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1.  INTRODUCTION

Testing has always been one of the hardest phases in software devel-
opment life cycle, and increases in size and complexity of the software 
exponentially increase the number of failing regions and corner cases. 
Since testing consumes a huge portion of all development efforts, and 
requires even more effort for systems that require a high level of reli-
ability, some kind of automation becomes a necessity. Different failures 
can have different execution traces, and to discover new unknown fail-
ures, or group different failure causes together, using traditional testing 
methods may no longer be feasible. The use of machine learning has 
been explored to solve various testing problems.

A category of machine learning research focuses on analyzing, pri-
oritizing, and refining already existing test cases. In Briand et al. [1], 
the authors focused on refining the test suites by using a category 
partition method and trees to remove redundancies and discover 
uncovered parts with the test suite. In Lachmann [2], machine 
learning was applied to prioritize test cases by using some features 
within them (like test case age and number of defects) to priori-
tize and sort them. The problem of removing redundancy among 
test cases was addressed in Vangala et al. [3] by using unsupervised 
clustering to cluster similar test cases together. Also, reinforcement 
learning was used to select and prioritize the test cases [4].

Other research focuses on creating a test oracle. A deep learning 
model is built to act as the test oracle. The model is trained so that 
the output is similar to the Software under Test (SUT). The trained 
model is used to predict and detect any wrong output [5].

This paper proposes an automated approach using two cascaded 
machine learning algorithms, first to detect the failures in the soft-
ware and then to cluster similar failures so the engineer would not 
have to inspect all executions of the software. The first problem 
is classification of the passing and failing executions, and for that, 
a shallow neural network is used. The second problem is cluster-
ing similar failures together, and for that, a mean-shift clustering 
is used. The rest of the paper is structured as follows. Related work 
is described in Section 2. Section 3 provides background on the 
different techniques used in this paper, including both text process-
ing and machine learning algorithms. The proposed approach is 
described in Section 4. The experiments and results are discussed 
in Section 5. Conclusions are drawn in Section 6.

2.  RELATED WORK

An important aspect of software testing is to detect unique failure 
regions in the software. The ability to detect these failure regions 
provides good testing coverage and avoids test case redundancy. 
Researchers have tackled this problem in different ways.

Random forests are used in Haran et al. [6] to detect whether or 
not there is a failure in the execution, according to the execu-
tion traces of the program, by using a small number of method 
counts as a feature set. This approach achieved an error rate of 
<7% when applied to all versions of a subject program for classi-
fying failing and passing executions. Although it provided good 
results, it focused on the classification of passing and failing 
executions without any consideration of clustering the failures 
or identifying the unique failures.
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A B S T R AC T
Testing automation is one of the challenges facing the software development industry, especially for large complex products. 
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(using mean-shift clustering) into different failure types. MSFD provides visualization of the failures along with the responsible 
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MSFD to detect all failures and cluster them into the correct failure types, thus reducing the analysis time of failures, improving 
coverage, and increasing productivity.
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Figure 1 | Structure of the neuron [11].

In Dickinson et al. [7] and Podgurski et al. [8], clustering algo-
rithms are used to cluster the execution profiles and detect differ-
ent types of failures. The main drawback in these methods is that 
the number of clusters must be provided by the user i.e. the user 
must have insight into the number of failure types. In Dickinson  
et al. [7], the user must determine the optimum number of clusters, 
while in Podgurski et al. [8], the optimum number of clusters is not 
accurately determined, so a kind of visualization is provided to help 
determine the best clusters. In this work, the number of clusters is 
determined automatically by using methods explained in Section 4.

In Du et al. [9], a deep neural network model using Long- and 
Short-Term Memory (LSTM), is trained on the system logs to 
model the normal system behaviour. That is used to detect anom-
alies from the logs resulted from different tools which is similar 
to this work, and in Fu et al. [10] free text logs are changed into 
log keys and a finite state automation is trained on log sequences 
to present the normal work flow for each system component. At 
the same time, a performance measurement model is taught to 
detect the normal execution performance based on the log mes-
sages timing information. However an extra step is provided in this 
paper’s work which was not provided in Du et al. [9] and Fu et al. 
[10] that is after detecting these anomalies they are clustered into 
different failing regions.

3.  BACKGROUND

The flow proposed in this work, detailed in Section 4, relies on text 
processing and machine learning algorithms. In this section, these 
technologies are discussed.

3.1. � Term Frequency Inverse  
Document Frequency

Term frequency inverse document frequency (TF-IDF) [11] is an 
algorithm used to determine how important a word is to a docu-
ment in a collection, or to the whole collection. TF-IDF determines 
the relative frequency of words in a specific document compared 
with the inverse proportion of that word over the entire document 
corpus. For example, if there is a corpus of documents and each 
set of these documents belongs to a certain category, to classify 
or cluster these documents, they first must be transformed into a 
bag-of-words [12]. The bag-of-words model is a type of representa-
tion of documents used in natural language processing, where the 
document is decomposed to a set of words, disregarding the gram-
mar and word order. Each document in this corpus will have the 
same bag-of-words that was created from the whole corpus, but the 
values for each word in the bag-of-words for each document will be 
different. This value is calculated using the TF-IDF.

Given a document collection D, a word w, and an individual docu-
ment d where d ∈ D, we calculate [Equation (1)]
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where fw,d equals how many times w appears in d, |D| is the size 
of the corpus, fw,D equals the number of documents in which w 
appears in D, and wd is the TF-IDF score for this word in this 

document. So, if a word is repeated a lot in one document, but not 
in many other documents, that means it is an important discrim-
inating word. However, if it is repeated a lot in all the documents, 
then it is not that important. The following example clarifies the 
idea behind TF-IDF. Assume the following two sentences: “A cat sat 
on my face” and “A dog sat on my bed”. It is required to determine 
the discriminating words between the two sentences. As a human 
you can see that the important discriminating words are [cat-dog-
bed-face], while [A-on-sat] do not have any importance as they are 
repeated in both sentences. TF-IDF mimics the human intelligence 
in discriminating words through giving them a score according to 
the frequency of occurrence. For example, the word “dog” will have 
a score of [1 * log(2/1)] which is greater than 0 while the word “sat” 
will have a score of [1 * log(2/2)] which equals 0. TF-IDF applies 
this scoring to all words in all the documents in the corpus and thus 
the discriminating words are those which have high scores.

3.2.  Artificial Neural Networks

Artificial Neural Networks (ANNs) are designed to resemble the 
structure and information-processing capabilities of the brain [13]. 
The building blocks of this neural network are called neurons, 
where the network consists of one or more layers of these neurons. 
The interconnections between these neurons have certain variables, 
called weights. These weights store information during the training 
phase. The strength point of the neural networks is that it can extrap-
olate the learned information to produce or predict outputs that were 
not present in the training data (generalization). Neural networks are 
used to solve difficult and complex problems in many fields, like data 
mining, pattern recognition and functions approximation.

As shown in Figure 1, the neurons, which are the building blocks of 
the neural network, consist mainly of three elements. The first two 
are the weights (which are in the interconnections) and an adder or 
summation of the product of the input and the weights (which is 
called the net) with Equation (2)
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where wk,j is the interconnected weight and xj is the input. The 
third element is the activation function, which forces the output 
to be within a certain range. Structure of the neuron [11] one of 
the activation functions used in ANN is the Rectified Linear  
Unit (ReLU) activation function, which was first introduced in 
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Nair and Hinton [14]. Figure 2 illustrates the ReLU activation 
function, whose equation is [Equation (3)]

		        f x x( ) = (0, )max � (3)

Another type of activation function is the softmax function [15]. 
The equation for this function is [Equation (4)]
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This activation function enables the network to predict the prob-
ability that a certain input belongs to a certain class, instead of 
having an output of only 0 and 1.

3.3.  Mean-shift Clustering

The mean shift algorithm was originally presented in 1975 by 
Fukunaga and Hostetler [16]. Mean shift is a hill-climbing algorithm 
that starts at a random point and keeps optimizing until reaching 
the optimum solution. Assume a set of points in a two-dimensional 
space. The kernel of the mean shift is a window with a center c, and 
radius (or bandwidth) r. Figure 3 shows the different steps for the 
algorithm. The first step (Figure 3a) is to choose a random point 
from the data points, which is selected as center to the kernel with a 
radius r. In the second step (Figure 3b), the mean of all points within 
the bandwidth is calculated according to the shape of the kernel. For 
example in a Gaussian kernel, each point has a certain weight that 
decreases exponentially by moving away from the center. In step 
three (Figure 3c), the calculated mean becomes the new center of the 
kernel, and a new mean is calculated. In step four (Figure 3d), when 
the calculated mean does not change after a number of iterations, 
then this cluster has reached convergence. Another point from the 
data set is chosen again, repeating steps 1 through 4. Although this 
algorithm seems simple, selecting the radius is a hard task, which is 
dependent on the data points provided.

3.4.  Singular Value Decomposition

Singular Value Decomposition (SVD) was developed by the dif-
ferential geometers, but the first proof of SVD for rectangular and 

Figure 2 | ReLU activation function.

complex matrices was by Eckart and Young [17]. One of the appli-
cations of SVD is dimensionality reduction. In this section, a brief 
overview of the SVD will be provided. In the following Equation (5), 
a matrix A is decomposed into three matrices
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Am × n is the original matrix to be composed, while Um × r is the left sin-
gular vector, r r×∑  is the singular matrix (which is a diagonal matrix 
containing the concepts on its diagonal arranged in a descending 
order). Vn × r is the right singular vector, and r is the number of concepts 
obtained from the original matrix. To reduce the dimensions of the 
main matrix, the unimportant concepts or low-valued concepts can be 
removed from the singular matrix which corresponds to the removal 
of the matching column from the U matrix and row from the V matrix. 
The lower the value of the concept compared with the values of the 
other concepts in the singular matrix, the less information is lost which 
results in less error of reconstruction.

4.  METHODOLOGY

In this section, a detailed discussion of the proposed approach is 
provided. As shown in Figure 4, the Multi Stage Failure Detector 
(MSFD) consists mainly of two blocks; the first block is responsible 
for generating the test cases or the test scenarios, while the second 
block’s function is classifying the logs of the SUT and then cluster-
ing them to discover all the failing regions.

Figure 3 | Mean-shift clustering algorithm. (a) Step 1. (b) Step 2.  
(c) Step 3. (d) Step 4.

Figure 4 | Multi stage failures detector main blocks.
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Figure 5 | Multi stage failures detector detailed flow.

4.1.  Parameters Combinations Generation

The input to MSFD are the parameters of the SUT and the ranges 
of values for these parameters. Random samples from all of these 
ranges are chosen, and all possible combinations for the selected 
samples are then executed. That is the MSFD uses the parameters 
combinations generated to run the SUT, which in return generates 
the logs that MSFD will use to determine the failing regions. After 
that, all the logs resulting from each execution are fed to the second 
block of the tool.

4.2. � Feature Extraction and Machine  
Learning Models

As shown in Figure 5, the second block of MSFD consists mainly 
of three stages:

	(i)	 Feature extraction.

	(ii)	 Machine Learning: this stage is composed of two steps:

•• Supervised learning using a feed-forward ANN for classifi-
cation of logs into pass and fail logs

•• Unsupervised learning using mean-shift clustering for clus-
tering of failing logs

	(iii)	 Visualization of results.

4.2.1.  Feature extraction

The generated logs are converted into a numerical representation 
using TF-IDF. The logs were first converted into a bag-of-words, 
and TF-IDF was then applied, transforming the logs into a vector 
of numerical values. Each value represents a score for the words of 
interest calculated using TF-IDF.

4.2.2.  Machine learning

•• Classification of logs using ANN: A supervised machine learning 
model which is a fully connected feed-forward ANN, is used in this 
stage. The network consists of three layers: an input layer with a 
size equal to the feature vector, the hidden layer, which has a ReLU 
activation function and 32 nodes, and the last layer, which uses a 
softmax activation function to classify the passing and failing logs.

•• Unsupervised clustering using mean shift: The goal of this stage 
is to find the number of unique failures within the failing logs. 
Since this number is unknown, mean-shift clustering was used to 
cluster the failures. As discussed in the background section, the 
main drawback of this algorithm is selecting the ‘r’ or bandwidth 

value to determine the optimal number of clusters, so a solution 
had to be found to solve this issue. A solution for this problem 
was introduced in Pedregosa et al. [18] where the K-nearest 
neighbors algorithm was used. The number k is dependent upon 
the samples number and the k-NN algorithm was used to return 
the distances from a point to its neighbors. The max distance 
among these distances is selected for each point and the same 
procedure is repeated for all the points in the space. All these 
distances are then summed, and the average value calculated is 
the optimum bandwidth or radius to be used in the mean shift.

4.2.3.  Visualization

Multi stage failure detector provides three types of visualizations:

•• Failing logs visualizations: after the logs are transformed into 
numerical vectors using the TF-IDF and clustered, each of these 
numerical vectors’ dimensions is reduced to two dimensions 
using a truncated SVD (which is a version of the SVD mentioned 
in the background section), and implemented in Fukunaga and 
Hostetler [16] to be plotted. Such graphs help the user clearly 
see the failing logs, and how different they are from each other. 
Truncated SVD facilitates the viewing of the clusters of failures 
in two dimensions. The full information of the clusters and the 
associated log files is saved by the tool in a separate directory and 
can be examined by the user.

•• Failing parameters visualizations: each cluster’s failing parame-
ters are plotted, and if the number of parameters is more than 
two, truncated SVD is used to reduce their dimension to two 
dimensions.

•• Parameters analysis visualizations: each parameter or a combi-
nation of two parameters is plotted to determine their accepted 
ranges of values.

4.3.  Validation

The results of the MSFD were validated manually by examining 
each cluster, and examining the ranges resulted from the MSFD to 
make sure that the results are accurate.

5.  EXPERIMENTS AND RESULTS

Multi stage failure detector was tested on two EDA tools which 
are Calibre® layout schema generator (LSG) tool and xCalibrate™ 
to evaluate its efficiency. In the following two sections, the 
results achieved from applying the MSFD on the two tools will 
be discussed.

5.1.  Calibre® LSG

Calibre® LSG [19] is a tool for the random generation of realistic 
design-like layouts, without design rule violations. The tool uses 
a Monte Carlo method to apply randomness in the generation of 
layout clips by inserting basic unit patterns in a grid. These unit 
patterns represent simple rectangular and square polygons, as well 
as a unit pattern for inserting spaces in the design. Unit pattern 
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sizes depend on the technology pitch value. During the generation 
of the layouts, known design rules are applied as constraints for 
unit pattern insertion. Once the rules are configured, an arbitrary 
size of layout clips can be generated.

The input to MFSD was the command that runs the LSG, along 
with 11 different parameters and the ranges to be tested for these 
parameters. The number of samples taken from each parameter 
range was set to be either three or two samples. That resulted in 
20,736 combinations, which maps to the same number of logs. 
Since the tool to be tested produces a passing log only when all 11 
parameters have a valid value (if there is even one parameter with 
an invalid value, the tool under test should produce an error mes-
sage), the number of the passing logs is always much less than that 
of the failing logs.

5.1.1.  Feature extraction

These logs were then fed to the feature extraction block shown in 
Figure 5, where the TF-IDF algorithm was applied to generate vec-
tors of weights. After removing the stopping words (like a, the, an, 
is...), each of these logs was converted into a numeric vector of 64 
rows (64 elements per vector). Each of these rows corresponds to a 
certain word. Examples of the captured words include “completed”, 
“count”, “cpu”, “creating”, “error”, “file”, “floating”, “successfully” and 
“zero”. Each of these words has a different score for each log’s vector. 
By examining this sample of words, it is clear that some weights 
are discriminating features for each of the passing and failing logs. 
Although some passing logs may contain the word “error”, and 
some failing logs may contain “successfully”, some combinations of 
word weights (like “error” with “completed”) may mean a passing 
run, while “successfully” with “zero” may be a failure.

5.1.2.  Classification

The extracted features are used as input to the classification stage, 
which is the ANN. It was proven that providing a small training 
data set containing 1000 passing (positive) log samples and 1000 
failing (negative) log samples, with 20% of them used as test data, 
and a shallow neural network as stated, was enough to draw the 
hyper-plane separating the passing logs and the failing logs, pro-
ducing an accuracy of 100% on the test data. The result from this 
phase was classifying the 20,736 logs into 20,712 failing logs and 24 
passing ones.

5.1.3.  Clustering

The failing logs were then re-parsed, as TF-IDF was applied to 
them again, producing numerical vectors of 46 rows. Each of these 
rows again corresponds to a certain word. The TF-IDF was applied 
again because some of the words existed in the passing logs, but 
were not found in the failing ones, so the vectors of the failing logs 
had zero values for these words. Also, during the first TF-IDF rep-
resentation, the weights of some specific words had larger values, 
since they were discriminating features for passing and failing logs, 
while in the case of being in a corpus containing only the failing 
logs, these words may have no real value. Reapplying the TF-IDF 
after the classification was for optimization (removing zeroes) and 

to achieve more accurate results. Examples of words captured in 
the second TF-IDF include “layer”, “margin”, “pattern col count”, 
“error”, “floating”, “id”, and “layer”. In the sample of captured 
words, the word ‘layer’ is captured two times. However, the first 
time, it is “layer” (with double quotes), while the second time, it is 
just layer. That happened because during the feature engineering 
phase, it was noticed that the error message that appeared was due 
to a failure caused by one of the parameters sometimes contain-
ing the name of that parameter within double quotes. As a result, 
a pattern separating normal words from double-quoted words was 
added to the TF-IDF allowing it to treat “layer” and layer as two 
different words with two different weights in the numerical vec-
tors produced. Before adding the feature of separating quoted from 
unquoted keywords, some similar errors were grouped together, 
resulting in some of the clusters being combined with each other 
to produce a total of nine clusters, which is not the right number of 
clusters. After adding this feature, failing logs were clustered into 11 
clusters, which is the right number of failure regions, producing a 
100% accuracy result for the LSG.

5.1.4.  Failure analysis

The third and last phase is the visualization phase, and as stated in 
the methodology section, MFSD provides three different visualiza-
tions: visualizing the logs, visualizing the failing parameters, and 
visualizing the ranges of acceptable parameter values discovered 
from running MFSD. The failing logs vectors contained 46 rows, 
which corresponds to 46 features and 46 dimensions. To visualize 
these results, a truncated version of the SVD was used to reduce the 
dimensions to two dimensions. The resulting graph is provided in 
Figure 6.

This graph represents 20,712 points, which corresponds to 20,712 
failing logs clustered into 11 clusters. The number of points on this 
graph is much less than this number because logs resulting from 
similar failures were very close to each other in the high dimen-
sional space. Upon decreasing the features into only two dimen-
sions, these logs coincided. Some light green clusters (cluster 8 in 
Figure 6) also coincide with some black ones (cluster 7 in Figure 6), 
due to a small information loss resulting from the dimensionality 
reduction. All cluster information is saved in a directory by the 
tools and can be examined by the user. The second graph provided 
by this tool plots the parameters that caused each of these failures 
(Figure 7).

Figure 6 | Layout schema generator failing logs.
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Figure 8 | Parameters analysis.

Figure 7 | LSG failing clusters parameters.

Each of the clusters shown in this graph contains a graphical rep-
resentation of the 11 parameters that caused that error (only four 
clusters’ parameters are plotted here, but all 11 clusters can be 
plotted if needed). Since there are 11 parameters, a dimensionality 
reduction algorithm was applied and the truncated SVD was used 
again. So, if the user needed to analyze the set of parameters that 
caused the first kind of failure, taking four samples from cluster 1 is 
enough to cover cluster 1’s space, as shown in Figure 7. As demon-
strated before, although the number of failure logs in cluster 1 is far 
more than four points, only four points are observed because they 
are close to each other in the higher dimension space (in this case, 
11 dimensions), so they coincided in the lower one. The last graph 
provided by the MSFD is the representation of each parameter or 
combination of two parameters (Figure 8).

These graphs represent the valid regions of each of the parameters 
provided or requested for analysis. They help discover passing or 
failing regions within the parameters that are not valid, as will be 
illustrated next, and validate that these parameters’ ranges follow 
the provided specifications. For the first graph, the margin parame-
ter is analyzed, where the valid ranges were plotted as green circles, 
while invalid ranges were plotted as red crosses. It is clear that values 
beneath zero are invalid, while zero and above are acceptable. This 
was one of the mistakes captured by the MFSD, as the specifications 
provided for the tool stated that margin values should allow nega-
tive values. The second graph represents two parameters together 
(row and column counts), which shows that both of their ranges 
should be above zero to provide acceptable results.

5.2.  xCalibrate±

xCalibrate is a software tool that allows the description of pro-
cess technology information and generates a rule file containing 
Standard Verification Rule Format (SVRF) capacitance and resis-
tance statements. The xCalibrate tool automatically creates the 
necessary capacitance and resistance rules for accurately extracting 
parasitic devices. The generated rule files can be included in a larger 
SVRF rule file for use by the Calibre® xACT, Calibre® xRC, and 
Calibre® xL tools during parasitic extraction [20]. This tool is differ-
ent from the first tool because the input is not a set of parameters, 
but a file containing certain rules. However, MSFD allows template 
parsing of a template containing the keywords for the parameters 
to be replaced, along with their ranges. Random sampling of the 
parameters’ ranges is carried out, producing all the possible com-
binations of these templates to be fed into xCalibrate. Seven 
parameters were sampled in xCalibrate, producing 10,800 logs. 
Like the LSG, TF-IDF was applied on the output logs to produce 
numerical vectors, each containing 149 elements that were then fed 
into the neural network classifier model. In training the neural net-
work, 2000 logs were used (1000 passing logs and 1000 failing logs). 
The training data was split between 80% training and 20% test data. 
Again, due to the discriminating features captured by the TF-IDF, 
the network reached an accuracy of 100% on the test data. After 
reapplying the TF-IDF to the failing logs, unsupervised mean-shift 
clustering was applied, producing numerical vectors each of length 
94 elements. Eight failing regions were captured. Figure 9 shows 
the graph representing the logs for these regions after reducing the 
number of features from 94 to 2.

xCalibrate was a different way to test MSFD because of the dif-
ference in input mentioned above, and because not all errors of the 
tool are clearly mentioned in the logs, as with the LSG. Although 
some of these errors were not captured by the logs, MSFD was able 
to cluster them successfully together, which proved the MSFD deci-
sion is not dependent upon the content of the log alone as much 
as the contents of all the logs together. When analyzing the fail-
ures in the eight clusters, one of the failing clusters contained three 
different failures because they were very close to each other, while 
all the other failing logs were totally different. That is, the failing 
logs of most of the clusters contained different formats from each 
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Figure 9 | xCalibrate failing logs.
6.  CONCLUSION

This paper proposed the MSFD tool for discovering the failing 
regions within a SUT, clustering similar failures together, visual-
izing the logs and the parameter values causing the failures, and 
plotting the acceptable ranges for each parameter or combina-
tion of two parameters. The input to MSFD was the list of ranges 
for the values of the parameters, passing through the parame-
ters combination generation block, the feature extraction and 
machine learning block, and ending with the visualization. It was 
found that using TF-IDF in log analysis followed by a feed-for-
ward ANN dramatically decreases both the depth of the ANN 
needed and the number of the training data, while providing 
accurate results. Using TF-IDF again on the failing logs allows 
the mean-shift clustering to perfectly cluster the logs. Our exper-
iments with two different tools demonstrated the practicality of 
this approach for introducing automation into failure regions 
detection and parameters analysis.
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