P8.02: CHARACTERIZATION OF THE VASORELAXANT MECHANISMS OF ENDOCANNABINOID OLEOYLETHANOLAMIDE IN THE BOVINE OPHTHALMIC ARTERY

M.R. Romano, A.D. Lograno, M.D. Lograno

To cite this article: M.R. Romano, A.D. Lograno, M.D. Lograno (2011) P8.02: CHARACTERIZATION OF THE VASORELAXANT MECHANISMS OF ENDOCANNABINOID OLEOYLETHANOLAMIDE IN THE BOVINE OPHTHALMIC ARTERY, Artery Research 5:4, 183–183, DOI: https://doi.org/10.1016/j.artres.2011.10.125

To link to this article: https://doi.org/10.1016/j.artres.2011.10.125

Published online: 14 December 2019
Endothelial dysfunction and low-grade inflammation are associated with cardiovascular disease. Arterial stiffening plays an important role in cardiovascular disease and thus may be a mechanism through which endothelial dysfunction and/or low-grade inflammation lead to cardiovascular disease. We investigated the associations between, on the one hand, biomarkers of endothelial dysfunction (soluble endothelial selectin, thrombomodulin and both vascular- and intercellular adhesion molecules 1 and von Willebrand factor) and of low-grade inflammation (C-reactive protein, serum amyloid A, interleukin 6, interleukin 8, tumour necrosis factor-α and soluble intercellular adhesion molecule 1) and, on the other hand, arterial stiffness over a 6-year period, in 293 healthy adults (155 women). Biomarkers were combined into mean Z-scores. Carotid, femoral and brachial arterial stiffness and carotid-femoral pulse wave velocity were determined by ultrasonography. Measurements were obtained when individuals were 36 and 42 years of age. Associations were analysed with generalised estimating equation and adjusted for sex, height and mean arterial pressure. The endothelial dysfunction Z-score was inversely associated with femoral distensibility ([95%CI]-0.51(-0.95;-0.06]) and compliance coefficients [-0.041(-0.076; -0.006]), but not with carotid or brachial stiffness or carotid-femoral pulse wave velocity. The low-grade inflammation Z-score was inversely associated with femoral distensibility [-0.51(-0.95;-0.07)] and compliance coefficients [-0.050(-0.084;-0.016]), and with carotid distensibility coefficient [-0.91(-1.81;-0.008)], but not with brachial stiffness or carotid-femoral pulse wave velocity. Biomarkers of endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness. This provides evidence that arterial stiffening may be a mechanism through which endothelial dysfunction and low-grade inflammation lead to cardiovascular disease.

P8.02
CHARACTERIZATION OF THE VASORELAXANT MECHANISMS OF ENDCANNABINOID OLEOYLETHANOLAMIDE IN THE BOVINE OPHTHALMIC ARTERY

M. R. Romano, A. D. Lograno, M. D. Lograno
Department Pharmaco-Biology, University of Bari “A. Moro”, Bari, Italy

Background: Numerous studies show the potential therapeutic effect of different endocannabinoids and in particular the vasorelaxant effects in several vascular beds

Aim: To evaluate the vasorelaxant effect of oleoylethanolamide on isolated bovine ophthalmic arteries and to evaluate the possible mechanisms involved in relaxant responses

Methods: Ophthalmic arteries were isolated from bovine eyes and mounted in a wire miograph for isometric tension recording. The effects time- and concentration-dependent were assayed by addition of the oleoylethanolamide (0.1 - 10 μM) to the organ bath.

Results: Oleoylethanolamide (0.1 - 10 μM) produced a significant concentration- and time-dependent vasorelaxation in the bovine ophthalmic artery pre-contracted with 5-HT (1 μM). The removal of endothelium provoked a slight reduction of the relaxant effects. Interestingly, a pre-treatment with antagonist PPARα GW6471 (1 μM) inhibited the concentration- and time-dependent oleoylethanolamide-induced vasorelaxation.

Conclusion: The present study shows that oleoylethanolamide relaxed the isolated bovine ophthalmic artery in the concentration- and time-dependent manner. The candidate responsible of the vasorelaxant response to oleoylethanolamide appear to be the PPARα. This relaxant effect is an exciting tool to prevent ischemic injury because it improves the blood supply to the retina.

P8.04
DIFFERENT EFFECTS OF PLASMA MEMBRANE CALCIUM ATPASE 4 (PMCA4) ABLATION AND ACUTE INHIBITION ON CONTRACTILITY OF ISOLATED MOUSE MESENTERIC ARTERIES

S. Lewis, C. Cobb, E. Cartwright, C. Austin
University of Manchester, Manchester, United Kingdom

Plasma Membrane Calcium ATPases (PMCA's) are calcium extrusion pumps which may also modulate signal transduction. The most abundant PMCA...