
International Journal of Networked and Distributed Computing
Vol. 8(1); December (2019), pp. 41–48

DOI: https://doi.org/10.2991/ijndc.k.191204.001; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

Research Article

Machine Learning in Failure Regions Detection and
Parameters Analysis

Saeed Abdel Wahab*, Reem El Adawi, Ahmed Khater

Department of Calibre D2S, Mentor, a Siemens Business, Cairo, Egypt

1.  INTRODUCTION

Testing has always been one of the hardest phases in software devel-
opment life cycle, and increases in size and complexity of the software
exponentially increase the number of failing regions and corner cases.
Since testing consumes a huge portion of all development efforts, and
requires even more effort for systems that require a high level of reli-
ability, some kind of automation becomes a necessity. Different failures
can have different execution traces, and to discover new unknown fail-
ures, or group different failure causes together, using traditional testing
methods may no longer be feasible. The use of machine learning has
been explored to solve various testing problems.

A category of machine learning research focuses on analyzing, pri-
oritizing, and refining already existing test cases. In Briand et al. [1],
the authors focused on refining the test suites by using a category
partition method and trees to remove redundancies and discover
uncovered parts with the test suite. In Lachmann [2], machine
learning was applied to prioritize test cases by using some features
within them (like test case age and number of defects) to priori-
tize and sort them. The problem of removing redundancy among
test cases was addressed in Vangala et al. [3] by using unsupervised
clustering to cluster similar test cases together. Also, reinforcement
learning was used to select and prioritize the test cases [4].

Other research focuses on creating a test oracle. A deep learning
model is built to act as the test oracle. The model is trained so that
the output is similar to the Software under Test (SUT). The trained
model is used to predict and detect any wrong output [5].

This paper proposes an automated approach using two cascaded
machine learning algorithms, first to detect the failures in the soft-
ware and then to cluster similar failures so the engineer would not
have to inspect all executions of the software. The first problem
is classification of the passing and failing executions, and for that,
a shallow neural network is used. The second problem is cluster-
ing similar failures together, and for that, a mean-shift clustering
is used. The rest of the paper is structured as follows. Related work
is described in Section 2. Section 3 provides background on the
different techniques used in this paper, including both text process-
ing and machine learning algorithms. The proposed approach is
described in Section 4. The experiments and results are discussed
in Section 5. Conclusions are drawn in Section 6.

2.  RELATED WORK

An important aspect of software testing is to detect unique failure
regions in the software. The ability to detect these failure regions
provides good testing coverage and avoids test case redundancy.
Researchers have tackled this problem in different ways.

Random forests are used in Haran et al. [6] to detect whether or
not there is a failure in the execution, according to the execu-
tion traces of the program, by using a small number of method
counts as a feature set. This approach achieved an error rate of
<7% when applied to all versions of a subject program for classi-
fying failing and passing executions. Although it provided good
results, it focused on the classification of passing and failing
executions without any consideration of clustering the failures
or identifying the unique failures.

A RT I C L E I N F O
Article History

Received 23 April 2019
Accepted 20 May 2019

Keywords

Testing
automation
machine learning
clustering
classification

A B S T R AC T
Testing automation is one of the challenges facing the software development industry, especially for large complex products.
This paper proposes a mechanism called Multi Stage Failure Detector (MSFD) for automating black box testing using different
machine learning algorithms. The input to MSFD is the tool’s set of parameters and their value ranges. The parameter values
are randomly sampled to produce a large number of parameter combinations that are fed into the software under test. Using
neural networks, the resulting logs from the tool are classified into passing and failing logs and the failing logs are then clustered
(using mean-shift clustering) into different failure types. MSFD provides visualization of the failures along with the responsible
parameters. Experiments on and results for two real-world complex software products are provided, showing the ability of
MSFD to detect all failures and cluster them into the correct failure types, thus reducing the analysis time of failures, improving
coverage, and increasing productivity.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: Saeed_AbdelWahab@mentor.com

https://doi.org/10.2991/ijndc.k.191204.001
https://www.atlantis-press.com/journals/ijndc
http://creativecommons.org/licenses/by-nc/4.0/
mailto:Saeed_AbdelWahab%40mentor.com?subject=

42	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48

Figure 1 | Structure of the neuron [11].

In Dickinson et al. [7] and Podgurski et al. [8], clustering algo-
rithms are used to cluster the execution profiles and detect differ-
ent types of failures. The main drawback in these methods is that
the number of clusters must be provided by the user i.e. the user
must have insight into the number of failure types. In Dickinson
et al. [7], the user must determine the optimum number of clusters,
while in Podgurski et al. [8], the optimum number of clusters is not
accurately determined, so a kind of visualization is provided to help
determine the best clusters. In this work, the number of clusters is
determined automatically by using methods explained in Section 4.

In Du et al. [9], a deep neural network model using Long- and
Short-Term Memory (LSTM), is trained on the system logs to
model the normal system behaviour. That is used to detect anom-
alies from the logs resulted from different tools which is similar
to this work, and in Fu et al. [10] free text logs are changed into
log keys and a finite state automation is trained on log sequences
to present the normal work flow for each system component. At
the same time, a performance measurement model is taught to
detect the normal execution performance based on the log mes-
sages timing information. However an extra step is provided in this
paper’s work which was not provided in Du et al. [9] and Fu et al.
[10] that is after detecting these anomalies they are clustered into
different failing regions.

3.  BACKGROUND

The flow proposed in this work, detailed in Section 4, relies on text
processing and machine learning algorithms. In this section, these
technologies are discussed.

3.1. � Term Frequency Inverse
Document Frequency

Term frequency inverse document frequency (TF-IDF) [11] is an
algorithm used to determine how important a word is to a docu-
ment in a collection, or to the whole collection. TF-IDF determines
the relative frequency of words in a specific document compared
with the inverse proportion of that word over the entire document
corpus. For example, if there is a corpus of documents and each
set of these documents belongs to a certain category, to classify
or cluster these documents, they first must be transformed into a
bag-of-words [12]. The bag-of-words model is a type of representa-
tion of documents used in natural language processing, where the
document is decomposed to a set of words, disregarding the gram-
mar and word order. Each document in this corpus will have the
same bag-of-words that was created from the whole corpus, but the
values for each word in the bag-of-words for each document will be
different. This value is calculated using the TF-IDF.

Given a document collection D, a word w, and an individual docu-
ment d where d ∈ D, we calculate [Equation (1)]

		 w f D
fd w d

w D

= *
| |

,
,

log






� (1)

where fw,d equals how many times w appears in d, |D| is the size
of the corpus, fw,D equals the number of documents in which w
appears in D, and wd is the TF-IDF score for this word in this

document. So, if a word is repeated a lot in one document, but not
in many other documents, that means it is an important discrim-
inating word. However, if it is repeated a lot in all the documents,
then it is not that important. The following example clarifies the
idea behind TF-IDF. Assume the following two sentences: “A cat sat
on my face” and “A dog sat on my bed”. It is required to determine
the discriminating words between the two sentences. As a human
you can see that the important discriminating words are [cat-dog-
bed-face], while [A-on-sat] do not have any importance as they are
repeated in both sentences. TF-IDF mimics the human intelligence
in discriminating words through giving them a score according to
the frequency of occurrence. For example, the word “dog” will have
a score of [1 * log(2/1)] which is greater than 0 while the word “sat”
will have a score of [1 * log(2/2)] which equals 0. TF-IDF applies
this scoring to all words in all the documents in the corpus and thus
the discriminating words are those which have high scores.

3.2.  Artificial Neural Networks

Artificial Neural Networks (ANNs) are designed to resemble the
structure and information-processing capabilities of the brain [13].
The building blocks of this neural network are called neurons,
where the network consists of one or more layers of these neurons.
The interconnections between these neurons have certain variables,
called weights. These weights store information during the training
phase. The strength point of the neural networks is that it can extrap-
olate the learned information to produce or predict outputs that were
not present in the training data (generalization). Neural networks are
used to solve difficult and complex problems in many fields, like data
mining, pattern recognition and functions approximation.

As shown in Figure 1, the neurons, which are the building blocks of
the neural network, consist mainly of three elements. The first two
are the weights (which are in the interconnections) and an adder or
summation of the product of the input and the weights (which is
called the net) with Equation (2)

		   net =
=1

,
j

n

j k j kx w b∑ + � (2)

where wk,j is the interconnected weight and xj is the input. The
third element is the activation function, which forces the output
to be within a certain range. Structure of the neuron [11] one of
the activation functions used in ANN is the Rectified Linear
Unit (ReLU) activation function, which was first introduced in

	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48	 43

Nair and Hinton [14]. Figure 2 illustrates the ReLU activation
function, whose equation is [Equation (3)]

		    f x x() = (0,)max � (3)

Another type of activation function is the softmax function [15].
The equation for this function is [Equation (4)]

		    o x e
ej

x

k

xk

j

() =
å � (4)

This activation function enables the network to predict the prob-
ability that a certain input belongs to a certain class, instead of
having an output of only 0 and 1.

3.3.  Mean-shift Clustering

The mean shift algorithm was originally presented in 1975 by
Fukunaga and Hostetler [16]. Mean shift is a hill-climbing algorithm
that starts at a random point and keeps optimizing until reaching
the optimum solution. Assume a set of points in a two-dimensional
space. The kernel of the mean shift is a window with a center c, and
radius (or bandwidth) r. Figure 3 shows the different steps for the
algorithm. The first step (Figure 3a) is to choose a random point
from the data points, which is selected as center to the kernel with a
radius r. In the second step (Figure 3b), the mean of all points within
the bandwidth is calculated according to the shape of the kernel. For
example in a Gaussian kernel, each point has a certain weight that
decreases exponentially by moving away from the center. In step
three (Figure 3c), the calculated mean becomes the new center of the
kernel, and a new mean is calculated. In step four (Figure 3d), when
the calculated mean does not change after a number of iterations,
then this cluster has reached convergence. Another point from the
data set is chosen again, repeating steps 1 through 4. Although this
algorithm seems simple, selecting the radius is a hard task, which is
dependent on the data points provided.

3.4.  Singular Value Decomposition

Singular Value Decomposition (SVD) was developed by the dif-
ferential geometers, but the first proof of SVD for rectangular and

Figure 2 | ReLU activation function.

complex matrices was by Eckart and Young [17]. One of the appli-
cations of SVD is dimensionality reduction. In this section, a brief
overview of the SVD will be provided. In the following Equation (5),
a matrix A is decomposed into three matrices

		   A U Vm n m r
r r

n r
T

× ×
×

×∑= () � (5)

Am × n is the original matrix to be composed, while Um × r is the left sin-
gular vector, r r×∑ is the singular matrix (which is a diagonal matrix
containing the concepts on its diagonal arranged in a descending
order). Vn × r is the right singular vector, and r is the number of concepts
obtained from the original matrix. To reduce the dimensions of the
main matrix, the unimportant concepts or low-valued concepts can be
removed from the singular matrix which corresponds to the removal
of the matching column from the U matrix and row from the V matrix.
The lower the value of the concept compared with the values of the
other concepts in the singular matrix, the less information is lost which
results in less error of reconstruction.

4.  METHODOLOGY

In this section, a detailed discussion of the proposed approach is
provided. As shown in Figure 4, the Multi Stage Failure Detector
(MSFD) consists mainly of two blocks; the first block is responsible
for generating the test cases or the test scenarios, while the second
block’s function is classifying the logs of the SUT and then cluster-
ing them to discover all the failing regions.

Figure 3 | Mean-shift clustering algorithm. (a) Step 1. (b) Step 2.
(c) Step 3. (d) Step 4.

Figure 4 | Multi stage failures detector main blocks.

44	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48

Figure 5 | Multi stage failures detector detailed flow.

4.1.  Parameters Combinations Generation

The input to MSFD are the parameters of the SUT and the ranges
of values for these parameters. Random samples from all of these
ranges are chosen, and all possible combinations for the selected
samples are then executed. That is the MSFD uses the parameters
combinations generated to run the SUT, which in return generates
the logs that MSFD will use to determine the failing regions. After
that, all the logs resulting from each execution are fed to the second
block of the tool.

4.2. � Feature Extraction and Machine
Learning Models

As shown in Figure 5, the second block of MSFD consists mainly
of three stages:

	(i)	 Feature extraction.

	(ii)	 Machine Learning: this stage is composed of two steps:

•• Supervised learning using a feed-forward ANN for classifi-
cation of logs into pass and fail logs

•• Unsupervised learning using mean-shift clustering for clus-
tering of failing logs

	(iii)	 Visualization of results.

4.2.1.  Feature extraction

The generated logs are converted into a numerical representation
using TF-IDF. The logs were first converted into a bag-of-words,
and TF-IDF was then applied, transforming the logs into a vector
of numerical values. Each value represents a score for the words of
interest calculated using TF-IDF.

4.2.2.  Machine learning

•• Classification of logs using ANN: A supervised machine learning
model which is a fully connected feed-forward ANN, is used in this
stage. The network consists of three layers: an input layer with a
size equal to the feature vector, the hidden layer, which has a ReLU
activation function and 32 nodes, and the last layer, which uses a
softmax activation function to classify the passing and failing logs.

•• Unsupervised clustering using mean shift: The goal of this stage
is to find the number of unique failures within the failing logs.
Since this number is unknown, mean-shift clustering was used to
cluster the failures. As discussed in the background section, the
main drawback of this algorithm is selecting the ‘r’ or bandwidth

value to determine the optimal number of clusters, so a solution
had to be found to solve this issue. A solution for this problem
was introduced in Pedregosa et al. [18] where the K-nearest
neighbors algorithm was used. The number k is dependent upon
the samples number and the k-NN algorithm was used to return
the distances from a point to its neighbors. The max distance
among these distances is selected for each point and the same
procedure is repeated for all the points in the space. All these
distances are then summed, and the average value calculated is
the optimum bandwidth or radius to be used in the mean shift.

4.2.3.  Visualization

Multi stage failure detector provides three types of visualizations:

•• Failing logs visualizations: after the logs are transformed into
numerical vectors using the TF-IDF and clustered, each of these
numerical vectors’ dimensions is reduced to two dimensions
using a truncated SVD (which is a version of the SVD mentioned
in the background section), and implemented in Fukunaga and
Hostetler [16] to be plotted. Such graphs help the user clearly
see the failing logs, and how different they are from each other.
Truncated SVD facilitates the viewing of the clusters of failures
in two dimensions. The full information of the clusters and the
associated log files is saved by the tool in a separate directory and
can be examined by the user.

•• Failing parameters visualizations: each cluster’s failing parame-
ters are plotted, and if the number of parameters is more than
two, truncated SVD is used to reduce their dimension to two
dimensions.

•• Parameters analysis visualizations: each parameter or a combi-
nation of two parameters is plotted to determine their accepted
ranges of values.

4.3.  Validation

The results of the MSFD were validated manually by examining
each cluster, and examining the ranges resulted from the MSFD to
make sure that the results are accurate.

5.  EXPERIMENTS AND RESULTS

Multi stage failure detector was tested on two EDA tools which
are Calibre® layout schema generator (LSG) tool and xCalibrate™
to evaluate its efficiency. In the following two sections, the
results achieved from applying the MSFD on the two tools will
be discussed.

5.1.  Calibre® LSG

Calibre® LSG [19] is a tool for the random generation of realistic
design-like layouts, without design rule violations. The tool uses
a Monte Carlo method to apply randomness in the generation of
layout clips by inserting basic unit patterns in a grid. These unit
patterns represent simple rectangular and square polygons, as well
as a unit pattern for inserting spaces in the design. Unit pattern

	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48	 45

sizes depend on the technology pitch value. During the generation
of the layouts, known design rules are applied as constraints for
unit pattern insertion. Once the rules are configured, an arbitrary
size of layout clips can be generated.

The input to MFSD was the command that runs the LSG, along
with 11 different parameters and the ranges to be tested for these
parameters. The number of samples taken from each parameter
range was set to be either three or two samples. That resulted in
20,736 combinations, which maps to the same number of logs.
Since the tool to be tested produces a passing log only when all 11
parameters have a valid value (if there is even one parameter with
an invalid value, the tool under test should produce an error mes-
sage), the number of the passing logs is always much less than that
of the failing logs.

5.1.1.  Feature extraction

These logs were then fed to the feature extraction block shown in
Figure 5, where the TF-IDF algorithm was applied to generate vec-
tors of weights. After removing the stopping words (like a, the, an,
is...), each of these logs was converted into a numeric vector of 64
rows (64 elements per vector). Each of these rows corresponds to a
certain word. Examples of the captured words include “completed”,
“count”, “cpu”, “creating”, “error”, “file”, “floating”, “successfully” and
“zero”. Each of these words has a different score for each log’s vector.
By examining this sample of words, it is clear that some weights
are discriminating features for each of the passing and failing logs.
Although some passing logs may contain the word “error”, and
some failing logs may contain “successfully”, some combinations of
word weights (like “error” with “completed”) may mean a passing
run, while “successfully” with “zero” may be a failure.

5.1.2.  Classification

The extracted features are used as input to the classification stage,
which is the ANN. It was proven that providing a small training
data set containing 1000 passing (positive) log samples and 1000
failing (negative) log samples, with 20% of them used as test data,
and a shallow neural network as stated, was enough to draw the
hyper-plane separating the passing logs and the failing logs, pro-
ducing an accuracy of 100% on the test data. The result from this
phase was classifying the 20,736 logs into 20,712 failing logs and 24
passing ones.

5.1.3.  Clustering

The failing logs were then re-parsed, as TF-IDF was applied to
them again, producing numerical vectors of 46 rows. Each of these
rows again corresponds to a certain word. The TF-IDF was applied
again because some of the words existed in the passing logs, but
were not found in the failing ones, so the vectors of the failing logs
had zero values for these words. Also, during the first TF-IDF rep-
resentation, the weights of some specific words had larger values,
since they were discriminating features for passing and failing logs,
while in the case of being in a corpus containing only the failing
logs, these words may have no real value. Reapplying the TF-IDF
after the classification was for optimization (removing zeroes) and

to achieve more accurate results. Examples of words captured in
the second TF-IDF include “layer”, “margin”, “pattern col count”,
“error”, “floating”, “id”, and “layer”. In the sample of captured
words, the word ‘layer’ is captured two times. However, the first
time, it is “layer” (with double quotes), while the second time, it is
just layer. That happened because during the feature engineering
phase, it was noticed that the error message that appeared was due
to a failure caused by one of the parameters sometimes contain-
ing the name of that parameter within double quotes. As a result,
a pattern separating normal words from double-quoted words was
added to the TF-IDF allowing it to treat “layer” and layer as two
different words with two different weights in the numerical vec-
tors produced. Before adding the feature of separating quoted from
unquoted keywords, some similar errors were grouped together,
resulting in some of the clusters being combined with each other
to produce a total of nine clusters, which is not the right number of
clusters. After adding this feature, failing logs were clustered into 11
clusters, which is the right number of failure regions, producing a
100% accuracy result for the LSG.

5.1.4.  Failure analysis

The third and last phase is the visualization phase, and as stated in
the methodology section, MFSD provides three different visualiza-
tions: visualizing the logs, visualizing the failing parameters, and
visualizing the ranges of acceptable parameter values discovered
from running MFSD. The failing logs vectors contained 46 rows,
which corresponds to 46 features and 46 dimensions. To visualize
these results, a truncated version of the SVD was used to reduce the
dimensions to two dimensions. The resulting graph is provided in
Figure 6.

This graph represents 20,712 points, which corresponds to 20,712
failing logs clustered into 11 clusters. The number of points on this
graph is much less than this number because logs resulting from
similar failures were very close to each other in the high dimen-
sional space. Upon decreasing the features into only two dimen-
sions, these logs coincided. Some light green clusters (cluster 8 in
Figure 6) also coincide with some black ones (cluster 7 in Figure 6),
due to a small information loss resulting from the dimensionality
reduction. All cluster information is saved in a directory by the
tools and can be examined by the user. The second graph provided
by this tool plots the parameters that caused each of these failures
(Figure 7).

Figure 6 | Layout schema generator failing logs.

46	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48

Figure 8 | Parameters analysis.

Figure 7 | LSG failing clusters parameters.

Each of the clusters shown in this graph contains a graphical rep-
resentation of the 11 parameters that caused that error (only four
clusters’ parameters are plotted here, but all 11 clusters can be
plotted if needed). Since there are 11 parameters, a dimensionality
reduction algorithm was applied and the truncated SVD was used
again. So, if the user needed to analyze the set of parameters that
caused the first kind of failure, taking four samples from cluster 1 is
enough to cover cluster 1’s space, as shown in Figure 7. As demon-
strated before, although the number of failure logs in cluster 1 is far
more than four points, only four points are observed because they
are close to each other in the higher dimension space (in this case,
11 dimensions), so they coincided in the lower one. The last graph
provided by the MSFD is the representation of each parameter or
combination of two parameters (Figure 8).

These graphs represent the valid regions of each of the parameters
provided or requested for analysis. They help discover passing or
failing regions within the parameters that are not valid, as will be
illustrated next, and validate that these parameters’ ranges follow
the provided specifications. For the first graph, the margin parame-
ter is analyzed, where the valid ranges were plotted as green circles,
while invalid ranges were plotted as red crosses. It is clear that values
beneath zero are invalid, while zero and above are acceptable. This
was one of the mistakes captured by the MFSD, as the specifications
provided for the tool stated that margin values should allow nega-
tive values. The second graph represents two parameters together
(row and column counts), which shows that both of their ranges
should be above zero to provide acceptable results.

5.2.  xCalibrate±

xCalibrate is a software tool that allows the description of pro-
cess technology information and generates a rule file containing
Standard Verification Rule Format (SVRF) capacitance and resis-
tance statements. The xCalibrate tool automatically creates the
necessary capacitance and resistance rules for accurately extracting
parasitic devices. The generated rule files can be included in a larger
SVRF rule file for use by the Calibre® xACT, Calibre® xRC, and
Calibre® xL tools during parasitic extraction [20]. This tool is differ-
ent from the first tool because the input is not a set of parameters,
but a file containing certain rules. However, MSFD allows template
parsing of a template containing the keywords for the parameters
to be replaced, along with their ranges. Random sampling of the
parameters’ ranges is carried out, producing all the possible com-
binations of these templates to be fed into xCalibrate. Seven
parameters were sampled in xCalibrate, producing 10,800 logs.
Like the LSG, TF-IDF was applied on the output logs to produce
numerical vectors, each containing 149 elements that were then fed
into the neural network classifier model. In training the neural net-
work, 2000 logs were used (1000 passing logs and 1000 failing logs).
The training data was split between 80% training and 20% test data.
Again, due to the discriminating features captured by the TF-IDF,
the network reached an accuracy of 100% on the test data. After
reapplying the TF-IDF to the failing logs, unsupervised mean-shift
clustering was applied, producing numerical vectors each of length
94 elements. Eight failing regions were captured. Figure 9 shows
the graph representing the logs for these regions after reducing the
number of features from 94 to 2.

xCalibrate was a different way to test MSFD because of the dif-
ference in input mentioned above, and because not all errors of the
tool are clearly mentioned in the logs, as with the LSG. Although
some of these errors were not captured by the logs, MSFD was able
to cluster them successfully together, which proved the MSFD deci-
sion is not dependent upon the content of the log alone as much
as the contents of all the logs together. When analyzing the fail-
ures in the eight clusters, one of the failing clusters contained three
different failures because they were very close to each other, while
all the other failing logs were totally different. That is, the failing
logs of most of the clusters contained different formats from each

	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48	 47

Figure 9 | xCalibrate failing logs.
6.  CONCLUSION

This paper proposed the MSFD tool for discovering the failing
regions within a SUT, clustering similar failures together, visual-
izing the logs and the parameter values causing the failures, and
plotting the acceptable ranges for each parameter or combina-
tion of two parameters. The input to MSFD was the list of ranges
for the values of the parameters, passing through the parame-
ters combination generation block, the feature extraction and
machine learning block, and ending with the visualization. It was
found that using TF-IDF in log analysis followed by a feed-for-
ward ANN dramatically decreases both the depth of the ANN
needed and the number of the training data, while providing
accurate results. Using TF-IDF again on the failing logs allows
the mean-shift clustering to perfectly cluster the logs. Our exper-
iments with two different tools demonstrated the practicality of
this approach for introducing automation into failure regions
detection and parameters analysis.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

REFERENCES

[1]	 L.C. Briand, Y. Labiche, Z. Bawar, Using machine learning to
refine black-box test specifications and test suites, The Eighth
International Conference on Quality Software, IEEE, Oxford,
UK, 2008, pp. 135–144.

[2]	 R. Lachmann, Machine learning-driven test case prioritization
approaches for black-box software testing, European Test and
Telemetry Conference (ETTC), 2018, pp. 300–309.

[3]	 V. Vangala, J. Czerwonka, P. Talluri, Test case comparison
and clustering using program profiles and static execution,
Proceedings of the Seventh Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC/
SIGSOFT FSE), ACM, Amsterdam, The Netherlands, 2009,
pp. 293–294.

[4]	 H. Spieker, A. Gotlieb, D. Marijan, M. Mossige, Reinforcement
learning for automatic test case prioritization and selection
in continuous integration, Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing

Figure 10 | Zoomed in failing regions.

Figure 12 | Diffusion thickness parameter.

Figure 11 | xCalibrate failing clusters parameters.

other for displaying the errors. The close failures for the one cluster
meant that its logs contained different error messages, but with a
very similar display format. Such behavior was detected when the
visualization of the graph provided in Figure 9 was zoomed in
(the light green circular cluster, cluster 8), as shown in Figure 10.

However upon reapplying the mean-shift clustering on that cluster
of logs alone, the three different clusters were separated success-
fully. Like the two final graphs for the LSG, Figure 11 represents
the parameters that caused the failures in each of the clusters after
being reduced to two dimensions from the seven dimensions pro-
vided (seven parameters were used), and Figure 12 shows a sample
from the parameters being analyzed.

https://doi.org/10.1109/QSIC.2008.5
https://doi.org/10.1109/QSIC.2008.5
https://doi.org/10.1109/QSIC.2008.5
https://doi.org/10.1109/QSIC.2008.5
https://doi.org/10.5162/ettc2018/12.4
https://doi.org/10.5162/ettc2018/12.4
https://doi.org/10.5162/ettc2018/12.4
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/1595696.1595748
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3092703.3092709

48	 S.A. Wahab et al. / International Journal of Networked and Distributed Computing 8(1) 41–48

and Analysis (ISSTA), ACM, Santa Barbara, CA, USA, 2017,
pp. 12–22.

[5]	 R. Braga, P.S. Neto, R. Rabêlo, J. Santiago, M. Souza, A machine
learning approach to generate test oracles, Proceedings of the
XXXII Brazilian Symposium on Software Engineering (SBES),
ACM, Sao Carlos, Brazil, 2018, pp. 142–151.

[6]	 M. Haran, A. Karr, A. Orso, A. Porter, A. Sanil, Applying clas-
sification techniques to remotely-collected program execution
data, Proceedings of the 10th European Software Engineering
Conference (ESEC) held jointly with 13th ACM SIGSOFT inter-
national symposium on Foundations of Software Engineering
(FSE), ACM, Lisbon, Portugal, 2005, pp. 146–155.

[7]	 W. Dickinson, D. Leon, A. Fodgurski, Finding failures by clus-
ter analysis of execution profiles, Proceedings of the 23rd
International Conference on Software Engineering (ICSE), IEEE,
Toronto, Ontario, Canada, 2001, pp. 339–348.

[8]	 A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
et al., Automated support for classifying software failure reports,
25th International Conference on Software Engineering, IEEE,
Portland, OR, USA, 2003, pp. 465–475.

[9]	 M. Du, F. Li, G. Zheng, V. Srikumar, DeepLog: anomaly detec-
tion and diagnosis from system logs through deep learning,
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), ACM, Dallas, Texas, USA,
2017, pp. 1285–1298.

[10]	 Q. Fu, J.G. Lou, Y. Wang, J. Li, Execution anomaly detection in
distributed systems through unstructured log analysis, Ninth
IEEE International Conference on Data Mining, IEEE, Miami,
FL, USA, 2009, pp. 149–158.

[11]	 J. Ramos, Using TF-IDF to determine word relevance in docu-
ment queries, Proceedings of the First Instructional Conference
on Machine Learning, 242 (2003), 133–142.

[12]	 Z.S. Harris, Distributional structure, Word 10 (1954), 146–162.
[13]	 S. Haykin, Neural Networks: A Comprehensive Foundation,

third ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 2007.
[14]	 V. Nair, G.E. Hinton, Rectified linear units improve restricted

boltzmann machines, Proceedings of the 27th International
Conference on Machine Learning (ICML), ACM, Haifa, Israel,
2010, pp. 807–814.

[15]	 K. Duan, S. Sathiya Keerthi, W. Chu, S.K. Shevade, A.N. Poo, Multi-
category classification by soft-max combination of binary clas-
sifiers, in: T. Windeatt, F. Roli (Eds.), Multiple Classifier Systems
(MCS), vol. 2709, Springer, Berlin, Heidelberg, 2003, pp. 125–134.

[16]	 K. Fukunaga, L. Hostetler, The estimation of the gradient of a
density function, with applications in pattern recognition, IEEE
Trans. Inform. Theory 21 (1975), 32–40.

[17]	 C. Eckart, G. Young, The approximation of one matrix by another
of lower rank, Psychometrika 1 (1936), 211–218.

[18]	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, et al., Scikit-learn: machine learning in python, J. Mach.
Learn. Res. 12 (2011) 2825–2830.

[19]	 J.H. Lee, C. Kim, M. Kang, S. Hwang, J.S. Yang, M. Harb, et al.,
A random approach of test macro generation for early detec-
tion of hotspots, Proc. SPIE 9781, Design-Process-Technology
Co-optimization for Manufacturability X, 97810J, 2016.

[20]	 Available from: https://www.mentor.com/products/ic_nanome-
ter_design/verification-signoff/circuit-verification/calibre-xrc/
upload/calibre-xrc-419ab7e8-9a32-4403-ab99-adfdcee65d4c

https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1145/1095430.1081732
https://doi.org/10.1145/1095430.1081732
https://doi.org/10.1145/1095430.1081732
https://doi.org/10.1145/1095430.1081732
https://doi.org/10.1145/1095430.1081732
https://doi.org/10.1145/1095430.1081732
https://doi.org/10.1109/ICSE.2001.919107
https://doi.org/10.1109/ICSE.2001.919107
https://doi.org/10.1109/ICSE.2001.919107
https://doi.org/10.1109/ICSE.2001.919107
https://doi.org/10.1109/ICSE.2003.1201224
https://doi.org/10.1109/ICSE.2003.1201224
https://doi.org/10.1109/ICSE.2003.1201224
https://doi.org/10.1109/ICSE.2003.1201224
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1007/3-540-44938-8_13
https://doi.org/10.1007/3-540-44938-8_13
https://doi.org/10.1007/3-540-44938-8_13
https://doi.org/10.1007/3-540-44938-8_13
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1117/12.2218806
https://doi.org/10.1117/12.2218806
https://doi.org/10.1117/12.2218806
https://doi.org/10.1117/12.2218806
https://www.mentor.com/products/ic_nanometer_design/verification-signoff/circuit-verification/calibre-xrc/upload/calibre-xrc-419ab7e8-9a32-4403-ab99-adfdcee65d4c

