial compressor 

blade root of a gas turbine engine when a certain decision of its 

further operation possibility or changing its operation mode is 

can be made on the basis of the blade oscillation 

eigenfrequencies spectrum. As a result of the implementation 

of the paper proposed method it was obtained that the 

identification error does not go beyond 28%, which is quite 

acceptable for assessing the technical condition of the support 

in the engine corresponding to the range of existing engines. 

Keywords—Splines, mathematical modelling, rod vibrations 

I. INTRODUCTION 

The majority of damages occurs in the blades of aircraft 
gas turbine engines (GTE) are associated with the action of 
alternating stresses arising from vibrations and are fatigue in 
nature. The blade oscillations produce the large additional 
dynamic stresses and cause the material fatigue phenomena. 
As a result, cracks appear in various places of the blades over 
time, which is the reason of their destruction. As a rule, the 
damage of one blade leads to an avalanche-like process of 
damaging or destroying other blades, disturbing the rotor 
balance, and other serious engine damage. In order to prevent 
vibration damages the blade oscillations are investigated in 
the step of engine design and development. 

The blade as any elastic structure has a spectrum of 
eigenfrequencies and modes of vibration. These indicators 
are decisive because they fully represent the dynamic 
properties of the blades, their ability to respond to different 
types of external influence and determine the blade 
oscillation. While calculating and studying the 
eigenfrequency spectra and blade vibration modes, it should 
be taken into account that unacceptable negative changes 

may occur in the supports in the operation, that lead to 
changes in their pliability, which in turn will have a negative 
effect on the magnitude of eigenfrequency of the GTE 
compressor blade. 

The blade axial compressor is considered in the form of a 
cantilevered elastic rod with elastic supports at its root when 
analyzing the oscillations. 

Currently, analytical methods have been developed for 
calculating the natural oscillation frequencies of straight rods 
with constant cross sections [1-3]. 

To determine the eigenfrequencies of oscillations for the 
blade, it is necessary to turn to numerical methods as the 
blade has a variable cross section. The one of the most 
effective is the spline method [4-27], the identification of 
boundary conditions is considered in [28, 29]. 

In view of the above, it is very important to develop 
methods for estimation of the mechanical state of certain 
product structural elements that based on the spectrum of 
eigenfrequencies for oscillations arising in the structure. 

II. PROBLEM DEFINITION 

Consider a straight rod of length l with a constant cross 

 
Fig. 1. Elastic cantilevered rod with elastic supports. 
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section, defined by the area A and the minimum axial 
moment of inertia Ix. The rod made of the material with 
Young's modulus E and density  . The rod is elastically 

fastened at the left end and free at the right end (Fig. 1). 

The support of the rod has two types of elastic properties: 
when the fixing point moves vertically   from the support 
side a force R is acting on the rod, and when the cross-
section of the rod is rotated at an angle from the support side 
a moment of a couple M is acting on the rod (Fig. 1): 

 0/,/ sMrR   

The coefficients r, s in (1) are the support compliance 
coefficients. During the working this type structures the 
unacceptable changes may occur in the support, which will 
lead to a change in the value of the support compliance 
coefficients r, s. It is very important to be able to timely 
record the occurrence of this state directly during the product 
operation. 

Based on this, this paper sets the task of developing and 
putting into practice the method of estimation the support 
pliability r, s of a cantilevered straight rod by the known first 

two eigenfrequencies 21,  of its vibrations. 

III. EQUATIONS FOR DETERMINING THE EIGENFREQUENCIES  

OF THE TRANSVERSE OSCILLATIONS OF A ROD 

Consider a straight rod of length l = 0.2 m, having a 
rectangular cross section of width b = 0.03 m and height 
h = 0.01 m. The rod made of the material with Young's 
modulus E = 2∙10

11
 Pa and density ρ = 7.85 kg/m

3
. The 

minimum axial moment of inertia Ix = bh
3
/12 = 2.5∙10

-9
 m

4
, 

the cross-sectional area A = bh = 3∙10
-4

 m
2
. 

The eigenfrequencies of the rod oscillations are 
determined [1] – [3] from the equation 

 



AW

x

W
EI ,02

4

4

 

where )(xWW   – a function describing the form of 

natural oscillations. With notation: 










],1,0[~,~
],1,0[,~

wwWW

xxlx

o

 

where 0W  – the scale factor with the dimension of a 

displacement. 

Let's introduce the notation for the reduced parameter 

eigenfrequency ~  of the rod: 

 2
4

2~ 



EI

l
 

then we get the equation (2) in a dimensionless form. 
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The given boundary conditions take the form: 









































,1~при0
~

~
,0

~

~

,0~при0
~

~
~

~

~
,0

~

~
~~

2

2

3

3

2

2

3

3

x
x

w

x

w

x
x

w
s

x

w

x

w
rw
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where the dimensionless pliability of supports are 

brought into consideration at 0~ x : 


l

EI
ss

l

EI
rr  ~,~

3
 

IV. ALGORITHM FOR DETERMINING SUPPORT PLIABILITY 

The general solution of the reduced equation for 
oscillations (5) has the form [15] – [18]: 

 xCxCeCeCw xx ~~
cos

~~~
sin

~~~~
43

~~

2

~~

1    

where 4321
~

,
~

,
~

,
~

CCCC  – constants of integration, 

determined from the given boundary conditions, 
~

 – some 

unknown magnitude. 

Let's write the partial derivatives of the function for the 
reduced forms of natural oscillations: 
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Substitute (9) into the differential equation (5) and then 
we get: 



].1,0[~
,0)~~
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~~~
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~~~

(~

)~~
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~~~
sin

~~~
(

~

43
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1

2
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Atlantis Highlights in Computer Sciences, volume 3

304



 

 

By transforming (10), the formula for calculating the 
eigenfrequency of oscillation of the reduced parameter rod: 

 2~~   

Based on (11) let's write: 

  ~~
 

Substituting (9) into (6) we get: 
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 

Let's write (13) in matrix form: 

 0PC  

where C  – column vector with 14  size: 

 TCCCC ),( 4321С  

P  – matrix with 44  size: 

 )4...,,1,4...,,1,(  kiPikP  

with components determined on the basis of (13): 
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3
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3
11

PP

ePeP

PP

ePeP

sPP

sPsP

PrP

rPrP

 

Equation (17) has a nonzero solution only when the 
determinant consisting of the matrix P  components is 
equal to zero: 

 0]det[

44434241

34333231

24232221

14131211



PPPP

PPPP

PPPP

PPPP

PD ik  

When substituting (17) into (18) and the subsequent 
deployment of the determinant we obtain the equation with 

the notation syrx ~,ˆ  : 

 ,000011011  pypxpxyp  

where 1,0,, jipij  – are some coefficients determined 

on the basis of matrix P  components. 

Equation (19) contains two unknowns. To determine the 
unknowns it is necessary to construct at least two equations 
of the form (19). 

Let's assume that for the specific rod we know the first 

two eigenfrequencies 21
~,~   of oscillations. 

This allows constructing two equations of the form (19) 
according to the above method. 










,0

,0

00011011

00011011

bybxbxyb

ayaxaxya
 

with known coefficients 1,0,, jiaij  and 1,0,, jibij . 

If the first equation is subtracted from the second 
equation of system (20) then we get: 

 0)()()( 000001011010  abyabxab  

From (21) we get: 

 xkky 10   

where 


0101

1010
1

0101

0000
0 ,

ba

ab
k

ba

ab
k









  

If we substitute (23) into the first equation of system (20) 
then we obtain a quadratic equation relatively 
the coefficient x: 

 001
2

2  cxcxc  

where 
















.

,

,

1112

011101101

001000

kac
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kaac

 

We find two roots by solving equation (24): 


2

20
2
11

2,1
2

4

c

cccc
x


  

then we define two roots on the base of (23) 

 2,1102,1 xkky   

As a result, we obtain two pairs of roots and, accordingly, 
two pairs of possible stiffness imposed towards the rod. 
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V. THE CALCULATION RESULTS OF PLIABILITY SUPPORT FOR 

THE ROD WITH A CONSTANT CROSS SECTION 

The analysis of the root rigidity for GTE blades when 
dimensions close to the size of the considered rod shows that 
in their operational state for the reduced parameter 
compliance the range is characterized by intervals: 

 13 101~0,101~0   sr  

Based on this, the exact values of the reduced parameter 

compliance tt sr ~,~  were given in Table 1 and the first two 

reduced eigenfrequencies 21
~,~   of oscillations were 

calculated. Further already on 21
~,~   the calculated values 

of pliability sr ~,~  were determined, which are summarized 

in Tab. 1. 

TABLE I.  VALUES OF THE PEDUCED PARAMETERS OF SUPPORT’S 

PLIABILITY FOR A ROD WITH CONSTANT CROSS-SECTION 

Number of 

Experiment 

A Rod with Constant Cross Section 

Exact Pliability Calculated Pliability 

tr
~  

ts
~  r

~  s
~  

1 0 0 0 9.35∙10-17 

2 1∙10-3 1∙10-3 1.0007∙10-3 0.9987∙10-3 

3 1∙10-2 1∙10-2 1.02∙10-2 0.954∙10-2 

4 1∙10-3 1∙10-1 1.14∙10-3 0.997∙10-1 

5 1∙10-2 1∙10-1 1.23∙10-2 0.952∙10-1 

Tab. 1 shows that the calculated values for the pliability 
support are very close to the exact ones for a rod with a 
constant cross section. 

VI. EXTENSION OF THE METHOD FOR A ROD WITH                        

A VARIABLE CROSS SECTION 

Real blades of GTE compressors have a variable cross-
section along the length; therefore, it is necessary to estimate 
the proposed method possibilities for rods of variable cross-
section. In this case, the eigenfrequencies are determined 
from the equation [7, 17]: 

 02 2
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W
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where constE , parameters I,  – are functions of x-

coordinate: )(x , )(xII  . 

From [7, 17] let's define in exponential form the 
expressions for a rod's mass per unit length μ and the axial 
moment of inertia I of its cross section: 

 l

x

l

x

eIIe


 00 ,  

where l – length of a rod, μ0, I0 and δ – some constants. 

On the base of (30) we define: 
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Substituting (30) and (31) into (29) we get: 
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With notation (3) the equation for oscillation (32) is been 
leading to a dimensionless form. 
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Let's introduce the designation for the reduced parameter 
of eigenfrequency of the rod oscillations which is determined 
by the formula: 

 2

0

4
02~ 


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EI

l
 

Taking into account (34) the equation (33) is reduced to 
the form 
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With notation 
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The exact solution of the equation (35) has the form [17]: 
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~
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
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Let’s calculate derivatives for function )(~~ xww   at x~  

up to the third order inclusive on the base of (37) 
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substituting the expressions (39) into (6), we obtain a system 
of equations for the structure similar to (14) where: 
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Then the desired values of support pliability are found by 
formulas (18) - (27). 

VII. THE CALCULATION RESULTS OF PLIABILITY SUPPORT FOR 

A ROD WITH A VARIABLE CROSS SECTION 

The analysis of the root rigidity for GTE blades when 
dimensions close to the size of the considered rod shows that 
in their operational state for the reduced parameter 
compliance the range is characterized by intervals (28). 

The variable section of the rod is setting by different 
values of the parameter δ = –2; –1; 1; 2. 

Bared in mind this, the exact values of the reduced 

parameter compliance tt sr ~,~  were given in Tab. 2, Tab. 3, 

Tab. 4 and Tab. 5 and the first two reduced eigenfrequencies 

21
~,~   of oscillations were calculated. Further already on 

21
~,~   the calculated values of pliability sr ~,~  were 

determined, which are summarized in Tab. 2, Tab. 3, Tab. 4 
and Tab. 5. 

The calculation results for a rod of variable cross section 
at 1  are presented in Tab. 2. 

TABLE II.  VALUES OF THE PEDUCED PARAMETERS OF SUPPORT’S 

PLIABILITY FOR A ROD WITH VARIABLE CROSS-SECTION 

Number of 

Experiment 

A Rod with Variable Cross Section at δ=-1 

Exact Pliability Calculated Pliability 

tr
~  

ts
~  r

~  s
~  

1 0 0 -3.60∙10-16 4.18∙10-16 

2 1∙10-3 1∙10-3 0.999∙10-3 1.000∙10-3 

3 1∙10-2 1∙10-2 1.02∙10-2 0.986∙10-2 

4 1∙10-3 1∙10-1 1.08∙10-3 0.999∙10-1 

5 1∙10-2 1∙10-1 1.19∙10-2 0.984∙10-1 

The calculation results for a rod of variable cross section 
at 1  are presented in Tab. 3. 
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TABLE III.  VALUES OF THE PEDUCED PARAMETERS OF SUPPORT’S 

PLIABILITY FOR A ROD WITH VARIABLE CROSS-SECTION 

Number of 

Experiment 

A Rod with Variable Cross Section at δ=1 

Exact Pliability Calculated Pliability 

tr
~  

ts
~  r

~  s
~  

1 0 0 0 7.53∙10-16 

2 1∙10-3 1∙10-3 1.001∙10-3 0.995∙10-3 

3 1∙10-2 1∙10-2 1.03∙10-2 0.918∙10-2 

4 1∙10-3 1∙10-1 1.19∙10-3 0.994∙10-1 

5 1∙10-2 1∙10-1 1.25∙10-2 0.916∙10-1 

The calculation results for a rod of variable cross section 
at 2  are presented in Tab. 4. 

TABLE IV.  VALUES OF THE PEDUCED PARAMETERS OF SUPPORT’S 

PLIABILITY FOR A ROD WITH VARIABLE CROSS-SECTION 

Number of 

Experiment 

A Rod with Variable Cross Section at δ=-2 

Exact Pliability Calculated Pliability 

tr
~  

ts
~  r

~  s
~  

1 0 0 -6.55∙10-16 2.54∙10-16 

2 1∙10-3 1∙10-3 0.998∙10-3 0.998∙10-3 

3 1∙10-2 1∙10-2 1.01∙10-2 1.01∙10-2 

4 1∙10-3 1∙10-1 0.999∙10-3 0.999∙10-1 

5 1∙10-2 1∙10-1 1.16∙10-2 1.01∙10-1 

The calculation results for a rod of variable cross section 
at 2  are presented in Tab. 5. 

TABLE V.  VALUES OF THE PEDUCED PARAMETERS OF SUPPORT’S 

PLIABILITY FOR A ROD WITH VARIABLE CROSS-SECTION 

Number of 

Experiment 

A Rod with Variable Cross Section at δ=-2 

Exact Pliability Calculated Pliability 

tr
~  

ts
~  r

~  s
~  

1 0 0 -6.55∙10-17 2.54∙10-15 

2 1∙10-3 1∙10-3 1.002∙10-3 0.991∙10-3 

3 1∙10-2 1∙10-2 1.03∙10-3 0.879∙10-2 

4 1∙10-3 1∙10-1 1.24∙10-3 0.990∙10-1 

5 1∙10-2 1∙10-1 1.28∙10-2 0.879∙10-1 

From Tab. 2, Tab. 3, Tab. 4 and Tab. 5, it can be seen 
that for a rod with a variable cross section the calculated 
values of the support's pliability are also very close to the 
exact. 

VIII. ANALYSIS OF THE CALCULATION RESULTS 

Comparison tt sr ~,~  and sr ~,~  in Tab. 1, Tab. 2, Tab. 3, 

Tab. 4 and Tab. 5 shows the values tt sr ~,~  and sr ~,~  

practically do not differ for absolutely rigid support at 

0~,0~  tt sr . 

Increasing support pliability, the discrepancies increase, 
but even with the maximum allowable values of pliability 

from the interval (28) when 13 101~,101~   tt sr  we 

have similar values 13 10870,0~,1028,1~   sr  that 

differ by no more than 28%. 

IX. СONCLUSION 

This paper has developed the method for identifying the 
compliance coefficients of the elastic support for a 
cantilevered rod with constant and variable cross-section 
based on the first two eigenfrequencies of its oscillations. 

The mathematical experiment was realized for estimation 
of the abilities of a cantilevered rod support, which is similar 
in properties to GTE blades of a real axial compressor.  

As a result of the implementation of the paper proposed 
method it was obtained that the identification error does not 
go beyond 28%, which is quite acceptable for assessing the 
technical condition of the support in the engine 
corresponding to the range of existing engines. 
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