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1. INTRODUCTION

Aortic stiffness, as measured by Aortic Pulse Wave Velocity (aPWV) 
and Central Pulse Pressure (CPP), increase with healthy aging [1,2] 
and independently predict cardiovascular mortality, including stroke 
[3–5]. Large artery stiffness is associated with increased cerebral 
blood flow pulsatility [6–10] which likely increases the mechanical 
insult delivered into the cerebral microvasculature [11] and may help 
to explain the increased frequency of white matter lesions observed 
in individuals with increased large artery stiffness [12,13]. In line 
with this hypothesis, individuals with increased cerebral blood flow 
pulsatility display increased frequency and volume of white matter 
hyperintensities [14,15] which are associated with incidence of 
stroke and other cerebrovascular disorders [6,16–19].

As the forward-travelling pressure wave propagates throughout 
the arterial tree it encounters bifurcations and sites of impedance 
mismatch that result in a proportion of this pressure wave being 

reflected back to the aorta. This phenomenon is termed pulse wave 
reflection [20]. Augmentation Index (AIx) can be used as an index 
of both the reflected pressure waves [21] and myocardial shorten-
ing velocity [22]. A greater AIx increases the risk of cardiovascular 
events, including stroke [23], target organ damage [19,24] and white 
matter hyperintensity volume [25,26]. In line with this, increased 
[25] and early wave reflections from the lower body [27] accom-
pany a greater cerebral pulsatility in aged individuals, suggesting 
that increased AIx may be associated with an increased cerebral 
blood flow pulsatility and cerebrovascular damage. However, an 
increased AIx has also been hypothesised to dampen the transmis-
sion of highly pulsatile forces travelling from the aorta into the end 
organ particularly those with a low resistance to flow (e.g. the brain 
and kidney) [6,19,28].

Therefore, the aim of this study was to further examine the influ-
ence of AIx upon cerebral pulsatility in the Middle Cerebral Artery 
Pulsatility Index (MCAPI) across a wide range of CPP and aPWV 
values, first, in a cross sectional study design and, second, following 
acute reductions in AIx with administration of the nitrovasodilator, 
Glyceryl Trinitrate (GTN) [29,30]. We hypothesised that AIx mod-
ifies the relation between markers of aortic stiffening and cerebral 
pulsatility.
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A B S T R AC T
Central Pulse Pressure (CPP) and Aortic Pulse Wave Velocity (aPWV) share a positive relationship with cerebral pulsatility and 
are associated with cerebrovascular disorders including stroke. Our aim was to examine the influence of Augmentation Index 
(AIx) upon this relationship, first by using a cross sectional design across a wide range of CPP and aPWV in healthy individuals 
and second, following administration of Glyceryl Trinitrate (GTN) to acutely change AIx. We measured CPP, aPWV, AIx and 
Middle Cerebral Artery Pulsatility Index (MCAPI) in 99 healthy individuals (54 females). In all individuals, after accounting for 
the effect of age and gender, MCAPI shared an independent inverse relationship with AIx (b = −0.515, R2 = 0.109; p = 0.001), 
and a positive relationship with CPP (b = 0.570, R2 = 0.093; p = 0.003) but not aPWV (p > 0.05). GTN was administered to 25 of 
these participants (14 females). Following GTN, AIx75 decreased in all participants relative to baseline (12 ± 19 to 5 ± 16%; p = 
0.0001). In the 20 min following GTN administration, CPP shared a positive relationship with MCAPI (b = 0.305, R2 = 0.042; p = 
0.002) while AIx, adjusted for heart rate (AIx75), shared an inverse relationship with MCAPI (b = −0.320, R2 = 0.019; p = 0.031). 
These findings indicate that the positive relationship between CPP and MCAPI may be somewhat modified by AIx. This suggests 
that an increased AIx may weakly attenuate increases in MCAPI that are associated with aortic stiffening in a healthy population 
at rest, but also following acute reductions in AIx75 after administration of GTN.
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Table 1 | Descriptive and hemodynamic data of all participants and those administered with GTN

Parameter All participants  
(n = 99) Range GTN study participants 

(n = 25) Range

Age (years) 45 ± 16 22–83 53 ± 17 22–77
Height (m) 170 ± 9 150–190 169 ± 10 151–185
Weight (kg) 75.0 ± 15.1 48–134 74.0 ± 10.5 54–112
BMI (kg/m2) 25.9 ± 4.6 18.8–43.8 25.9 ± 3.4 21.6–37.0
Males/Females 45/54 11/14
MAP (mmHg) 95 ± 11 70–128 92 ± 12 71–114
Central pulse pressure (mmHg) 37 ± 10 21–71 38 ± 10 21–58
Heart rate (bpm) 58 ± 9 41–77 59 ± 9 42–72
Augmentation index (AIx, %) 22 ± 16 −19.5–49 20 ± 18 −13–49
Augmentation index 75 (AIx@75, %) 14 ± 16 −28–40 18 ± 17 −20–40
Aortic Pulse Wave Velocity (aPWV, m/s) 7.2 ± 1.8 4.7–15.3 7.1 ± 1.5 4.65–9.65
MCAv (cm/s) 66.9 ± 12.0 41–99 65 ± 11 46–88
MCAPI (%) 75.0 ± 11.5 52–113 77.0 ± 12.2 59–107

Data are mean ± SD. BMI, body mass index; MAP, mean arterial blood pressure; MCAv, middle cerebral artery blood flow velocity; MCAPI, middle cerebral 
artery pulsatility index.

2. MATERIALS AND METHODS

2.1 Study Population

Ninety nine individuals (54 females, 45 ± 16 years, 75 ± 15 kg and 
170 ± 9 cm, Table 1), who were free from current or previous use 
of anti-hypertensive and/or cardiovascular acting medications 
and had no diagnosis of cardiovascular disease were recruited and 
assessed as part of this study. The study protocol information and 
consent were approved by the Cardiff Metropolitan University 
ethics committee and the Institutional Review Boards at the 
University of Texas Southwestern Medical Center at Dallas and 
Texas Health Presbyterian Hospital Dallas.

2.2. Protocols

Height and weight were measured following the completion of a 
medical history questionnaire where medications were noted. 
Peripheral (brachial) blood pressure, central (aortic) pulse pressure, 
aPWV, AIx and MCA blood flow velocity (MCAv) were obtained 
following at least 15 min of supine rest.

A subset of 25 individuals (14 females, 53 ± 17 years, 74 ± 11 kg and 
169 ± 10 cm) were enrolled in the interventional arm of the study, 
wherein each individual was given one dose of GTN (400–500 µg) 
while supine. A GTN tablet was positioned sublingually for 3 min 
after which time any remaining part of the tablet was discarded. 
Blood pressure (peripheral and central), AIx and MCAPI were 
measured simultaneously at baseline and at 1, 3, 5, 10, 15, and 20 
min post GTN administration.

2.3. Hemodynamic Measurements

2.3.1. Blood pressure

Brachial blood pressure was measured whilst supine using a validated 
semi-automated oscillometric device [31] (HEM-705CP, Omron 
Corporation and Tango, Suntech Medical Instruments, Raleigh, NC, 

USA). At baseline, blood pressure was measured in duplicate, or trip-
licate if two consecutive readings varied appreciably.

2.3.2.  Central pulse pressure and  
augmentation index

Applanation tonometry of the radial artery was used to assess CPP 
and AIx (SphygmoCor, AtCor Medical, Sydney, Australia). Central 
(aortic) pressure waves were generated from the radial artery 
pressure waves using a validated generalized transfer function as 
previously described [32]. Using the integral software, CPP was 
calculated as the difference between the aortic systolic and dia-
stolic pressures, while Central Augmentation Pressure (cAP) was 
calculated as the difference between the second and first aortic sys-
tolic pressure peaks (P2 and P1). Pulse wave analysis of the aortic 
pressure waveform was also used to measure AIx (cAP expressed 
as a percentage of the aortic pulse pressure). Heart Rate (HR) was 
determined from the aortic waveform and expressed as beats per 
minute. Mean Arterial Pressure (MAP) was obtained by integration 
of the aortic waveform following the measurement and input of 
brachial systolic and diastolic blood pressures.

2.3.3. Aortic pulse wave velocity

Briefly, aPWV was measured using applanation tonometry 
(SphygmoCor, AtCor Medical, Sydney, Australia) by sequentially 
recording electrocardiography gated carotid and femoral artery 
pressure waveforms, as previously described in detail [33]. Path 
length for the determination of aPWV was measured as the surface 
distance between the suprasternal notch and the femoral artery 
measurement site minus the distance between the suprasternal 
notch and carotid artery measurement site, using a tape measure.

2.3.4. Cerebral blood flow pulsatility

Cerebral artery blood flow pulsatility (MCAPI) was measured from 
the left MCA flow velocity profile (MCAv) using 2 MHz pulsed 
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Table 2 | Hierarchical multivariable regression analysis of cerebral blood 
flow pulsatility (MCAPI) in all individuals

Model Variable

Overall  
model

Model 
improvement a

R2 (p-value) ΔR2 (p-value)

Log age
1 Log age2 0.170

Gender 0.042 (0.151) 0.145
2 Log central  

pulse pressure2
0.135 (0.005) 0.093 (0.003) 0.570

3 Log AIx2 0.245 (≤0.001) 0.109 (0.001) −0.515

Only significant predictors of the variance of the dependent variable are shown here with 
the exception of age, which was forced into the model. Significance was accepted at the 
95% confidence interval. AIx, augmentation index; b, standardized beta coefficient; R2, 
coefficient of determination.

Doppler ultrasound (Multiflow, DWL Elektronische Systeme, 
Singen, Germany). MCAv waveforms were recorded beat by beat 
for 30 s from which time averaged systolic, mean and diastolic 
cerebral blood flow velocities were calculated. MCAPI was calcu-
lated beat by beat using Gosling’s pulsatility index [7,34]: MCAPI = 
(Systolic MCAv − diastolic MCAv)/(mean MCAv) × 100 and aver-
aged over 30 s. Systolic (Systolic MCAv) and diastolic (Diastolic 
MCAv) cerebral blood flow velocities were expressed as a percent-
age by rescaling the respective values by the MCAv which was aver-
aged over 30 s (mean MCAv) [35,36].

2.4. Statistical Analysis

Data were analyzed using simple and hierarchical multivariable 
regression (SPSS v20, IBM, Armonk, NY, USA). Non-normally 
distributed variables were log transformed. The associations 
between cerebral blood flow pulsatility, aPWV, CPP and AIx were 
initially analyzed, together with other hemodynamic variables, 
using linear and curvilinear regression analyses. A hierarchical 
multivariable regression model was used thereafter to investi-
gate the parameters that were independently associated with 
MCAPI. Traditional known confounders such as age and gender 
were forced into the model. This was followed by the stepwise 
entry of the linear and quadratic terms of aPWV, CPP, AIx, heart 
rate and MAP. GTN administration can change heart rate and 
therefore AIx values obtained during GTN administration were 
standardized to 75 bpm (AIx75) [37]. The same hierarchical mul-
tivariable regression analyses were used to examine the relation-
ships between the linear and quadratic terms of aPWV, CPP, AIx, 
heart rate and MAP with MCAPI at baseline and following GTN 
administration. These variables were entered into the model in a 
stepwise method after age and gender had been forced into the 
model. A one-way ANOVA was also used to analyze the influence 
of GTN upon CPP, AIx75 and MCAPI over time. A main effect of 
time was followed up with using a paired t-test and a Bonferroni 
correction was applied where appropriate. Statistical significance 
was set at p ≤ 0.05. Unless otherwise stated, results are reported 
as mean ± SD. Values reported in the tables, text and figures have 
been log transformed where necessary.

3. RESULTS

3.1. Cross Sectional Study

Baseline descriptive characteristics, pressure and hemodynamic 
data of all 99 individuals and a subset of those who received GTN 
are reported in Table 1. Univariate regression analysis indicated 
that MCAPI shared a relationship with age (R2 = 0.057, b = 0.239; 
p = 0.018), CPP (R2 = 0.161, b = 0.401; p = 0.0001, Figure 1) and 
aPWV (R2 = 0.053, b = 0.230; p = 0.028). After accounting for 
the effects of age and gender, hierarchical multivariable regres-
sion analyses indicated that MCAPI shared an inverse relation-
ship with AIx (R2 = 0.109, b = −0.515; p = 0.001) and a positive 
relationship with CPP (R2 = 0.093, b = 0.570; p = 0.003, Table 2). 
None of the other measured variables shared an independent 
relationship with MCAPI and were therefore excluded from this 
regression model.

Figure 1 | MCAPI shared a positive relationship with CPP across all 
participants (p = 0.0001). Data are from 99 participants.

3.2.  Influence of acute reductions  
in augmentation index upon  
cerebral pulsatility

Baseline descriptive characteristics, pressure and hemodynamic 
data of the subset of 25 individuals who received GTN are reported 
in Table 1. Relative to baseline values (18 ± 17%) AIx75 was reduced 
during the 20-min period following GTN administration (main 
effect of time: p < 0.001) at 3 (10 ± 14%, p < 0.001), 5 (9 ± 15%, p < 
0.001), 10 (11 ± 17%, p < 0.001) and 15 min (12 ± 116%, p < 0.001). 
CPP was not different relative to baseline (36 ± 9 mmHg) at any 
time point (all p > 0.05). Similarly, despite reductions in AIx75 with 
GTN, MCAPI was unchanged at 3 (74.6 ± 13.3%), 5 (75.6 ± 11.4%), 
10 (76.6 ± 13.0%) and 15 min (75.9 ± 13.7%) relative to baseline  
(77 ± 12.2%, Main effect of time p = 0.63). The time at which the 
lowest AIx75 occurred in the 20 min following GTN administration 
was variable between subjects. Therefore, we compared the lowest 
AIx75 for each subject with MCAPI at that same time point. The 
lowest AIx75 following GTN was 5 ± 16% which was lower relative 
to baseline (p < 0.001). Interestingly, this decrease in AIx75 did not 
correspond with a change in MCAPI at the same time point relative 
to baseline (77 ± 12.2% vs. 75.8 ± 13.1%; p = 0.56). However, after 
accounting for the effects of age and gender, hierarchical multivari-
able regression analyses indicated that MCAPI shared an inverse 
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Table 3 | Hierarchical multivariable regression analysis of factors 
explaining the variance in MCAPI following GTN administration

Model Variable

Overall  
model

Model 
improvement a

R2 (p-value) ΔR2 (p-value)

Age 1.124
1 Age2 −0.594

Gender 0.263 (≤0.001) −0.296
2 Central pulse 

pressure2
0.305 (≤0.001) 0.042 (0.002) 0.330

3 AIx75 0.324 (≤0.001) 0.019 (0.031) −0.320
4 Heart rate 0.349 (≤0.001) 0.025 (0.013) 0.167

Only significant predictors of the variance of the dependent variable are shown. 
Significance was accepted at the 95% confidence interval. AIx@75, augmentation index; 
b, standardized beta coefficient; R2, coefficient of determination.

relationship with AIx75 (R2 = 0.019, b = −0.320; p = 0.031) and a 
positive relationship with CPP (R2 = 0.042, b = 0.330; p = 0.002) in 
the 20 min period following GTN administration (Table 3).

4. DISCUSSION

The aim of this study was to examine the influence of AIx upon 
cerebral pulsatility across a wide range of CPP and aPWV values, 
first, in a cross sectional study design and, second, following acute 
reductions in AIx with administration of the nitrovasodilator, GTN 
[26,27]. Together, these data indicate that CPP is positively associ-
ated and AIx inversely associated with middle cerebral artery blood 
pulsatility in healthy individuals. These findings have implications 
for the understanding of the role of CPP and AIx upon cerebral 
pulsatility.

Both aPWV and CPP share a positive relationship with carotid 
and cerebral pulsatility in a healthy population [22], leukoaraiosis 
patients [35] and a mixed group comprising both healthy individu-
als and those with cardiovascular disease [36,37]. Previous reports 
examining the relationship between AIx and cerebral pulsatility 
appear to be conflicting. Aortic AIx shares a positive relationship 
with cerebral flow AIx [24], while carotid AIx is inversely related 
with MCAPI [22]. However, the independent influence of AIx 
upon the relationship between increased CPP and aPWV with 
cerebral pulsatility index is unknown in a study population com-
prised exclusively of individuals free from cardiovascular disease, 
and current and/or prior use of cardiovascular acting medications.

Similar to others [22,25,35–37] our data indicate a positive rela-
tionship between CPP and cerebral blood flow pulsatility. However, 
independent of CPP, these data also indicate a small inverse rela-
tionship between AIx and cerebral blood flow pulsatility exists 
both from cross sectional data and that obtained following acute 
reduction of AIx75 with GTN. Taken together, these findings sug-
gest that wave reflections may exert a small influence in attenuating 
increases in cerebral blood flow pulsatility that accompany aortic 
stiffening and CPP.

Increased cerebral blood flow pulsatility and the accompanying 
excessive pulsatile shear stress can damage the vascular endothelial 
layer [34,35] and blood brain barrier leading to the development of 
white matter lesions [38]. Furthermore, increased cerebral blood 

flow pulsatility is associated with large artery vascular remodelling, 
as evidenced by an increased carotid wall thickness and plaque 
development [9,13,39], which are themselves predictors of cardio-
vascular risk [40,41]. Vascular remodelling occurs with aging and 
cardiovascular disease [42] leading to further increases in arterial 
stiffness and pressure pulsatility causing microcirculatory damage 
[19], increasing the risk of stroke and the development of white 
matter lesions [10,19,36,43–45]. An increased transmission of pul-
satile blood flow into the brain, secondary to large artery stiffening, 
may help explain the independent association between large artery 
stiffness and stroke [3,5,46]. Furthermore the inverse relationship 
observed here between AIx75 and MCAPI suggests that increased 
AIx may attenuate, albeit weakly, the transmission of increased 
pulsatile flow into the cerebral vasculature, perhaps due to aortic 
stiffening in a healthy population.

Glyceryl trinitrate and other endothelium-independent vasodila-
tors are often prescribed to individuals with cardiovascular disease, 
likely in the presence of aortic stiffening. With increasing age, the 
middle cerebral arteries exhibit impaired myogenic response to 
increased pulsatility that potentially contributes to distal cerebral 
microvascular damage [47] and intracerebral haemorrhage [48]. 
Following GTN administration, AIx75 was lowered while CPP 
remained unchanged relative to baseline. Throughout this period, 
AIx was inversely associated with cerebral pulsatility. While the 
association was weak it suggests that decreases in AIx75 are accom-
panied by small increases in cerebral pulsatility following GTN. 
While somewhat speculative, repeated and/or prolonged adminis-
tration of GTN (or similar endothelium-independent vasodilators) 
may result in greater decreases in AIx75 and accompany increased 
transmission of pulsatile flow into the cerebral vasculature, partic-
ularly in individuals with aortic stiffening. As such these findings 
may have implications for stroke and other cerebral vascular disor-
ders associated with cerebral blood flow pulsatility [14,15]. While 
medications such as GTN have clearly cardioprotective effects, 
decreases in AIx in individuals with aortic stiffening may expose 
the cerebral microvasculature to an increased flow pulsatility and 
influence the incidence of stroke and other cerebral vascular disor-
ders related to cerebral pulsatility.

4.1. Limitations

First, the strength of the prediction of the variance in MCAPI from 
alterations in AIx found here is low. Despite this, these data suggest 
that to some extent AIx shares an inverse relationship with cerebral 
pulsatility that is independent of age, gender, height, BMI and other 
traditional hemodynamic parameters that would be reasonably 
expected to influence cerebral pulsatility. In addition, the observation 
regarding an effect of AIx on MCAPI during GTN administration 
are consistent when investigating the cross-sectional data. To the best 
of our knowledge, these findings in a healthy population are novel. 
Second, the measurement of cerebral pulsatility was obtained using 
transcranial Doppler measures of blood velocity from the MCA. The 
MCA is responsible for a large majority (~80%) of the blood perfus-
ing the cerebral circulation. Given this, changes in pulsatility in this 
vessel likely influences cerebral health. That said, we are unable to 
ascertain whether the association between AIx and cerebral pulsatil-
ity with and without GTN administration was also evident in other 
cerebral arteries. This warrants further investigation.
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5. CONCLUSION

In a healthy population, the relationship between CPP and cerebral 
pulsatility is weakly modified by AIx in steady state resting condi-
tions and following acute reductions in AIx75 with GTN.
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