P12.06: DOES A 6-MONTH MILITARY MISSION IN AFGHANISTAN HAVE AN IMPACT ON INFLAMMATION MARKERS, VITAMIN D LEVEL, AND ARTERIAL STIFFNESS?

E. Salum, M. Zilmer, P. Kampus, J. Kals, E. Unt, M. Serg, M. Zagura, M. Blöndal, K. Zilmer, J. Eha


To link to this article: https://doi.org/10.1016/j.artres.2010.10.129

Published online: 21 December 2019
Carotid wave speed was higher in men (p = 0.03) and increased with age in both sexes although the rise was more marked in women. Wave reflections from the head are reduced in healthy older people.


P12.04
THE ROLE OF OXIDATIVE STRESS IN ACETYLCOLINE-INDUCED RELAXATION OF DEENDOTHELIZED ARTERIES
S. Cacanyiova 1, F. Kristek1, I. Dovinova1, W. Boecker 2, V. E. Samoilova 2, I. B. Buchwalow 2
1Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
2Gerhard Domagk Institute of Pathology, University of Muenster, Muenster, Germany

Nitric oxide (NO) produced by endothelium in response to vasorelaxants, such as acetylcholine, induces vasorelaxation of vascular smooth muscle cells (VSMC). It has been found that VSMC express NO-synthase, however, the principal question remained unanswered, if it is physiologically relevant. Because injury of endothelium triggers free-radical production which decreases NO availability we hypothesized that the destruction of arterial anatomical integrity by rubbing off endothelial layer made vessels insensitive to vasodilators as a consequence of oxidative stress. We examined acetylcholine-induced vasorelaxation in deendothelialized thoracic aorta (TA), menen- teric artery (MA) and pulmonary artery (PA) of Wistar rats under protection against oxidative stress. Acetylcholine produced vasorelaxation in arteries with intact endothelium, whereas the relaxation in endothelium-denuded rings was inhibited. Pretreatment of TA, MA and PA denuded rings with tempol, a free-radical scavenger, improved relaxation to acetylcholine compared to untreated rings. The improved relaxation in all denuded rings was inhibited when ODQ, an inhibitor of guanylate cyclase, or L-NAME, an inhibitor of NO-synthase, were administered contemporary with tempol. Chemiluminescence method revealed that deendothelial denudation of TA and PA increased the production of superoxides. Immunohistochemical staining confirmed expression of NOS3-isoform in both intimal and medial cells in all arteries. Results revealed that deendothelialized arteries under protection against oxidative stress exerted relaxation to acetylcholine which was mediated by NO and cGMP. The study suggests that VSMC can release NO in amounts sufficient to cGMP. The study suggests that VSMC can release NO in amounts sufficient to

P12.05
IMPACT OF IGF-1 ON ARTERIAL STIFFNESS IN PATIENTS WITH ACREMATICLY: COMPARISON OF MEASURES OF APWV AND AASI
M. Banerjee, A. N. Paisley, M. Roberts, P. J. Trainer
Manchester University, Manchester, United Kingdom

Introduction: Acremacy, caused by excess of growth hormone, has high cardiovascular mortality and morbidity. Aortic pulse wave velocity (APWV) and ambulatory arterial stiffness index (AASI) are known measures of arterial stiffness. We evaluated the factors influencing APWV and AASI in patients with acremacy.

Method: Patients with acremacy at various stages in their disease were assessed for disease activity by IGF-1, presence of hypopituitarism, other co-morbidities, aPWV and measurement of 24 hour ambulatory blood pressure, heart rate, gender, presence of hypopituitarism, nocturnal dipping in blood pressure, proteinuria, cigarette smoke exposure, diabetes and hypertension. Blood pressure was inversely correlated with aPWV. Values of aPWV and AASI were measured in patients with high or normal IGF-1. Multivariate analysis including pulse wave velocity and pulse wave analysis using the Sphygmocor device. A set of correlations were observed in high-sensitivity C-reactive protein (0.68 ± 0.07 vs 1.47 ± 0.35 (mg/L), p = 0.03), leukocyte count 5.4 ± 1.1 vs 6.3 ± 1 (x10^3/L), p < 0.001, as well as in various pro-inflammatory cytokines, including IL-1α (0.13 ± 0.18 vs 0.21 ± 0.23 (pg/mL), p < 0.001), INF-γ (2.6 ± 2.4 vs 5.3 ± 3.4 (pg/mL), p < 0.001), and MCP-1 (151 ± 61 vs 229 ± 95 (pg/mL), p < 0.001).

Conclusion: Arterial stiffness was not altered by arduous conditions during the deployment. However, there were significant changes in the spectrum of inflammation markers and vitamin D levels. We speculate that elevated vitamin D levels may have ameliorated the possible inflammation-induced changes in arterial stiffness.

P12.06
DOES A 6-MONTH MILITARY MISSION IN AFGHANISTAN HAVE AN IMPACT ON INFLAMMATION MARKERS, VITAMIN D LEVEL, AND ARTERIAL STIFFNESS?
E. Salum 2,3, M. Zilmer 2, P. Kampus 1,2,3, J. Kals 1,2,4, E. Unt 5,6, M. Seri 1,2, M. Zagura 2,1, M. Blindal 1, K. Zilmer 3, J. Eha 1,2
1Department of Cardiology, University of Tartu, Tartu, Estonia
2Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
3Department of Vascular Surgery, Tartu University Hospital, Tartu, Estonia
4Institute of Exercise Biology and Physiotherapy, University of Tartu, Tartu, Estonia
5Department of Sports Medicine and Rehabilitation, University of Tartu, Tartu, Estonia

Background: Excessive workload may have transient detrimental effects on left ventricular function and arterial stiffness. Furthermore, heavy endurance physical exercise has been shown to induce short-term systemic inflammation response. Recently, vitamin D has attracted increased attention owing to its potential anti-inflammatory effects. The aim of this study was to investigate the impact of a 6-month military mission on arterial stiffness, inflammation, and vitamin D level.

Methods: Sixty-five soldiers (age 26.4 years) deployed to a peacekeeping mission in Afghanistan for 6 months were examined before and after the mission. We assessed arterial stiffness by carotid-femoral pulse wave velocity and pulse wave analysis using the Sphygmocor device. A set of inflammation-related markers was assessed in the blood using biochemical assays. Results: Arterial stiffness and brachial and central blood pressure did not differ significantly before and after the mission. Vitamin D level increased by 2.6 times (40.1 ± 15 vs 104.2 ± 24 (nmol/L), p < 0.001). Significant increases were observed in high-sensitivity C-reactive protein (0.68 ± 0.07 vs 1.47 ± 0.35 (mg/L), p < 0.001), leukocyte count 5.4 ± 1.1 vs 6.3 ± 1 (x10^3/L), p < 0.001, as well as in various pro-inflammatory cytokines, including IL-1α (0.13 ± 0.18 vs 0.21 ± 0.23 (pg/mL), p < 0.001), INF-γ (2.6 ± 2.4 vs 5.3 ± 3.4 (pg/mL), p < 0.001), and MCP-1 (151 ± 61 vs 229 ± 95 (pg/mL), p < 0.001).

Conclusion: Arterial stiffness was not altered by arduous conditions during the deployment. However, there were significant changes in the spectrum of inflammation markers and vitamin D levels. We speculate that elevated vitamin D levels may have ameliorated the possible inflammation-induced changes in arterial stiffness.

P12.07
LACK OF RELATION BETWEEN ENDOTHELIAL FUNCTION AND CAROTID ARTERY STIFFNESS IN YOUNG, HEALTHY MALE SUBJECTS
A. Pint´er, T. Horváth, M. Kolai
Institute of Human Physiology and Clinical Experimental Research, Budapest, Hungary

The endothelium was shown to reduce vascular stiffness of muscular arteries by producing vascular smooth muscle relaxing, vasodilative factors. Stiffening of arteries with advancing age and risk factor exposure predominan-antly involves the elastic segments of the arterial tree. It is not known to what extent the stiffness of large elastic arteries is under endothelial control. This study was designed to investigate the relationship between endothelial function and stiffness of the carotid artery, a representative of central elastic arteries. Conduit artery endothelial function was assessed in 58 subjects by measuring brachial artery flow mediated dilatation (FMD). Carotid artery elastic parameters were calculated from carotid pulse pressure measured by local tonometry and from pulsatile distension determined by echo wall-tracking. Systemic arterial stiffness was assessed by aorto-femoral pulse wave velocity (PWV). Relations between variables were determined by univariate corre-lation analysis.

All measured values fell within age related normal ranges. FMD was inversely related to age and DBP (r = -0.49 and -0.48, respectively; p < 0.01 for both). PWV was also significantly and inversely related to PWV (r = -0.46; p < 0.05), but was not related to any parameter of carotid artery elasticity. We suggest that age-related impairment in large elastic vessel function may not be significantly influenced by the loss of vasodilatative capacity of the endothelium.